Introduction to Python and Large Language Models: A Guide to Language Models 302591

Код товару: 302591Паперова книга
  • ISBN
    979-8868805394
  • Бренд
  • Автор
  • Рік
    2024
  • Мова
    Англійська
  • Ілюстрації
    Чорно-білі
Gain a solid foundation for Natural Language Processing (NLP) and Large Language Models (LLMs), emphasizing their significance in today’s computational world. This book is an introductory guide to NLP and LLMs with Python programming.

The book starts with the basics of NLP and LLMs. It covers essential NLP concepts, such as text preprocessing, feature engineering, and sentiment analysis using Python. The book offers insights into Python programming, covering syntax, data types, conditionals, loops, functions, and object-oriented programming. Next, it delves deeper into LLMs, unraveling their complex components.

You’ll learn about LLM elements, including embedding layers, feedforward layers, recurrent layers, and attention mechanisms. You’ll also explore important topics like tokens, token distributions, zero-shot learning, LLM hallucinations, and insights into popular LLM architectures such as GPT-4, BERT, T5, PALM, and others. Additionally, it covers Python libraries like Hugging Face, OpenAI API, and Cohere. The final chapter bridges theory with practical application, offering step-by-step examples of coded applications for tasks like text generation, summarization, language translation, question-answering systems, and chatbots.

In the end, this book will equip you with the knowledge and tools to navigate the dynamic landscape of NLP and LLMs.

What You’ll Learn
  • Understand the basics of Python and the features of Python 3.11
  • Explore the essentials of NLP and how do they lay the foundations for LLMs.
  • Review LLM components.
  • Develop basic apps using LLMs and Python.
Who This Book Is For
Data analysts, AI and Machine Learning Experts, Python developers, and Software Development Professionals interested in learning the foundations of NLP, LLMs, and the processes of building modern LLM applications for various tasks.

About the Author
Dilyan Grigorov is a software developer with a passion for Python software development, generative deep learning & machine learning, data structures, and algorithms. He is an advocate for open source and the Python language itself. He has 16 years of industry experience programming in Python and has spent 5 of those years researching and testing Generative AI solutions. Dilyan is a Stanford Student in the Graduate Program on Artificial Intelligence in the classes of people like Andrew Ng, Fei-Fei Li and Christopher Manning. He has been mentored by software engineers and AI experts from Google and Nvidia. His passion for AI and ML stems from his background as an SEO specialist dealing with search engine algorithms daily. He enjoys engaging with the software community, often giving talks at local meetups and larger conferences. In his spare time, he enjoys reading books, hiking in the mountains, taking long walks, playing with his son, and playing the piano.
2'400 ₴
Купити
Monobank
до 10 платежей
от 269 ₴ / міс.
  • Нова Пошта
    Безкоштовно від 3'000,00 ₴
  • Укрпошта
    Безкоштовно від 1'000,00 ₴
  • Meest Пошта
    Безкоштовно від 3'000,00 ₴
Introduction to Python and Large Language Models: A Guide to Language Models - фото 1

Характеристики

  • Бренд
  • Автор
  • Категорія
    Програмування
  • Рік
    2024
  • Сторінок
    404
  • Формат
    165х235 мм
  • Обкладинка
    М'яка
  • Тип паперу
    Офсетний
  • Мова
    Англійська
  • Ілюстрації
    Чорно-білі

Від видавця

Gain a solid foundation for Natural Language Processing (NLP) and Large Language Models (LLMs), emphasizing their significance in today’s computational world. This book is an introductory guide to NLP and LLMs with Python programming.

The book starts with the basics of NLP and LLMs. It covers essential NLP concepts, such as text preprocessing, feature engineering, and sentiment analysis using Python. The book offers insights into Python programming, covering syntax, data types, conditionals, loops, functions, and object-oriented programming. Next, it delves deeper into LLMs, unraveling their complex components.

You’ll learn about LLM elements, including embedding layers, feedforward layers, recurrent layers, and attention mechanisms. You’ll also explore important topics like tokens, token distributions, zero-shot learning, LLM hallucinations, and insights into popular LLM architectures such as GPT-4, BERT, T5, PALM, and others. Additionally, it covers Python libraries like Hugging Face, OpenAI API, and Cohere. The final chapter bridges theory with practical application, offering step-by-step examples of coded applications for tasks like text generation, summarization, language translation, question-answering systems, and chatbots.

In the end, this book will equip you with the knowledge and tools to navigate the dynamic landscape of NLP and LLMs.

What You’ll Learn
  • Understand the basics of Python and the features of Python 3.11
  • Explore the essentials of NLP and how do they lay the foundations for LLMs.
  • Review LLM components.
  • Develop basic apps using LLMs and Python.
Who This Book Is For
Data analysts, AI and Machine Learning Experts, Python developers, and Software Development Professionals interested in learning the foundations of NLP, LLMs, and the processes of building modern LLM applications for various tasks.

About the Author
Dilyan Grigorov is a software developer with a passion for Python software development, generative deep learning & machine learning, data structures, and algorithms. He is an advocate for open source and the Python language itself. He has 16 years of industry experience programming in Python and has spent 5 of those years researching and testing Generative AI solutions. Dilyan is a Stanford Student in the Graduate Program on Artificial Intelligence in the classes of people like Andrew Ng, Fei-Fei Li and Christopher Manning. He has been mentored by software engineers and AI experts from Google and Nvidia. His passion for AI and ML stems from his background as an SEO specialist dealing with search engine algorithms daily. He enjoys engaging with the software community, often giving talks at local meetups and larger conferences. In his spare time, he enjoys reading books, hiking in the mountains, taking long walks, playing with his son, and playing the piano.

Відгуки про Introduction to Python and Large Language Models: A Guide to Language Models

Introduction to Python and Large Language Models: A Guide to Language Models
Introduction to Python and Large Language Models: A Guide to Language Models
2'400 ₴
Купити
Персонально для вас
The Quick Python Book, Fourth Edition
302585
Naomi Ceder
2'100 ₴
Python and R for the Modern Data Scientist: The Best of Both Worlds
159994
Rick J. ScavettaBoyan Angelov
2'200 ₴
Advanced Guide to Python 3 Programming
259767
John Hunt
2'300 ₴
Data Science: A First Introduction with Python
306597
Tiffany TimbersTrevor CampbellMelissa LeeJoel OstblomLindsey Heagy
2'500 ₴
Python 3: The Comprehensive Guide to Hands-On Python Programming
263355
Johannes ErnestiPeter Kaiser
2'590 ₴
Building AI Intensive Python Applications: Create intelligent apps with LLMs and vector databases
310246
Rachelle PalmerBen PerlmutterAshwin GangadharNicholas LarewSigfrido NarvaezThomas RueckstiessHenry WellerRichmond AlakeShubham Ranjan
2'600 ₴
Programming Android with Kotlin. Achieving Structured Concurrency with Coroutines. 1st Ed.
244782
Pierre-Olivier Laurence, Amanda Hinchman-Dominguez
2'100 ₴
Convex Optimization 1st Edition
300343
Stephen BoydLieven Vandenberghe
7'200 ₴