Learning Spark 2nd Edition 114663

Код товару: 114663Паперова книга
Data is getting bigger, arriving faster, and coming in varied formats-and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark. Updated to emphasize new features in Spark 2.4., this second edition shows data engineers and scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine-learning algorithms. Through discourse, code snippets, and notebooks, you'll be able to: Learn Python, SQL, Scala, or Java high-level APIs: DataFrames and Datasets Peek under the hood of the Spark SQL engine to understand Spark transformations and performance Inspect, tune, and debug your Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow Use open source Pandas framework Koalas and Spark for data transformation and feature engineering
About the Author
Jules S. Damji is an Apache Spark Community and Developer Advocate at Databricks. He is a hands-on developer with over 20 years of experience and has worked at leading companies, such as Sun Microsystems, Netscape, @Home, LoudCloud/Opsware, VeriSign, ProQuest, and Hortonworks, building large-scale distributed systems. He holds a B.Sc and M.Sc in Computer Science and MA in Political Advocacy and Communication from Oregon State University, Cal State, and Johns Hopkins University respectively. Denny Lee is a Technical Product Manager at Databricks. He is a hands-on distributed systems and data sciences engineer with extensive experience developing internet-scale infrastructure, data platforms, and predictive analytics systems for both on-premise and cloud environments. He also has a Masters of Biomedical Informatics from Oregon Health and Sciences University and has architected and implemented powerful data solutions for enterprise Healthcare customers. His current technical focuses include Distributed Systems, Apache Spark, Deep Learning, Machine Learning, and Genomics. Brooke Wenig is the Machine Learning Practice Lead at Databricks. She guides and assists customers in implementing machine learning pipelines, as well as teaching Distributed Machine Learning & Deep Learning courses. She received an MS in Computer Science from UCLA with a focus on distributed machine learning. She speaks Mandarin Chinese fluently and enjoys cycling. Tathagata Das is an Apache Spark committer and a member of the PMC. He's the lead developer behind Spark Streaming and currently develops Structured Streaming. Previously, he was a grad student in the UC Berkeley at AMPLab, where he conducted research about data-center frameworks and networks with Scott Shenker and Ion Stoica.
830 ₴
Купити
Monobank
до 10 платежей
от 93 ₴ / міс.
  • Нова Пошта
    Безкоштовно від 3'000,00 ₴
  • Укрпошта
    Безкоштовно від 1'000,00 ₴
  • Meest Пошта
    Безкоштовно від 3'000,00 ₴
Learning Spark 2nd Edition - фото 1

Характеристики

  • Бренд
  • Автор
  • Категорія
    Комп'ютерна література
  • Номер видання
    2-ге вид.
  • Рік
    2020
  • Сторінок
    300
  • Формат
    170х240 мм
  • Обкладинка
    М'яка
  • Тип паперу
    Офсетний
  • Мова
    Англійська
  • Ілюстрації
    Чорно-білі

Від видавця

Data is getting bigger, arriving faster, and coming in varied formats-and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark. Updated to emphasize new features in Spark 2.4., this second edition shows data engineers and scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine-learning algorithms. Through discourse, code snippets, and notebooks, you'll be able to: Learn Python, SQL, Scala, or Java high-level APIs: DataFrames and Datasets Peek under the hood of the Spark SQL engine to understand Spark transformations and performance Inspect, tune, and debug your Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow Use open source Pandas framework Koalas and Spark for data transformation and feature engineering
About the Author
Jules S. Damji is an Apache Spark Community and Developer Advocate at Databricks. He is a hands-on developer with over 20 years of experience and has worked at leading companies, such as Sun Microsystems, Netscape, @Home, LoudCloud/Opsware, VeriSign, ProQuest, and Hortonworks, building large-scale distributed systems. He holds a B.Sc and M.Sc in Computer Science and MA in Political Advocacy and Communication from Oregon State University, Cal State, and Johns Hopkins University respectively. Denny Lee is a Technical Product Manager at Databricks. He is a hands-on distributed systems and data sciences engineer with extensive experience developing internet-scale infrastructure, data platforms, and predictive analytics systems for both on-premise and cloud environments. He also has a Masters of Biomedical Informatics from Oregon Health and Sciences University and has architected and implemented powerful data solutions for enterprise Healthcare customers. His current technical focuses include Distributed Systems, Apache Spark, Deep Learning, Machine Learning, and Genomics. Brooke Wenig is the Machine Learning Practice Lead at Databricks. She guides and assists customers in implementing machine learning pipelines, as well as teaching Distributed Machine Learning & Deep Learning courses. She received an MS in Computer Science from UCLA with a focus on distributed machine learning. She speaks Mandarin Chinese fluently and enjoys cycling. Tathagata Das is an Apache Spark committer and a member of the PMC. He's the lead developer behind Spark Streaming and currently develops Structured Streaming. Previously, he was a grad student in the UC Berkeley at AMPLab, where he conducted research about data-center frameworks and networks with Scott Shenker and Ion Stoica.

Анотація

Data is getting bigger, arriving faster, and coming in varied formats—and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark.

Updated to emphasize new features in Spark 2.x., this second edition shows data engineers and scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex and data analytics employ machine-learning algorithms. Through discourse, code snippets, and notebooks, you’ll be able to:

  • Learn Python, SQL, Scala, or Java high-level APIs: DataFrames and Datasets
  • Peek under the hood of the Spark SQL engine to understand Spark transformations and performance
  • Inspect, tune, and debug your Spark operations with Spark configurations and Spark UI
  • Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka
  • Perform analytics on and batch streaming data using Structured Streaming
  • Build reliable data pipelines with open source Delta Lake and Spark
  • Develop machine learning pipelines with MLlib and productionize models using MLflow
  • Use open source Pandas framework Koalas and Spark for data transformation and feature engineering

About the Author

Відгуки про Learning Spark 2nd Edition

Learning Spark 2nd Edition
Learning Spark 2nd Edition
830 ₴
Купити
Персонально для вас
Build a Career in Data Science 1st Edition
276056
Jacqueline NolisEmily Robinson
700 ₴
Grokking Relational Database Design
302636
Qiang HaoMichail Tsikerdekis
750 ₴
Fundamentals of Analytics Engineering: An introduction to building end-to-end analytics solutions
278869
Dumky de WildeFanny KassapianJovan Gligorevic
1'600 ₴
Machine Learning for High-Risk Applications: Approaches to Responsible AI 1st Edition
259255
Patrick HallJames CurtisParul Pandey
1'900 ₴1'672 ₴
Godel, Escher, Bach: An Eternal Golden Braid
38963
Douglas R. Hofstadter
800 ₴
Generative AI: Navigating the Course to the Artificial General Intelligence Future 1st Edition
279450
Martin Musiol
1'200 ₴
Information Architecture: For the Web and Beyond 4th Edition
67176
Louis RosenfeldPeter MorvilleJorge Arango
850 ₴
Microsoft Exchange Server 2003
3216
Уолтер ГленнБилл Инглиш
290 ₴
Practicing Trustworthy Machine Learning: Consistent, Transparent, and Fair AI Pipelines 1st Edition
274064
Yada PruksachatkunMatthew McateerSubhabrata Majumdar
1'900 ₴
Machine Learning and its Applications
159993
CRC Press
2'800 ₴
Cybersecurity Tabletop Exercises: From Planning to Execution
303127
Robert LelewskiJohn Hollenberger
1'200 ₴
Deep Learning: Foundations and Concepts 2024th Edition
292939
Hugh BishopChris Bishop
2'400 ₴