Машинное обучение с использованием библиотеки Н2О

Машинное обучение с использованием библиотеки Н2О
%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5+%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5+%D1%81+%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5%D0%BC+%D0%B1%D0%B8%D0%B1%D0%BB%D0%B8%D0%BE%D1%82%D0%B5%D0%BA%D0%B8+%D0%9D2%D0%9E - фото 1
780 грн
56806
ISBN
978-5-97060-508-0
Издательство
ДМК Пресс
Год
2017
Страниц
250
Формат
70х100 1/16 (170х240 мм)
Обложка 
Твердая
Тип бумаги 
Офсет
Язык
Русский
Иллюстрации
С иллюстрациями
Вес, г
400
Читать фрагмент
2 человека
  • По ХарьковуДоставка курьером - 100 грн
    Бесплатно - от 2000 грн
  • По УкраинеБесплатно - от 2000 грн
    Новая Почта - от 40 грн
    Укрпочта - от 25 грн
  • Международная доставкаУкрпочта...
Подробнее о доставке

Машинное обучение наконец-то достигло стадии зрелости

При помощи программного обеспечения H2O вы можете решать задачи машинного обучения и анализа данных с использованием простого в использовании и открытого (open source) фреймворка, который поддерживает большое количество операционный систем и языков программирования, а также масштабируется для обработки больших данных. Это практическое руководство научит вас использовать алгоритмы машинного обучения, реализованные в H2O, с упором на наиболее важные для продуктивной работы аспекты.

Если вы умеете программировать на R или Python, хотя бы немного знаете статистику и имеете опыт обработки данных, эта книга Даррена Кука познакомит вас с основами использования H2O и поможет вам поэкспериментировать с машинным обучением на наборах данных разного размера. Вы изучите несколько современных алгоритмов машинного обучения: глубокое обучение, «случайный лес», обучение на неразмеченных данных и ансамбли моделей.

Прочтя эту книгу, вы:

  • узнаете, как импортировать данные в H2O, преобразовывать их и экспортировать их из H2O;
  • изучите основные концепции машинного обучения, такие как перекрестная проверка и проверочные наборы данных;
  • поработаете с тремя разными наборами данных, решая задачи регрессии, бинарной и многоклассовой классификации;
  • используете H2O для анализа каждого набора данных при помощи четырех алгоритмов машинного обучения;
  • поймете, как работает кластерный анализ и другие алгоритмы обучения на неразмеченных данных.

Понимание процесса построения моделей, тупиковых ситуаций и заканчивающихся провалом экспериментов является не менее важным, чем изучение кода!

Вы можете купить книгу с доставкой курьером новой поштой укрпочтой Кривой Рог, Львов, Полтава, Житомир, Черкассы, Харьков, Чернигов, Винница, Тернополь, Киев, Луцк, Ровно, Хмельницкий, Херсон, Кировоград, Николаев, Днепропетровск, Ужгород, Запорожье, Суммы, Черновцы, Одесса, Ивано-франковск, другие города Украины. только в нашем магазине низкие цены, прямые поступления от издательства,книги под заказ, печать книг на заказ, компьютерные книги на английском языке.