
Extracted from:

Build a Binary Clock with Elixir
and Nerves

Use Layering to Produce Better Embedded Systems

This PDF file contains pages extracted from Build a Binary Clock with Elixir and
Nerves, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Build a Binary Clock with Elixir
and Nerves

Use Layering to Produce Better Embedded Systems

Frank Hunleth
Bruce A. Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-923-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—November 3, 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction
This book is one of a series of books about Elixir and Nerves. Each book in
this series will teach one fundamental software concept, and build one com-
plete project using the Elixir language on Nerves. Elixir1 is a highly concurrent
and reliable functional programming language, and Nerves2 is a tool for
embedding programs on it to build the internet of things, IoT. These devices
are small special purpose computers used to control hardware. They show
up in cars, appliances, industrial controllers, and more.

In this book, you’ll build an IoT device, a binary clock that cryptically tells
time by lighting a series of LEDs, and gets the current time from the network.
Pure Elixir code will control the clock’s display. While a clock is a relatively
simple machine, it has many of the same parts as real-life hardware projects.
Throughout this book, you’ll use the very same principles to organize the
software in your own clock as you’d use in any other program.

How to Read This Book
This books takes you step by step through the process of building an end-to-
end binary clock, from the layers of software to the LEDs. If you choose to
omit steps, you could wind up with a non-functional end product.

Who This Book Is For
This book is for any Elixir programmer that is comfortable with the basics of
the programming language and is interested in dabbling in the world of
embedded systems. No soldering or deep hardware experience is necessary,
given that you will be working with off the shelf plugin and play hardware.

1. https://elixir-lang.org
2. http://nerves-project.org/

• Click HERE to purchase this book now. discuss

https://elixir-lang.org
http://nerves-project.org/
http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

Who This Book Isn’t For
If you have just a little experience with Elixir, don’t worry. We’ll help you with
some of the more advanced concepts. If you are just getting started, you might
want to put this book aside for a bit and pick up Programming Elixir 1.6
[Tho18].

While Elixir 1.6 came out a few years ago now, the core language has not
changed much in that time and as such the book will help you develop a
solid Elixir foundation. After you read that book, feel free to pick this one up
again and get your hands dirty with an IoT based project.

Building the Project
Being able to build and run your application code will be key to understanding
the concepts outlined in this book. As such it is important that you have the
items outlined in the next couple sections so that you have everything you
need to complete the binary clock.

Software Requirements
Embedded hardware aside, you will need the following things:

• Elixir version 1.12 or greater
• A Linux, MacOS, or Windows machine to do your development on
• A wireless access point for your local area network

If you have all of those items then you are good to go from a development
machine perspective, and all that is needed is the Nerves related hardware.

Hardware Requirements
While there is some flexibility with what hardware (like what version Raspberry
Pi) you can buy and from where, the following items were used by the authors:

• Raspberry Pi Zero W with headers
• MicroUSB connection cables
• 4GB+ MicroSD card
• MicroSD card reader
• 20 LEDs of various colors
• Some resistors
• TLC5947 constant current driver with a SPI interface
• Jumper wires, breadboard, headers, and ribbon cables

If you don’t know what these things are or where to buy them, fear not as we
explain all of this in the first few chapters. You can drift away from these

Introduction • iv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

parts, but you might need to change the instructions in the book slightly to
get things to run.

Online Resources
All of the code for this project can be found online in the GitHub repository.3

If you need any assistance for all things Elixir and Nerves, be sure to check
out the Elixir Forums4 where you will find a vibrant community ready to help.

With those bits of housekeeping aside, we can make a plan.

Our Plan
It’s often hard to get started when working with hardware because there are
so many small things that can go wrong. For that reason, it’s important to
establish several small quick wins instead of making one full project work
end to end. So it is with Nerves.

We’re going to direct you to the excellent Nerves documentation to get started.
Then, we’ll shift toward building a networked project that will eventually
control our clock. Here’s what the plan looks like in detail.

Burn Firmware
Nerves works by combining the Elixir programs that you write with everything
else that a specialized embedded computer needs to run. An increasing
number of these tiny devices actually run the Unix operating system, and
Nerves is built to run on them.

You’ll start by installing a firmware program written by the Nerves team on
a an embedded computer, called a target. This first step will verify that you
can use your Nerves tool chain to install a program on the target’s firmware
chip. Then, you’ll snap the firmware chip into your target, and connect to it
using a USB cable so you can remotely access an Elixir shell.

• You have a working Nerves tool chain for burning firmware
• You can use your host to debug your target

With working firmware, we can shift to the hardware.

3. https://github.com/groxio-learning/thnerves
4. https://elixirforum.com

• Click HERE to purchase this book now. discuss

Our Plan • v

https://github.com/groxio-learning/thnerves
https://elixirforum.com
http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

Make a Circuit
The first step in building a complex hardware project is to build a simple one
that works. It makes sense, then, to build the simplest of circuits, a single
LED that you’ll control with your target. Once you’ve done that much, you’ll
connect to your target from your development computer, called a host to
control the LED. This step will demonstrate that you can build circuits, install
them on a target, and control them with a host. When you’re done, you’ll
know:

• You have a working circuit
• You can exercise your circuit using IEx to talk to programs on firmware

With a working firmware process and a circuit, the next step is to write a
simple program.

Build a Program In Layers
After burning an existing project onto firmware, you’ll write your own mix
project. You’ll add compilation for a target to your tool chain. Nerves will build
an image that has your program and everything else your embedded device
needs.

After you’ve built a program to blink an LED, you’ll build in networking so
you can push software changes and share data with the outside world. We’ll
track a common time. When you’re done, you’ll know how to:

• Write your own programs, and then burn them onto firmware
• Build software in layers, with functional cores that handle logic and

boundaries to handle external interfaces
• Connect to your embedded device from networked computers to burn

firmware, collect data, or use circuits you build, like your LED circuit

When this step is done, you’ll have a working Nerves skeleton. Your host will
have proven tools to upload firmware. Your target will have a working circuit.
Finally, your program will control the target. Those three tiny steps will reap
huge rewards in your confidence in a working system, and demonstrate any
problems before you have to move on.

Bruce says:

Write Your Software in Layers
The trick to handling complexity is not eliminating it, but figuring out ways to deal
with a little bit at a time. That’s why you should write your programs in layers. Your
project will be complex, but the module in your editor window doesn’t have to be.

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

After we’ve established working firmware uploads, hardware, and software,
we can move on to the next part of the book, building the clock. We’ll save
that plan for later.

Every future Nerves step will have these steps. You’ll build circuits, write or
update layered programs, and then push them to your firmware.

That’s enough planning. We’re ready to build a clock.

• Click HERE to purchase this book now. discuss

Our Plan • vii

http://pragprog.com/titles/thnerves
http://forums.pragprog.com/forums/thnerves

