
і Pragmatic
ogrammers і

Kotlin and Android
Development
featuring Jetpack
Build Better, Safer Android Apps

Michael Fazio
edited by Michael Swaine

Kotlin and Android Development
featuring Jetpack

Build Better, Safer Android Apps

Michael Fazio

Create a Repository Class
First off, a repository isn’t a specific Room-related class but rather a recom
mended Jetpack convention. The advantage of using a repositoiy is that the
ViewModel classes have a single location for all data access, no matter the source
of that data. This means that if we were to have web service calls along with
our database calls, the front-end components would go to the same place for
both and not even care about which was which. Having a repositoiy separates
out how you get data with how you use the data.

In our case, having a repositoiy is admittedly overkill since we only have a
single data source and, as you’ll see, the functions in our repository will just
be pass-throughs to PennyDropDao functions. Still, it’s good practice to have the
repositoiy in place once you move on to more complicated apps, like the
Android Baseball League app.

T o start, create the PennyDropRepository class in the data package and send in an
instance o f PennyDropDao as a private value.

class PennyDropRepository(private val pennyDropDao: PennyDropDao) { ... }

The PennyDropRepository class will have four functions to start: getCurrentGameWith-
Playersf), getCurrentGameStatusesO, startGameO, and updateGame(). This highlights
another advantage of a repository: we can limit the functions that are shown
to the rest of the app while allowing the DAO to have extra internal function
ality. While in most cases we could just make those functions protected, this
would restrict us from using them in other DB-related activity, such as during
RoomDatabase initialization.

As I mentioned before, each of these functions will be calling the corresponding
function in PennyDropDao. Also, the latter two functions will be marked with
the suspend keyword, as they’re modifying the database. The entire PennyDropRepos
itory looks like this:

class PennyDropRepository(private val pennyDropDao: PennyDropDao) {

fun getCurrentGameWithPlayers() =
pennyD ropDao.getCu r rentGameWithPlaye rs()

fun getCurrentGameStatusesO =
pennyD ropDao.getCu rrentGameStatuses()

suspend fun startGame(players: List<Player>) =
pennyD ropDao.sta rtGame(playe rs)

suspend fun updateGameAndStatuses(
game: Game,
statuses: List<GameStatus>

) = pennyDropDao.updateGameAndStatuses(game, statuses)
}

The PennyDropRepository is now complete, but unfortunately none of the DAO
functions currently exist. Let’s head back over to PennyDropDao and add
them in.

Add PennyDropDao Functions
We’ve got four functions to add, and we’re going to go in order. First up,
getCurrentGameWithPlayers(). This function is similar to what we saw earlier (in
particular, the getPlayerO function) but it also includes the ©Transaction annota
tion. This annotation tells Room that the function you’re calling references
multiple tables and the data should be retrieved in a single atomic operation.
In our case, we’re getting data from both the games and players tables.

@T ransaction
@Query("SELECT * FROM games ORDER BY startTime DESC LIMIT 1")
abstract fun getCurrentGameWithPlayers(): LiveData<GameWithPlayers>

While the query only mentions the games table, we’re pulling in data from both
tables due to the ©Relation annotation and the ©Junction on the GameStatus class.
That tells Room to get the associated Player records for the Game without having
to write out that piece of the SQL queiy.

The next function is getCurrentGameStatuses(). Unfortunately, there isn’t an easy
way with Room to grab a game, the players, and the statuses for each player
in a single query and map the results to an object. So we need to pull in the
GameStatus objects separately. This @Query will get the latest GameStatus instance
by performing a subquery on the games table. We get the most recent open
game, then sort the statuses by the gamePlayerNumber property (to ensure
players are in the right play order). Note that this will also be an ©Transaction
since we’re referencing multiple tables.

@T ransaction
@Query (

SELECT * FROM game_statuses
WHERE gameld = (

SELECT gameld FROM games
WHERE endTime IS NULL
ORDER BY startTime DESC
LIMIT 1)

ORDER BY gamePlayerNumberїї и и
)
abstract fun getCurrentGameStatuses(): LiveData<List<GameStatus>>

As you can see, the @Query annotation gives us a lot o f flexibllty In retreiving
data from the database. But sometimes an @Query still Isn’t enough and we
need to call multiple functions in a single ©Transaction. For that scenario, we
can instead create an open function and Implement the function ourselves
rather than letting Room do that for us. The ability to have fully implemented
functions in our DAO Is the reason PennyDropDao is an abstract class rather than
an interface (as is commonly seen in the Room documentation).

In the case of startGamef), we’re going to bring in a List<Player>, close up any
existing games, create a new Game, get or insert the entered Player objects
from/into the database, then add new GameStatus entries for each player before
returning the newly created game’s ID. To do all this, we’ll call other functions
inside PennyDropDao to do the work for us. We already created insertGamef) and
insertPlayerO when first building PennyDropDao, so we just need two additional
new functions.

The first function is called closeOpenGamesf), which goes through the database
and sets th e current time as the endTime and state of Cancelled for any still-
open games. We previously saw named bind parameters in Create a DAO
Class, on page ?, but here they’re more interesting.

We can’t send in complex types by default, but since we previously created
type converters for both types, this works just fine.

@Query(..
UPDATE games
SET endTime = -.endDate, gameState = -.gameState
WHERE endTime IS NULL.....)

abstract suspend fun closeOpenGamesf
endDate: OffsetDateTime = OffsetDateTime.now(),
gameState: GameState = GameState.Cancelled

)

Note the use of default values for each property. We can include parameters
we have no intention of overwriting purely to be able to include them as
parameters in a query, yet still keep the flexibility to overwrite if needed for
any reason.

Also, since this function is modifying the database, it needs to be a transaction.
But instead of having to add the ©Transaction annotation, Room automatically
wraps all modifying actions as a transaction. This includes functions with an
@lnsert, @Update, or @Delete annotation.

The other function we still need is insertGameStatusesO, which just requires the
@lnsert annotation.

(ainsert
abstract suspend fun insertGameStatuses(gameStatuses: List<GameStatus>)

This highlights another nice Room feature: we can send in a List<GameStatus>
and all GameStatus records are entered Into the database Instead o f manually
having to Insert them one by one.

Now that all the functions we’re using are created, we can get back to startGamef)
itself. Note that even though we have the implementation for startGameO in
here, it still has to be marked as open since it has the ©Transaction annotation.

The function code looks like this:

@T ransaction
open suspend fun startGame(players: List<Player>): Long {

this.closeOpenGames()

val gameId = this.insertGame(
Game(

gameState = GameState.Started,
currentTurnText = "The game has begun!I n " ,
canRoll = true

)
)

val playerlds = players.map { player ->
getPlayer(player.playerName)?.playerld ?: insertPlayer(player)

}

this.insertGameStatuses(
playerlds.maplndexed { index, playerld ->

GameStatus(
gameld,
playerld,
index,
index == 0

}
)

return gameld
}

The one piece I want to call out here is how we’re getting the playerlds value.
We check the database for a player and either use that to get the playerld or,
if the player’s not found, we create the player and then send back its player
ID . Since insertPlayerO returns a Long, we get back the database ID right away
without having to do a secondary lookup. Plus, the Elvis operator allows us
to keep everything in one expression instead of having to include extra condi
tional logic.

We have one remaining function to cover in the PennyDropDao, which is the
updateGameAndStatusesO function. This function does exactly what you’d expect:
it updates the DB versions of the entered Game and GameStatus objects, all
wrapped in a single ©Transaction. updateGamef) already exists, but we need to
create updateGameStatusesO quickly:

©update
abstract suspend fun updateGameStatuses(gameStatuses: List<GameStatus>)

From there, updateGameAndStatusesO is calling those two functions, wrapped in
a ©Transaction:

@T ransaction
open suspend fun updateGameAndStatuses(

game: Game,
statuses: List<GameStatus>

) {
this.updateGame(game)
this.updateGameStatuses(statuses)

}

The last part of the PennyDropRepository I want to cover Is adding the ability to
have a singleton Instance of the repository for use anywhere. This Is optional,
but it’ll be useful to avoid creating multiple Instances of PennyDropRepository for
different views.

The Idea Is the same as with PennyDropDatabase: we get the existing instance
variable unless it’s null, then we create a new instance and return that. We’re
also going to take advantage of the synchronized!) block to avoid having multiple
simultaneous attempts at creating the PennyDropRepository. All of this will live
inside PennyDropRepository in its companion object:

companion object {
(avolatile
private var instance: PennyDropRepository? = null

fun getInstance(pennyDropDao: PennyDropDao) =
this.instance ?: synchronized(this) {

instance ?: PennyDropRepository(pennyDropDao).also {
instance = it

}
}

}

With that, the PennyDropRepository and PennyDropDao classes are now all set. We
have all the logic we need to persist our game data in a local database. The
remaining piece is to pull that data back out of the database and use it inside
GameViewModel.

