contenlts

Sforeword xv

preface xuvii

acknowledgments xix

about this book xxi
about the author xxw

about the cover illustration xxvi

] Introducing data structures 1

1.1 Data structures 2

Defining a data structure 2 » Describing a dala structure 5
Algorithms and data structures: Is there a difference? 5

1.2 Setting goals: Your expectations after reading this book 6

1.3 Packing your knapsack: Data structures meet the real world 7

Abstracting the problem away 7 » Looking for solutions §

Algorithms to the rescue 9 = Thinking (literally) outside of the
box 10 = Happy ending 11

PART 1 IMPROVING OVER BASIC DATA STRUCTURES +eveevenes . B

9 Improving priority queues: dway heaps 15

“ 211 Structure of this chapter 16

CONTERITS

2.2 The problem: Handling priority 17
Priority in practice: Bug tracking 17

2.3 Solutions at hand: Keeping a sorted list 19
From sorted lists to priority queues 19

2.4 Describing the data structure API: Pn'ority queues 19
Priority queue at work 21 = Priority matters: Generalize FIFO 22

2.5 Concrete data structures 22
Comparing performance 23 = What's the right concrete data
structure? 23 = Heafp 24 » Priority, min-heap, and max-
heap 26 = Advanced variant: d-ary heafp 27

2.6 Howtoimplementa heap 28
BubbleUp 29 » PushDown 33« Insert 35« Top 37
Update 40 = Dealing with duplicates 41 « Heapify 42
Beyond API methods: Contains 44 » Performance vecap 45
From pseudo-code to implementation 46

2.7 Use case: Find the k largest elements 47
The right data structure .. . 47 = ... and the right use 48
Coding it up 48

2.8 More use cases 49
Mintmum distance in graphs: Dijkstra 49 = More graphs: Prim's
algorithm 49 » Data compression: Huffman codes 50

2.9 Analysis of branching factor 55
Do we need d-ary heaps? 55 » Running time 56 « Finding the
optimal branching factor 56 = Branching factor vs memory 57

2.10 Performance analysis: Finding the best branching factor 58

Please welcome profiling 59 « Interpreting vesulls 61 = The
mystery with heapify 66 = Choosing the best branching factor 67

3 Treaps: Using randomization to balance binary search trees 69
y 3.1 Problem: Multi-indexing 70

The gist of the solution 71
3.2 Solution: Description and APL 71

3.3 Treap 72
Rolalions 75 = A [ew design questions 80 = Implementing
search 81 = Insert 82 » Delete 87 = Top, peck, and
update 89 = Min, max 90 = Performance recap 91

3.4

3.6

CONTENTS vii

Applications: Randomized treaps 91

Balanced trees 92 » Introducing randomization 94
Applications of Randomized Treaps 96

Performance analysis and profiling 97

Theory: Expected height 97 = Profiling height 100 » Profiling
running time 104 = Profiling memory usage 106
Conclusions 107

/; Bloom filters: Reducing the memory for tracking content 110

4.1
4.2
4.3
4.4

4.5
4.6

4.7

4.8

4.9

4.10

4.11

The dictionary problem: Keeping track of things 111
Alternatives to implementing a dictionary 113
Describing the data structure API: Associative array 114

Concrete data structures 115

Unsorted array: Fast insertion, slow search 115 = Sorled arrvays
and binary search: Slow insertion, fast(-ish) search 116 = Hash
lable: Constani-time on average, unless you need ovdering 117
Binary search iree: Every operation is logarithmic 118 = Bloom
Siller: As fast as hash tables, but saves memory (with a caich) 119

Under the hood: How do Bloom filters work? 120

Implementation 122
Using a Bloom filler 122 » Reading and wiiling bits 124
Find where a key is stored 126 » Generating hash functions 126
Constructor 127 » Checking a key 128 » Storing a key 150
Estimating accuracy 132
Applications 132
Cache 132 » Routers 133« Crawler 134 = 1O fetcher 134
Spell checker 134 = Distributed databases and file systems 135
Why Bloom filters work 135
Why there ave no false negatives . . . 136 » . . . Bul there are false
positives 137 = Bloom filters as randomized algorithms 137
Performance analysis 138
Running time 138 = Constructor 138 = Storing an
element 138 » Looking up an element 139
Estimating Bloom filter precision 139
Explanation of the false-positive ratio formula 141

Improved variants 144

Bloomier filter 144 = Combining Bloom filters 144 = Layered
Bloom filter 144 = Compressed Bloom filter 145 = Scalable
Bloom filter 146

viil CONTENTS

. Disjoint sets: Sub-linear time processing 147

- 5.1 The distinct subsets problem 148
5.2 Reasoning on solutions 151
5.3 Describing the data structure APL: Disjoint set 153

54 Naive solution 154
Implementing naive solution 155

5.5 Using a tree-like structure 159
From list to trees 159 = Implementing the tree version 160

5.6 Heuristics to improve the running time 162

Path compression 164 = Implementing balancing and path
compression 166

5.7 Applicatons 168

Graphs: Connected components 169 = Graphs: Kruskal’s
algorithm for minimum spanning tree 169 = Clustering 170
Unification 171

{,’; Trie, radix trie: Efficient string search 173

f
{ /)
("’ 6.1 Spellcheck 174
A prracess, @ Damon, and an elf walkz inte a bar 175
Compression is the key 176 = Description and APl 177
6.2 Trie 177
Why is it better again? 180 » Search 183 » Insert 187
Remove 189 = Longest prefix 192 » Keys matching a
prefix 193 = When should we use ties? 195
6.3 Radix tries 197
Nodes and edges 199 = Search 202 » Insert 204
Remove 207 = Longest commaon prefix 209 = Keys starting with
a prefix 209
6.4 Applications 211

Spell-checker 211 = String similarity 213 = String sorting 214
T9 215 = Autocomplete 215

’7’ Use case: LRU cache 218

- 7.1 Don't compute things twice 219

7.2 First attempt: Remembering values 222

Description and APl 224 » Fiesh dala, please 224 = Handling
asynchionous calls 226 = Marking cache values as
“Loading™ 227

CONTENTS

7.3 Memory is not enough (literally) 228
7.4 Geting rid of stale data: LRU cache 230

Somelimes you have lo double down on frroblems 231 = Temporal
ordering 232 = Performance 238

7.5 When fresher data is more valuable: LFU 238
So how do we choose? 240 = Whal makes LFU different 240
Performance 243 = Problems with LFU 243

7.6 How to use cache is just as important 244

7.7 Introducing synchronization 245

Solving concurrency (in Java) 248 = Introducing locks 249
Acquiring a lock 250 » Reentrant locks 252 = Read locks 252
Other approaches to concurency 253

7.8 Cache applications 254

() Nearest neighbors search 259

8.1 The nearest neighbors search problem 260

8.2 Solutions 261

Fust attempts 261 = Sometimes caching is not the answer 262
Simplifying things to gel a hint 262 = Carefully choose a data
structure 264

8.3 Description and APl 266

84 Moving to k-dimensional spaces 268

Unidimensional binary search 268 = Moving to higher
dimensions 269 = Modeling 2-D partitions with a data
structure 270

(6 K-d trees: Multidimensional data indexing 273

9.1 Right where we left off 274

9.2 Moving to k-D spaces: Cycle through dimensions 275
Constructing the BST 276 » Invarvianis 281 » The importance
of being balanced 282

9.3 Methods 282

Search 284 » Insert 287 = Balanced tree 289
Remove 293 = Nearest neighbor 301 = Region search 310
A yecap of all methods 316

9.4 Limits and possible improvements 316

ix

PART 2 MULTIDEMENSIONAL QUERIES eveeeececseecnsesancssssancece 2D 7

CONTENTS

Z () Similarity Search Trees: Approximate nearest neighbors search for
a1\ image retrieval 319

10.1 Right where we left off 320
A new (more complex) example 321 = Overcoming k-d trees’
flaws 322
10.2 R-tree 322
A step back: Introducing B-trees 325 = From B-Tree to Rlree 5324
Inserting poinls in an R{ree 326 = Search 328
10.3 Similarity search tree 330
SS-tree search 333 = Insert 337 = Insertton: Variance, means,
and projections 345 = Insertion: Split nodes 348 = Delete 352
10.4 Similarity Search 359
Nearest neighbor search 359 = Region search 363
Approximated similarity search 364
10.5 SS+-tree 367

Are SS-trees better? 367 = Mitigating hyper-sphere limitations 369
Imprroved split heuristic 370 = Reducing overlapp 371

] I Applications of nearest neighbor search 375

11.1 An application: Find nearest hub 376
Skeiching a solution 377 = Trouble in paradise 379

11.2 Centralized application 380
Fillering points 381 = Complex decisions 383

11.3 Moving to a distributed application 386
Issues handling HTTP communication 387 = Keeping the
inventory in sync 389 = Lessons learned 390

11.4 Other applications 391

Color reduction 391 = Particle interaction 393 = Multidimensional
DB queries optimization 395 = Clustering 398

] 9 Clustering 400
=" 121 Intro to clustering 401
Types of learning 402 = Types of cluslering 403
122 K-means 405

Issues with k-means 410 = The curse of dimensionality stitkes
again 412 « K-means performance analysis 413 = Boosting
k-means with k-d trees 414 = Final remarks on k-means 418

CONTENTS xi

123 DBSCAN 418

Directly vs density-veachable 419 « From definitions to an
algorithm 420 = And finally, an implementation 422
Pros and cons of DBSCAN 424

124 OPTICS 426
Definitions 427 » OPTICS algorithm 428 = From reachability
distance to clustering 433 = Hierarchical cluslering 436
Performance analysis and final considerations 441

12.5 Evaluating clustering results: Evaluation metrics 442
Interpreting the results 446

7 " Parallel clustering: MapReduce and canopy clustering 448

13.1 Parallelization 449
Parallel vs distributed 450 = Parallelizing k-means 451
Canopy clustering 452 = Applying canopy clustering 454
13.2 MapReduce 455
Imagine you ave Donald Duck . . . 455 = First map, then
reduce 459 = There is more under the hood 462
13.3 MapReduce k-means 463
Parallelizing canopy clustering 467 = Centroid initialization with
canopy clustering 169 = MapReduce canopy clustering 471

134 MapReduce DBSCAN 475

PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER....483

1 1 Anintroduction to graphs: Finding paths of minimum
J{ "1 distance 485
14.1 Definitions 486
Implementing graphs 487 = Graphs as algebraic types 489
Pseudo-code 490
14.2 Graph properties 491
Undirected 492 » Connected 492 = Acyclic 494

14.3 Graph traversal: BFS and DFS 495

Optimizing delivery routes 495 » Breadth first search 497
Reconstructing the path to target 500 = Depth first search 502
It’s queue vs stack again 505 = Best roule lo deliver a parcel 506

14.4 Shortest path in weighted graphs: Dijkstra 507

Differences with BFS 508 = Implementation 509
Analysis 510 = Shortest route for deliveries 511

14.5 Beyond Dijkstra’s algorithm: A* 513

How good is A* search? 517 = Heuristics as a way to balance real-
time data 520

] . Graph embeddings and planarity: Drawing graphs with minimal
‘ edge intersections 522

15.1 Graph embeddings 523
Some basic definitions 525 » Complete and bipartite graphs 526

15.2 Planar graphs 528
Using Kuralowski’s theorem in jrraclice 529 = Planarily
lesting 530 = A naive algorithm for planarify testing 531
Improving performance 536 = Efficient algorithms 538
15.3 Non-planar graphs 539
Finding the crossing number 541 = Rectilinear crossing
number 543
15.4 Edge intersections 545

Straight-line segments 545 » Polylines 549 » Bézier
curces 550 » Intersections between quadratic Bézier curves 552
Vertex-vertex and edge-veriex intersections 555

| /. Gradient descent: Optimization problems (notjust) on graphs 558

—,

Q

16.1 Heuristics for the crossing number 560
Did you just say hewristics? 560 » Extending to curve-line
edges 566

16.2 How optimization works 568
Cost functions 568 = Step functions and local minima 571
Optimizing random sampling 571

16.3 Gradient descent 574

The math of gradient descent 575 = Geometrical
interpretation 576 = When is gradient descent appliable? 579
Problems with gradient descent 579
16.4 Applications of gradient descent 581
An example: Linear regiession 583

16.5 Gradient descent for graph embedding 585
A differend criterion 586 « Implementation 588

Jr=

CONTENTS

xili

i /” Simulated annealing: Optimization beyond local minima 591
“ 4 171 Simulated annealing 593

Sometimes you need to climb up to get to the bottom 595
Implementation 597 « Why simulated annealing works 598
Short-range vs long-range transitions 601 = Variants 602

Simulated annealing vs gradient descent: Which one should I use? 603

17.2 Simulated :mnenling + tmveling salesman 604

Exact vs approximaled solutions 606 = Visualizing cost 607
Pruning the domain 608 = State transitions 609 = Adjacent vs
random swaps 613 = Applications of TSP 614

17.3 Simulated annealing and graph embedding 615

(

18.1

18.2

18.3

18.4

appendix A
appendix B
appendix C
appendix D
appendix I
appendix F

Minimum edge crossing 615 » Force-directed drawing 618

Z Q Gc)fetz:c a{gorithms: Biologically inspired, fast-converging
/' optimization 624

Genetic algorithms 625

Inspired by nature 627 = Chromosomes 631 = Population 633
Fitness 634 = Natural selection 635 = Selecting individuals for
mating 639 = Crossover 645 = Mutations 648 = The genetic

algorithm template 650 » When does the genelic algorithm work
besi? 651

TSP 652

Fitness, chromosomes, and initialization 653 » Mulations 653
Crossover 654 = Resulls and paramelers tuning 656 = Beyond
TSP: Optimizing the routes of the whole fleet 660

Minimum vertex cover 661
Applications of vertex cover 662 = Implementing a genetic
algorithm 663

Other applications of the genetic algorithm 665

Maximum flow 665 = Protein folding 667 = Beyond genetic
algorithms 668 = Algorithms, beyond this book 669

A quich guide to pseudo-code 671

Big-O notation 682

Core data structures 690

Containers as priority queues 704

Recursion 708

Classification problems and randomnized algorithm metrics 716

index 723

