
Mastering Dyalog APL
A Complete Introduction to Dyalog APL

Bernard Legrand

With most grateful acknowledgements to the contributors:
Kim S. Andreasen
Daniel Baronet
Gitte Christensen
Peter Donnelly
Morten Kromberg
John Scholes
Adrian Smith
Tim JA. Smith

Dyalog is a trademark o f Dyalog Limited
Copyright ©1982-2009 by Dyalog Limited
Published by Dyalog Limited

All rights reserved.

First Edition November 2009
No part o f this publication may be reproduced in any form by any means without the prior written permission o f Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties o f merchantability or
fitness for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS

SQAPL is copyright o f Insight Systems ApS.
UNIX is a trademark o f X/Open Ltd.
Windows, Windows Vista, Visual Basic and Excel are trademarks o f Microsoft Corporation.

All other trademarks and copyrights are acknowledged

Dyalog Limited

http://www.dyalog.com

ISBN : 978-0-9564638-0-7

http://www.dyalog.com

Contents

INTRODUCTION - WILL YOU PLAY APL WITH ME? 1

Will You Follow Us? 1

Our First Steps into APL’s Magic World 4

Array Processing 5

More Symbols 7

Most Symbols Have a Double Meaning 8

Reduction Unifies Traditional Notations 9

Let’s Write Our First Programs 10

Indexing 11

Calculating Without Writing Programs 12

Friendly Binary Data 14

A Touch of Modern Math 16

A Powerful Search Function 17

After Values, Let Us Process Shapes 20

Back to Primary School 22

There Is a Lot to Discover Yet 25

FAQ 28

iii

IV Contents

CHAPTER A: GETTING STARTED 31

1 - Installing the Software 31
1.1 Installation 31
1.2 First Contact 33
1.3 Demonstration Files 36

2 - Working with This Tutorial 40

CHAPTER B: DATA AND VARIABLES 43

1 - Simple Numeric Values 43
1.1 Our First Operations 43
1.2 Variables 44
1.3 Operations on Variables 46

2 - Arrays of Items 47
2.1 Create a List or a Matrix 47
2.2 Special Cases with Reshape 48
2.3 Multi-dimensional Arrays 49

3 - Shape, Rank, and Vocabulary 50
3.1 Shape and Rank 50
3.2 Scaling Down the Ranks 51
3.3 Vocabulary 51
3.4 Beware! 52

4 - Simple Character Values 53
4.1 Character Vectors and Scalars 53
4.2 Character Arrays 55

5 - Indexing 56
5.1 Traditional Vector Indexing 56
5.2 The Shape of the Result 57
5.3 Array Indexing 58
5.4 Convention 60
5.5 Warnings 61
5.6 The Index Function 62

Contents v

6 - Mixed1 and Nested Arrays 63
6.1 Mixed Arrays 63
6.2 Four Important Remarks 64
6.3 Nested Arrays 64
6.4 DISPLAY 66
6.5 Be Simple! 68
6.6 That's Not All, Folks! 70

7 - Empty Arrays 70

8 - Workspaces and Commands 71
8.1 The Active Workspace 72
8.2 The Libraries 73
8.3 Load a WS 74
8.4 File Extensions 75
8.5 Merge Workspaces 76
8.6 Exiting APL 78
8.7 Contents of a WS 78
8.8 Our First System Commands 79
Exercises 81

The Specialist's Section 83
Spe-1 Variable Names 83
Spe-2 Representation of Numbers 83
Spe-3 The Shape of the Result of Indexing 84
Spe-4 Multiple Usage of an Index 86
Spe-5 A Problem With Using Reshape (p) 86
Spe-6 Monadic Index (0) 87

CHAPTER C: SOME PRIMITIVE FUNCTIONS 89

1 - Definitions 89

2 - Some Scalar Dyadic Functions 90
2.1 Definition and Examples 90
2.2 Division By Zero 92
2.3 Power 92
2.4 Maximum & Minimum 92
2.5 Relationship 93
2.6 Residue 94

3 - Order of Evaluation 94

VI Contents

4 - Monadic Scalar Functions 96
4.1 The Four Basic Symbols 96
4.2 Other Scalar Monadic Functions 97

5 - Processing Binary Data 99
5.1 Membership 99
5.2 Binary Algebra 100
5.3 Without 102

6 - Processing Nested Arrays 102
6.1 Scalar vs. Non-scalar Functions 102
6.2 Be Careful With Shape/Type Compatibility 103

7 - Reduction 104
7.1 Presentation 104
7.2 Definition 105
7.3 Reduction of Binary Data 106
7.4 Reduction of Nested Arrays 107
7.5 Application 1 107
7.6 Application 2 108

8 - Axis Specification 109
8.1 Totals in an Array 109
8.2 The Shape of the Result 111
8.3 Special Notations 111

9 - Our First Program 112

10 - Concatenation 113
10.1 Concatenating Vectors 113
10.2 Concatenating Other Arrays 114
10.3 Concatenating Scalars 117
10.4 Special Notations 117

11 - Replication 118
11.1 Basic Approach: Compression 118
11.2 Replication 120
11.3 Scalar Left Argument 120
11.4 Special Notations 121

12 - Position (Index Of) 121
12.1 Discovery 121
12.2 Application 3 123

Contents vii

13 - Index Generator 125
13.1 Basic Usage 125
13.2 Application 4 126
13.3 Comparison of Membership and Index Of 127
13.4 Idioms 130
13.5 Application 5 131
13.6 Application 6 132

14 - Ravel 132

15 - Empty Vectors and Black Holes 134
Exercises 136

The Specialist’s Section 140
Spe - 1 Division Control - QDIV 140
Spe - 2 Derived Functions 141
Spe - 3 Nor & Nand 141
Spe - 4 Index Generator of Arrays 142
Spe - 5 Ravel With Axis 143
Spe - 6 Residue 145

CHAPTER D: USER DEFINED FUNCTIONS 147

1 - Landmarks 147
1.1 Some Definitions 147
1.2 Configure Your Environment 148

2 - Single-Line Direct Functions 152
2.1 Definition 152
2.2 Unnamed D-Fns 153
2.3 Modifying The Code 153

3 - Procedural Functions 154
3.1 A First Example 154
3.2 Local Names 156
3.3 Miscellaneous 159
3.4 Second Example 161
Exercises 164
3.5 Calls to Sub-Functions 166

viii Contents

4 - Flow Control 167
4.1 Overview 167
4.2 Conditional Execution 169
4.3 Disparate Conditions 174
4.4 Predefined Loops 176
4.5 Conditional Loops 178
4.6 Exception Control 181
4.7 Endless Loops 182

5 - Traditional Flow Control 186
5.1 Conditional Execution 186
5.2 Multiple Conditions 190
5.3 Modern and Traditional Controls Cooperate 192

6 - Input, Output, and Format 193
6.1 Some Input and Output Methods 193
6.2 Format 194
6.3 Displaying Intermediate Results 196
6.4 Using Global Variables 197
6.5 Exchanging Data With an Excel Worksheet 198
6.6 Reading or Writing a Text File 199
6.7 Printing Results on a Printer 201
6.8 Using a Graphical User Interface 202
6.9 Requesting Values From the Keyboard 203

7 - Syntax Considerations 205
7.1 Comments & Statement Separators 205
7.2 Why Should a Function Return a Result? 206
7.3 Different Types of Functions 207
7.4 Nested Argument and Result 211
7.5 Choice of Names 212

8 - Multi-Line Direct Functions 213
8.1 Characteristics 213
8.2 Guards 215
8.3 Syntax Considerations 215

9 - Recursion 217

10 - Synonyms 218

Contents ix

11 - About the Text Editor 220
11.1 What Can You Edit? 220
11.2 What Can You Do? 221
11.3 Undo, Redo, Replay 222
11.4 Miscellaneous 224

12 - SALT 225
Exercises 227

The Specialist’s Section 230
Spe-1 Shadowed Names 230
Spe-2 Loop Control 231
Spe-3 Labels and the Branch Arrow 231
Spe-4 Other Conditional Execution 233
Spe-5 Name Category of Synonyms 234
Spe-6 Bare Output 235
Spe-7 :InEach 236

CHAPTER E: FIRST AID KIT 239

1 - When an Error Occurs 240
1.1 Our First Error 240
1.2 Cascade of Errors 243
1.3 Information and Actions 249
1.4 Why Should You Reset Your State Indicator? 250

2 - Most Frequent Error Messages 252
2.1 Execution Errors 252
2.2 Some Other Errors 257

3 - Trace Tools 258
3.1 Invoke and Use the Tracer 258
3.2 Choose Your Configuration 261
3.3 Break-points and Trace-controls 262
3.4 System Functions 265
Exercises 267

The Specialist’s Section 268
Spe-1 Value Errors 268
Spe-2)SINL 269
Spe-3 Namespaces and Indicators 269

x Contents

CHAPTER F: EXECUTE & FORMAT CONTROL 273

1 - Execute 273
1.1 Definition 273
1.2 Some Typical Uses 274
1.3 Make Things Simple 276

2 - The Format Primitive 276
2.1 Monadic Format 276
2.2 Dyadic Format 277

3 - The DFMT System Function 280
3.1 Monadic Use 280
3.2 Dyadic Use 281
3.3 Qualifiers and Affixtures 288

The Specialist’s Section 292
Spe-1 Execute 292
Spe-2 Formatting data 295

CHAPTER G: WORKING ON DATA SHAPE 299

1 - Take and Drop 299
1.1 Take and Drop Applied to Vectors 299
1.2 Three Basic Applications 302
1.3 Take and Drop Applied to Arrays 303

2 - Laminate 305
2.1 Application to Vectors and Scalars 307
2.2 Applications 308

3 - Expand 310
3.1 Basic Use 310
3.2 Extended Definition 310
3.3 Expand Along First Axis 311

4 - Reverse and Transpose 312

5 - Rotate 314
5.1 Rotate Vectors 314
5.2 Rotate Higher-Rank Array s 315

Contents xi

6 - Dyadic Transpose 316
Exercises 319

The Specialist’s Section 322
Spe - 1 More About Laminate 322
Spe - 2 Dyadic Transpose 322

CHAPTER H: SPECIAL SYNTAX 325

1 - Modified Assignment 325

2 - Multiple Assignment 326

3 - Selective Assignment 327
3.1 Quick Overview 327
3.2 Available Primitives 328

CHAPTER I: NESTED ARRAYS (CONTINUED) 331

1 - First Contact 331
1.1 Definitions 331
1.2 Enclose & Disclose 332
1.3 More About DISPLAY 336

2 - Depth & Match 338
2.1 Enclosing Scalars 338
2.2 Depth 339
2.3 Match & Natch 341

3 - Each 342
3.1 Definition and Examples 342
3.2 Three Compressions! 345

4 - Processing Nested Arrays 346
4.1 Scalar Dyadic Functions 346
4.2 Juxtaposition vs. Catenation 346
4.3 Characters and Numbers 348
4.4 Some More Operations 350
Exercises 353

XII Contents

5 - Split and Mix 354
5.1 Basic Use 354
5.2 Axis Specification 355

6 - First & Type 357

7 - Prototype, Fill Item 358

8 - Pick 361
8.1 - Definition 361
8.2 - Beware! 362
8.3 - Important 363
8.4 - Selective Assignment 364
8.5 - An Idiom 365

9 - Partition & Partitioned Enclose 365
9. 1 The Dyalog Definition 366
9.2 The IBM Definition 367

10 - Union & Intersection 369

11 - Enlist 369
Exercises 371

The Specialist's Section 372
Spe-1 Compatibility and Migration Level 372
Spe-2 The IBM Partition on Matrices 375
Spe-3 Ambiguous Representation 376
Spe-4 Pick Inside a Scalar 376

CHAPTER J: OPERATORS 377

1 - Definitions 377
1.1 Operators & Derived Functions 377
1.2 Sequences of Operators 378
1.3 List of Built-in Operators 379

2 - More About Some Operators You Already Know 379
2.1 Reduce 379
2.2 n-Wise Reduce 380
2.3 Axis 382

Contents xiii

3 - Scan 383
3.1 Definition 383
3.2 Scan with Binary Values 384
3.3 Applications 385

4 - Outer Product 386
4.1 Definition 386
4.2 Extensions 387
4.3 Applications 389
Exercise 393

5 - Inner Product 394
5.1 A Concrete Situation 394
5.2 Definitions 396
5.3 Typical Uses of Inner Products 396
5.4 Other Uses of Inner Product 405
5.5 Application 406
Exercises 408

6 - Compose 410
6.1 Form 1 411
6.2 Form 2 412
6.3 Form 3 412
6.4 Form 4 413

7 - Commute 414

8 - Power Operator 415
8.1 - Elementary Use (Form 1) 415
8.2 - Conditional Execution (Form 1) 416
8.3 - Left Argument (All Forms) 417
8.4 - Inverse Function 417
8.5 - Fixpoint, and Use with Defined Operators 418

9 - Spawn 418
9.1 Main Features 418
9.2 Special Syntax 420

10 - User-Defined Operators 421
10.1 Definition Modes 421
10.2 Some Basic Examples 422

xiv Contents

The Specialist’s Section 424
Spe-1 Reduction Applied to Empty Vectors 424
Spe-2 Index Origin and Axis operator 426
Spe-3 The Power Operator 427
Spe-4 Defined Operators 429
Spe-5 The Result of an Inverse Function 429

CHAPTER K: MATHEMATICAL FUNCTIONS 431

1 - Sorting and Searching Data 431
1.1 Sorting Numeric Data 431
1.2 Sorting Characters 433
1.3 Finding Values 435

2 - Encode and Decode 436
2.1 Some Words of Theory 436
2.2 Using Decode & Encode 438
2.3 Applications 441

3 - Randomised Values 444
3.1 Deal: Dyadic Usage 445
3.2 Roll: Monadic Use 445
3.3 Derived Uses 446

4 - Some More Maths 447
4.1 Logarithms 447
4.2 Factorial & Binomial 448
4.3 Trigonometry 449
4.4 GCD and LCM 450
4.5 Set Union and Intersection 451

5 - Domino 452
5.1 Some Definitions 452
5.2 Matrix Inverse 453
5.3 Matrix Division 455
5.4 Two or Three Steps in Geometry 455
5.5 Least Squares Fitting 457
Exercises 461

Contents xv

The Specialist’s Section 463
Spe - 1 Encode and Decode 463
Spe - 2 Random Link 466
Spe - 3 Gamma and Beta Functions 468
Spe - 4 Domino and Rectangular Matrices 468

CHAPTER L: SYSTEM INTERFACES 473

1 - Overview 473
1.1 Commands, System Variables, and System Functions 473
1.2 Common Properties 474
1.3 Organisation 475

2 - Workspace Management 475
2.1)WSID & DWSID Workspace Identification 476
2.2 DLX Startup Expression 477
2.3)LOAD,)XLOAD & DLOAD Load a Workspace 478
2.4)COPY,)PCOPY & DCY Import Objects 479
2.5)LIB Explore a Workspace Library 480
2.6)CLEAR & DCLEAR Clear the Active Workspace 480
2.7)SAVE & DSAVE Save a Workspace 481
2.8 DWA Memory Space Available 482

3 - Object Management 482
3.1)VARS,)FNS,)OPS,)OBS & DNL Object Lists 482
3.2 DNC Name Category 485
3.3)ERASE & DEX Delete Objects 486
3.4 DSIZE Object Size 487

4 - Environment Control & Information 488
4.1 DTS Current Date & Time 488
4.2 DPP Print Precision 488
4.3 DIO Index Origin 489
4.4 DAI Account Information 490
4.5 DPFKEY Programmable Function Keys 491

xvi Contents

5 - Function Definition and Processing 493
5.1)ED & QED Edit Objects 493
5.2 DCR, DNR, DVR & DOR Function Representations 493
5.3 DFX Function Creation 496
5.4 DSHADOW Name Shadowing 497
5.5 DLOCK Locking a Function 497
5.6 DREFS Internal References 498
5.7 DAT Function Attributes 498

6 - Debugging and Event Trapping 500

7 - Calculation Control 501
7.1 Already Studied 501
7.2 DCT Comparison Tolerance 501
7.3 DDL Delay 503

8 - Character Processing, Input/Output 503
8.1 DAV & DAVU Atomic Vectors 503
8.2 DUCS Unicode Conversions 504
8.3 DTC Terminal Control 504
8.4 DA & DD Alphabet & Digits 505
8.5 DNULL Null Item 505

9 - Miscellaneous 507
9.1 DOFF &)OFF Quit APL 507
9.2 DSH, DCMD,)SH &)CMD Host System Commands 507
9.3 DPW Page Width 508

The Specialist's Section 509
Spe-1 Commands vs. System Functions 509
Spe-2 DSAVE 510
Spe-3)CONTINUE Save & Continue 511
Spe-4 DOR 511
Spe-5 D VFI Verify and Fix Input 512
Spe-6 DRTL Response Time Limit 513
Spe-7 DMONITOR Execution Monitoring 514
Spe-8 System Variables vs. System Functions 516

Contents xvii

CHAPTER M: EVENT HANDLING 517

1 - Diagnostic Tools 518

2 - Event Trapping 518
2.1 Event Numbers / Event Messages 519
2.2 : Trap / :Else / :EndTrap 520
2.3 DTRAP 522
2.4 Beware of These Errors 527
2.5 Neutralise the Traps 530

3 - Event Simulation 530
3.1 DSIGNAL Example 532

CHAPTER N: FILE PROCESSING 535

1 - Component Files 536
1.1 First Steps 536
1.2 Utility Functions 540
1.3 Shared Files 544
1.4 How to Queue File Operations 551

2 - Data Representation 554
2.1 Representation of Values 554
2.2 Representation of Variables 557

3 - Native Files 559
3.1 Similarities and Differences 559
3.2 Basic Operations 561

4 - External Variables 566

The Specialist's Section 569
Spe-1 Component Files 569
Spe-2 Native Files 572

CHAPTER O: NAMESPACES 577

1 - Simple Namespaces 577
1.1 Introduction 577
1.2 Use the Contents of a Namespace 583

xviii Contents

2 - More about References 588
2.1 Namespace References 588
2.2 Display Form 591

3 - Arrays of Refs 592
3.1 Create an Array 592
3.2 Indexing Arrays of Refs 594

4 - The Session Namespace 594

The Specialist’s Section 597
Spe - 1 The Dot as a Syntactic Element 597
Spe - 2 State Indicators 598
Spe - 3 Evaluation of Statements 598
Spe - 4 The Dyalog Workspace Explorer 600
Spe - 5 Control of Exported Functions 601
Spe - 6 Retrieving a Namespace Source 602

CHAPTER P: GRAPHICAL USER INTERFACE 603

1 - Guidelines 603
1.1 Terminology and Options 603
1.2 Create a Simple Dialog Box 607
1.3 Get Information 610
1.4 Changing Properties 611
1.5 Make It Work 612

2 - Call-Back Functions 613
2.1 Discovery 613
2.2 The Arguments of a Call-Back Function 618
2.3 The Result of a Call-Back Function 622
2.4 Improve It 625
2.5 Tracing Call-Back Functions 628

3 - Selection Tools 628
3.1 List 628
3.2 Combo 631

4 - Colours, Fonts, and Root 633
4.1 Colours 633
4.2 Fonts 633
4.3 Properties of the Root Object 636

Contents xix

5 - Improve Your User Interface 639
5.1 Default Keys 639
5.2 Enqueuing Events and Using Methods 640
5.3 Activating Objects 641
5.4 Form Appearance 642

6 - Menus 644

7 - The Grid Object 646
7.1 Geometry & Titles 647
7.2 Cell Types 648
7.3 Interaction with a Grid 653
7.4 Example 654
7.5 Multi-Level Titles 658
7.6 Some Additional Properties 660

8 - Using Printers 661
8. 1 The Printer Obj ect 661
8.2 Printer Management 664

9 - And Also ... 667

The Specialist's Section 669
Spe-1 Lists of Properties, Methods, Events 669
Spe-2 Different Syntaxes 671
Spe-3 Using Classes 672

CHAPTER Q: INTERFACES 675

1 - Introduction 675

2 - OLE Interface with Excel 676
2.1 Introduction 676
2.2 Create, Fill, and Save a Workbook 677
2.3 Open and Process a Workbook 680
2.4 A Simple Example 683

3 - Name Association 686
3.1 Introduction 686
3.2 Detailed Syntax 688
3.3 See How It Works 690

xx Contents

CHAPTER R: SALT 693

1 - Introduction 693
1.1 Why a Source Code Management System? 693
1.2 Using Script Files 697
1.3 Updating a Script From the APL Session 700

2 - Version Management 702
2.1 Creating and Using Versions 702
2.2 File Management 705
2.3 Comparing Scripts 707

3 - Settings 709

The Specialist’s Section 711

CHAPTER S: PUBLISHING TOOLS 713

1 - NewLeaf 714
1.1 Getting Started 714
1.2 Frames and Text 715
1.3 Fonts 720
1.4 Tables 722
1.5 The Page Designer 726
1.6 More Tools, Better Quality 735

2 - RainPro 738
2.1 Getting started 738
2.2 Multiple Bar Chart 740
2.3 Scattered Points 744
2.4 Min-Max Vertical Lines 750
2.5 Polar Representations 753
2.6 Multiple Charts 754
2.7 There is Much More To Explore! 756

Contents xxi

CHAPTER X: SOLUTIONS 757
Chapter B 757
Chapter C 758
Chapter D 761
Chapter G 765
Chapter I 767
Chapter J 768
Chapter K 771

APPENDICES 773

Appendix 1 : Scalar Functions 773

Appendix 2 : Invoking the Editor 774

Appendix 3 : Selective Assignment 775

Appendix 4 : Dyalog APL Operators 776

Appendix 5 : Identity Items 777

Appendix 6 : Event Numbers 778

Appendix 7 : System Variables and Functions 780

Appendix 8 : System Commands 783

Appendix 9 : Symbolic Index 784

INDEX M-789

xxii Contents

1

Introduction - Will You Play APL With Me?

Will You Follow Us?
We would like to have you discover a new land, a land where people who may or may not be
specialists in programming can process their data, build computerised applications, and take
pleasure in using a programming language which is an extremely elegant and powerful tool of
thought.

Beware: Dyalog APL is Addictive!

Among the hundreds of programming languages which have been created, most of them share
the same fundamentals, the same basic instruction set, approximately the same functions, and
by and large the same methods to control the logic of a program. This greatly influences the
way people imagine and build solutions to computing problems. Because the languages are so
similar, the solutions are similar. Does it mean that these are the only ways of solving
problems? Of course not!

Dyalog APL is there to open doors, windows, and minds, prove that original new methods do
exist, and that mathematics is not limited to four basic operations. Using APL will expand and
extend the range of mental models that you use to solve problems, but beware:

Once you are hooked on APL, there is a real risk that you will no longer accept the limitations
of "traditional" programming languages.

Installation and Keyboard

If you do not have access to a computer with Dyalog APL installed, you should still be able to
gain an appreciation of the language from these pages and, we hope, enjoy the experience.

If you have installed Dyalog, not only can you read this book, but you can also experiment on
your own computer using the examples below, and invent your own data and calculations.

If you have a copy of Dyalog APL, install it as explained in the User Guide. Just run the
installation program and accept all the defaults; there is no need to change anything.

2 Dyalog APL - Tutorial

You might like to refer to section A-1 for additional installation hints.

As you will see in the following pages, APL uses special symbols, like p, and 1, which
you enter using a special keyboard layout.

You will not need all of the special symbols to read the following pages. The picture below
illustrates a cut-down version of the UK keyboard layout, with only the APL symbols that are
referred to in this introduction. They are shown on a grey background. The US keyboard is
slightly different, but the symbols we need are positioned identically. The full keyboard layout
is shown in the User Guide.

Here is how the keyboard is to be used:

• All the standard English letters, numerals and symbols are typed as usual.

• The majority of the APL symbols are obtained by pressing the "Ctrl" key, in conjunction
with another key. For example, to obtain p, you must press Ctrl and R. From now on, this
keystroke will be identified as "Ctrl+R". On the keyboard layout illustrated above, the
symbols that you enter this way are printed at the bottom-right corner of each key.

• Most other APL symbols are obtained by simultaneously pressing "Ctrl'" and "Shift" and
then the appropriate key. For example, to obtain ^, you must press Ctrl and Shift and 6.
From now on, this keystroke will be identified as " Ctrl+Shift+6". On the keyboard layout
illustrated above, the symbols that you enter this way are printed at the top-right corner of
each key.

• A few APL symbols are obtained by pressing the "Alt Gr" key (or Ctrl+Alt if your
keyboard does not have an "Alt Gr" key), simultaneously with another key, but you don't
have to bother about them here: We won't be using them in the examples in this
introduction.

Introduction - Will you play APL with me ? 3

• In case you initially have any difficulty with the keyboard, there is a "language bar" on top
of the session screen, with all the APL symbols on it. When you need a symbol, you just
have to click on it and the symbol will appear wherever your cursor is positioned.

You may notice that some symbols appear twice on the keyboard. This is the case for example
for the symbols < = >. These symbols are all part of a normal keyboard (the black ones), but
they have been repeated on the APL keyboard, mostly in order to group the symbols used for
comparison functions together (the red ones). Do not worry: No matter which key you use to
produce one of the duplicated symbols, you'll obtain the same result.

Utilities and Data

For most of the examples, you can just type what you read in the following pages, but
sometimes you will need some data which we have prepared for you.

This data is contained in a special file (called a WorkSpace) named DyalogTutor_EN.dws
which accompanies this book.

If you don’t have the file, please refer to section A-1 for instructions on how to download it.

The file can only be opened by Dyalog APL. You can open it as follows:
• In Windows Explorer, double-click on the file's name. APL will be started, and it will then

open the file.
• Or, start APL by double clicking on the Dyalog APL icon. Then, using the "File/Open"

menu, search for the file and open it.

Once the workspace has been loaded, a welcome message is displayed, and you can check that
the workspace contains the variables we shall be using in the following pages:

)vars
Actual Ages AlphLower AlphUpper Area Big Category etc...

You can display the contents of any variable by hovering over its name with the mouse-
pointer, by double-clicking on its name, or just by typing its name and pressing the Enter key,
like this:

F o recast
150 200 100 80 80 80
300 330 360 400 500 520
100 250 350 380 400 450

50 120 220 300 320 350

Now, you are ready, fasten your seatbelts, we’re off!

4 Dyalog APL - Tutorial

Our First Steps into APL's Magic World
Simple Operations

In APL, what you type starts 6 characters right from the left margin (we say it is "indented”),
whereas the computer's response begins at the left margin. For additional clarity, in the
following pages the characters typed by the user are printed in red, the response given by the
computer being in black.

You will notice that in the examples given in the book we very often put a blank space
between a symbol and the surrounding names or values. This is in most cases unnecessary; we
only do so in order to improve readability. Later on, we will gradually cease to insert the
blank spaces in expressions that you should become familiar with along the way.

An expression gets evaluated and the result shown in the session when you press the Enter
key. Let's try some simple expressions:

27 + 53
80

1271 - 708
563

86 T 4
21.5

59 x 8
472

You can see that APL behaves like any hand-held calculator with, however, a small
difference; multiplication is represented by the multiplication symbol (x) which is used in
schools in many countries; likewise for division (t).

In most other computer languages, a star * is used for Multiply and / for Divide. This is a
legacy of the early days of computers, when the character set was limited to the one available
on a typewriter. At the time it was decided to use * and / in place of x and t. But it is now
possible to display any type of symbol on a screen and on a printer, and this transposition is
no longer justifyable. The use of common symbols, which are taught all over the world, aids
the understanding of APL by non programmers.

If you are familiar with other programming languages, you may occasionally and erroneously
use * instead of x . Let's see what might happen then:

7 * 3 ^ In APL the star means "Power"
so that 7*3 is equivalent to 7x7x7

The Divide sign is obtained using Ctrl+ =

The Multiply sign is obtained using Ctrl+ -

343

Introduction - Will you play APL with me ? 5

Variables

As in any programming language, it is possible to create variables. Just choose a name and use
the left arrow to assign it a value. In APL a numeric value can consist of a single number, or
several numbers separated by at least one blank space. The arrow can be obtained using Ctrl+ [

VAT ^ 19.6 ^ Read it as: VAT gets 19.6
Years ^ 1952 1943 1986 2007

The names are "case sensitive". It means that three variables named respectively VAT, Vat,
and v a t, would be distinct, and may contain different values.

To ask for the contents of a variable, just type its name and press Enter, like this:
VAT

19.6
Years

1952 1943 1986 2007

Array Processing
APL is able to operate on two sets of numbers, provided those two sets have the same "shape".
For the moment, understand this as "the same number of items". For example, suppose that
you have a list of prices of 5 products, and the quantity bought of each:

Prices 5.20 11.50 3.60 4.00 8.45
Quantities 2 1 3 6 2

You can create two variables like this:
P rice ^ 5.2 11.5 3.6 4 8.45
Qty ^ 2 1 3 6 2

When multiplied together, the variables are multiplied item by item, and produce a result of
the same length. That result can be assigned to a new variable.

Costs ^ P rice * Qty
Costs

10.4 11.5 10.8 24 16.9

This array processing capability eliminates most of the "loops" which are common to other
programming languages. This remains true even if the data is not a simple list but a multi
dimensional array, of almost any size and number of dimensions.

6 Dyalog APL - Tutorial

To make it clear, imagine that a Sales Director makes forecasts for sales of 4 products over the
coming 6 months, and assigns them to the variable F o recast. At the end of the 6 months, he
assigns the real values to the variable A ctual. Here they are:

Forecast
150 200 100 80 80
300 330 360 400 500
100 250 350 380 400

50 120 220 300 320

80 141
520 321
450 118
350 43

Actual
188 111 87 82 74
306 352 403 497 507
283 397 424 411 409

91 187 306 318 363

We have not yet explained how you can build such arrays of data, but if you have APL
installed, these variables are provided in the Workspace file named "DyalogTutor_EN.dws".
Refer to the " Utilities and Data" section above to see how you can load the workspace and
access the data.

It is clear that the first idea of any Sales Director will be to ask for the differences between
what he expected and what he has really got. This can be done easily by typing:

Actual - Forecast
“9 “ 12 11 7 2 “6
21 “24 “8 3 “ 3 “ 13
18 33 47 44 11 “41
“ 7 “29 “33 6 “ 2 13

^ Note that to distinguish the sign attached to
negative values from subtraction, negative
values are shown with a high minus sign.

To enter negative values, this high minus sign can be obtained by pressing Ctrl+2.

In most traditional programming languages an operation like the one above requires two
embedded loops. See what is needed in PASCAL:

DO UNTIL I=4
DO UNTIL J=6

DIFF(I,J):=ACTUAL(I,J)-FORECAST(I,J)
END

END.

Even if this may seem obvious to a programmer, it is worth noting that most of the code has
nothing to do with the user requirement. The only important thing (subtract forecasts from
actual values) is hidden behind the detailed workings of the computer program.

To have a calculation done by a machine, one must translate our human wording into
something that the computer can understand. With traditional languages, most of that effort is
made by the man, to produce a program like the PASCAL example above. The great
advantage of APL is that the man has generally much less effort to make, and the machine
does the rest.

We have seen that APL will work on two variables of the same shape; it also works if one of
the variables is a single item, which is called a scalar. If so, the other variable may be of any
shape.

Introduction - Will you play APL with me ? 7

For example, if we want to calculate the amount of 19.6% VAT applied to the variable Pr ice
above, we can type Price * VAT t 100 (or VAT * Pr ice t 100 as well), as shown here:

Price * VAT t 100
1.0192 2.254 0.7056 0.784 1.6562 ^ This result would require some rounding

but this is not important for now

More Symbols
Most programming languages represent only a very small subset of the mathematical
functions using symbols (typically +, -, * and /). The creator of APL, Kenneth E. Iverson,
chose to include many traditional mathematical symbols in his language, and also added some
new symbols to the set that we already know so well.

E.g.: Many functions which in other programming languages are library routines with names
like "Maximum" have their own symbols in APL.

The function "Maximum" (D returns the greater of two numbers, or of two arrays of numbers
compared item by item.

There is also, as one might expect, a symbol for "Minimum" (L).
75.6 T 87.3 ^ Maximum (Ctrl+S)

87.3
11 28 52 14 T 30 10 50 20 ^ Comparison item by item

30 28 52 20
11 28 52 14 L 20 ^ Minimum (Ctrl+D)

11 20 20 14

APL supports about 70 symbols. Since some symbols have more than one meaning one could
argue at length about the exact number.

This is nothing to worry about: Some of the symbols are familiar; such as * or > or again t
and - , but also ! and a good many others.

8 Dyalog APL - Tutorial

Most Symbols Have a Double Meaning
This is not a peculiarity of APL; in algebra we are familiar with the use of symbols as
common as the minus sign being used in two different ways.

In the expression a = x - y the minus sign means subtract
Whereas in a = -y the minus sign indicates the negation of y, that's different

The first form is called the "dyadic" use of the symbol.
The second form is called the "monadic" use of the symbol.

It is the same in APL, where most of the symbols can have two meanings.

For example, to find the shape (the dimensions) of an array, one uses the Greek letter Rho (p),
which can be read "shape o f ...", in its monadic use. It is produced using Ctrl+R.

5
p Price ^ Monadic use

Price has 5 items

4 6
p Forecast

Forecast has 4 rows of 6 items

Used dyadically, the same symbol will organise items into a specified shape. For example,
suppose that we want to create the matrix below:

25 60
33 47
11 44
53 28

We must give the computer two pieces of information:
• First the shape to give to the matrix: 4 2 (4 rows of 2 columns)
• Next the contents of the matrix: 25 60 33 47 11 44 53 28

It is the symbol p (Rho) which makes the connection between the shape and the contents:
Tab ^ 4 2 p 25 60 33 47 11 44 53 28
Tab

25 60
33 47
11 44
53 28

A new variable Tab is thereby created, and this is also how the variables Forecast and
Actual above were made.

Introduction - Will you play APL with me ? 9

Conventions

In APL, we give special names to certain shapes of data:

• Scalar
• Vector

• Matrix
• Array
• Table
• Cube

is used for a single value, a number like 456.18 or a single letter like 'Q ' .
is a plain list of values
It may be composed of numbers like Price and Qty,
or of letters like 'Once upon a t ime' within single quotes
is an array with two dimensions, like Forecast or Tab
is a generic word for any set of values, whatever the number of its dimensions
is a common word used for arrays with 2 dimensions (matrices)
is a common word used for arrays with 3 dimensions

Reduction Unifies Traditional Notations
Perhaps you remember the variable Costs : 10.4 11.5 10.8 24 16.9

So what must we do to work out the total? Mathematicians are creative people who long ago
devised the symbol X, always with a pretty collection of indices above and below, which
make it complex to understand and to type on a typewriter.

In APL, the operation is written like this:
+ / Costs

73.6

Simple isn’t it? This gives the total of all the items of the array.

You can read this as "Plus Reduction" of the variable Costs.

To gain a better understanding of the process:

When we write an instruction such as +/ 21 45 18 27
- it works as if we had written 21 + 45 + 18 +
- and we obtain the sum 122

In fact, it works as if we had "inserted" the symbol + between the values.

But then, if we write */ 21 45 18 27
- it is as if we had written 21 * 45 * 18 *
- so, we get the product 5051970

11
27 + 11

11
27 * 11

10 Dyalog APL - Tutorial

Similarly, if we write T/ 21 45 18 27 11
- it is as if we had written 21 T 45 T 18 T 27 T 11
- so, we obtain the largest term 45

Reduction, represented by the symbol / , belongs to a special category of symbols called
Operators. All the other symbols (+ - * T p ^ ...) are called Functions (addition,
subtraction, multiplication, maximum, shape, etc.).

The arguments of a function are data (arrays): Pr ice * Qty

Whereas at least one of the arguments of an operator is a function: +/ Qty

The left argument of Reduction can be one of many of the APL symbols, and it can also be the
name of a user-defined program. This may give you an idea of the generality and power of the
concept.

Dyalog APL contains 10 such powerful operators. If that is not enough, you can even write
your own operators, just like you can write your own functions!

Let's Write Our First Programs
Imagine that we want to calculate the average of the following numbers:

Val ^ 22 37 41 19 54 11 34

We must:
• first calculate the sum of the values: +/ Val giving 218
• next calculate the number of values: p Val giving 7
• and finally divide one result by the other

The calculation can be written as the single formula: (+/Val) 4 (pVal)

As it is quite likely that we shall often want to make this sort of calculation, it is preferable to
store this expression in the form of a program.

In APL we prefer the name defined function to the name "program".

Defined functions may be used in the same way as the built-in functions represented by
special symbols like + - * - > p..., which are called primitive functions.

To define a simple function like this one, here is the easiest way:
Average ^ {(+/w)4(pw)}

Introduction - Will you play APL with me ? 11

Average is the program name
w is a generic symbol which represents the array passed on the right.
a would be the generic symbol for the array passed on the left, if any

The definition of the function is delimited by a set of curly braces { and }. For more complex
functions it is also possible to use a text editor, but this is beyond the scope of this short
introduction.

Once defined, this function may be invoked in a very simple way:
Average Val ^ For execution, w will get the values

31.1428571428 contained in Val
Average 12 74 56 23

41.25

Let us also write two little dyadic functions, the left argument of which is a , and the right is w:
Plus +■ {a+w}
Times ^ (a*w)
(3 Plus 6) Times (5 Plus 2)

63

As you can see, these functions behave exactly as if we had written (3+6) * (5+2)

We said in the preceding section that a user-defined program could be used by the Reduce
operator; let us try:

Pl us / Val
218 ^ It works!

Indexing
Returning to our vector of numbers Val : 22 37 41 19 54 11 34

In order to extract the 4th item, we just write: Val[4]

In many other programming languages one uses parentheses instead of brackets; this is not
very different.

What is new is that one can extract several items in one instruction.
Val

22 37 41 19 54 11 34
Val[2 4 7 1 4] ^ One may extract the same item twice or more

37 19 34 22 19

12 Dyalog APL - Tutorial

And of course, in the same way, one may modify one or more items of Val using their
indexes. Naturally, one must provide as many values as there are items to modify, or a single
value for all:

Val[3 5 1] 0
Val

0 37 0 19 0 11 34
Val[3 5 1] 300 77 111
Val

111 37 300 19 77 11 34 ^ You can check that the 3rd item is now 300, the 5th is 77, etc.

It is often necessary to extract the first few items from a list of values, for example the first 5.
Nothing could be easier:

Val[1 2 3 4 5]
111 37 300 19 77

But if one needs to extract the first 500 items from a long list, typing the integers from 1 to
500 would of course be very inconvenient.

This is why APL has been given the symbol i (Iota), which produces the set of the first n
integers (i can be obtained using Ctrl+I)

Thus, instead of writing 1 2 3 4 5 6 7 8, it is sufficient to write i8 .

And to extract the first 500 terms of a large vector, one may write: Big[i500]

We shall discover later an even simpler method.

Calculating Without Writing Programs
The employees of a company are divided into three hierarchical categories, denoted simply 1,
2, and 3. One assigns to two variables the salaries and the categories of these employees; as
partly shown here:
Sa l a r i e s 4225 1619 3706 2240 2076 1389 3916 3918 4939 2735 . . .
Categories +■ 3 1 3 2 2 1 3 3 3 2 . . .

Do they never want to increase these salaries? (what has our poor world come to!).

Introduction - Will you play APL with me ? 13

A rumour reaches us about their plans: They want a different percentage increase for each
category, according to the following scale:

Category Suggested
increase

1 8%
2 5%
3 2%

How much is this going to cost the company?

We create a variable containing the above three rates:
Rates ^ 8 5 2 t 100 ^ APL allows us to divide three numbers by a single one
Rates

0.08 0.05 0.02
The first employee is in category 3, so the rate that applies to him is:

Rates[3]
0.02

It follows that the first 5 employees, being in categories 3 1 3 2 2 respectively, are entitled to
the following increases:

Rates[3 1 3 2 2]
0.02 0.08 0.02 0.05 0.05

More generally, the rates applied to all of our employees could be obtained like this:
Rates[Categor ies]

0.02 0.08 0.02 0.05 0.05 0.08 0.02 0.02 0.02 0.05 0.05 0.02 etc.

Having the rates, one has just to multiply by the salaries to obtain the individual increases:
Sa l a r i e s * Rates[Categor ies]

84.5 129.52 74.12 112 103.8 111.12 78.32 78.36 98.78 136.75 etc.

Finally, by adding them all, one will know how much it will cost the company:
+/ Sa l a r i e s * Rates[Categor ies]

2177.41

You may note that:
• The expression remains valid whatever the number of employees or categories,
• the result has been obtained without writing any program,
• and this expression can be read as the simplest possible English, like this:

Sum the Salaries multiplied by Rates according to Categories

Clever, no?

This illustrates how the expression of a solution in APL can be very close to the way that the
solution could be phrased in everyday language. This also shows clearly that the ways of
reasoning induced by traditional programming languages are not the only possible ones. This
difference and originality, introduced by APL, are among the major features of the language.

14 Dyalog APL - Tutorial

Friendly Binary Data
APL makes much use of binary data. It is most often created by means of relational functions
like = or >, which give the answer 1 or 0, depending whether the relation is true or not:

Sa l a r i e s > 3000
1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0

Actual > Forecast
0 0 1 1 1 0
1 0 0 1 0 0 ^ One can see the favourable results instantly
1 1 1 1 1 0
0 0 0 1 0 1

APL offers the conventional mathematical form of the 6 relational functions:
< < = > > *

Naturally one can operate on this binary data using all the functions of Boolean algebra, and
moreover, the symbols used are those familiar to mathematicians of all nationalities around
the world:

Function AND is represented by the symbol a (represented by the word AND in
many programming languages)

Function OR is represented by the symbol v (represented by the word OR in
these languages)

Thus, if I am looking for people in category 3 whose salary is less than 4000 euros, I can
write:

(Categor ies = 3) A (Sa l a r i e s < 4000)
0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1

In fact APL offers all the functions of Boolean algebra, including some perhaps less familiar
functions like NOR and NAND (Not-OR and Not-AND), but they are very useful in finance
and electronic automation.

There is, however, no special symbol for the function Exclusive OR (often called XOR). This
is because it is not needed: The function Not Equal * gives the same result as Exclusive OR
when it is used with Boolean values, as you can see below:

0 0 1 1 * 0 1 0 1
0 1 1 0

Finally, not only can these binary vectors be used as we have described but also for novel
purposes, such as counting and selecting.

Introduction - Will you play APL with me ? 15

Counting

Having found which salaries are less than 2500 euros by means of the following expression:
Sa l a r i e s < 2500

0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0

It is easy to add all the 1s and 0s to calculate how many people earn less than 2500 euros:
+/ Sa l a r i e s < 2500

8

Selection

One can also use the binary vector as a "mask" to select the items corresponding to the binary
"1"s from another array:

1 1 0 1 0 0 1 / 23 55 17 46 81 82 83
23 55 46 83

The procedure is identical for character data:
1 0 1 0 0 0 0 1 1 / 'Drumst ick'

Duck

This function, called Compress, is particularly useful for extracting the items conforming to a
given criterion from a variable. For example, to display the salaries of people in Category 2,
one writes:

(Categor i es = 2) / Sa l a r i e s
2240 2076 2735 3278 1339 3319 ^ Powerful, isn’t it?

Discovery

To practise our skills some more, let us find in our variable Val the positions of numbers
greater than 35. Here are the necessary steps:
Val ^
Val>35 is
pVal is
rpVal is

22 37 41 19 54 11 34
0 1 1 0 1 0 0

7
1 2 3 4 5 6 7 ^ All possible positions

Let us compare two of these results
Val>35 ^
rpVal ■=>

0 1 1 0 1 0 0
1 2 3 4 5 6 7

16 Dyalog APL - Tutorial

You can see that that if you eliminate (using Compress) the items which correspond to zeros
in order to retain only those corresponding to 1, you easily get the positions required: 2 3 5

Thus the job may be done as follows:
(Val>35) / rpVal

2 3 5

This expression is applicable in many different situations.

Here is a similar use, but applied to character data: To find the positions of "a" within a
phrase; the method is the same.

Phrase *■ 'Panama is a canal between At l an t i c and Pa c i f i c '
(Phrase = ' a ') / rpPhrase

2 4 6 11 14 16 30 36 41 ^ You can check it!

A Touch of Modern Math
Proudly having found all the "a"s, we may wish to find all the vowels.

Alas, although we can write Phrase = ' a ' , because a vector can be compared with a single
value, one cannot write Phrase = ' a e i o u y ' (1), because that would require the item by item
comparison of a phrase of 46 letters and "aeiouy" which has only 6.

In other words: You may compare 46 letters with 46 other letters, or compare them with one
letter, but not with 6.

So we shall use a new function: Membership which is represented by the symbol e , also used
in mathematics.(e can be obtained by pressing Ctrl+E)

The expression A e B returns a Boolean result which indicates which items of the variable A
appear in the variable B, wherever they may be. And it works no matter what are the shapes,
the dimensions or the type (numeric or character) of A and B, a pure marvel!

For example:

^ Only 5 and 4 are found in 3 4 5 6

^ The letters "lio" do not appear in "garden"

5 7 2 8 4 9 e 3 4 5 6
1 0 0 0 1 0

' dandel ion ' e ' garden'
1 1 1 1 1 0 0 0 1

1 "Y" is considered to be a vowel in many European languages.

Introduction - Will you play APL with me ? 17

So in pursuit of our enquiry we shall write:
(Phrase e ' a e i ouy ') / rpPhrase

2 4 6 8 11 14 16 20 23 24 30 33 36 41 43 45

One can also use membership between a vector and a matrix, as shown below, assuming that
the list of towns is a variable created earlier.

We have represented side by side the variable itself and the result of using Membership:
Towns

Canberra
Par i s
Washington
Moscow
Martigues
Mexico

Towns e ' aeiouy'
0 1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 1 1 0 0
0 1 0 1 0 1 0 0 0 0

We can reverse the expression, but the result has always the same shape as the left argument:
' ae iouy ' e Towns

1 1 1 1 1 0 ^ None of the town names contains a "y"

A Powerful Search Function
We have harnessed a very useful method to look for the positions of letters or numbers in a
vector, but the answer obtained does not provide a one to one correspondence between the
search values and the resultant positions:

Li s t 15 40 63 18 27 40 33 29 40 88 ^ Vector of values
Where ^ 29 63 40 33 50 ^ We want to find these
(Li s t e Where) / rpLis t ^ Let's apply our method

2 3 6 7 8 9 ^ Positions found

The positions are correct, but 29 is not in position 2, and 40 is not in position 6.

The question we have answered using the expression above is: "In which positions in Li s t do
we find a number that also appears somewhere in Where?"

If we want to answer the slightly different question: "Where in Lis t do we find each number
in Where?" we need to use a different method.

This new method uses the dyadic form of the symbol r (Iota).
Lis t +■ 15 40 63 18 27 40 33 29 40 88 ^ Same vector of values
Where ^ 29 63 40 33 50 ^ Where are these?
Lis t r Where ^ New method using dyadic r

8 3 2 7 11 ^ Positions found

18 Dyalog APL - Tutorial

It is true that 29, 63, 40 and 33, occur respectively in positions 8, 3, 2 and 7. It's much better!

But, first surprise: The value 40 occurs 3 times in L i s t , but only the first one is reported in
the result. This is because, by definition, dyadic Iota returns only the first occurrence of a
given item. If the response for each value sought has to match a position; how may one,
looking for 5 numbers, obtain 7 results?

Second surprise: The value 50 is reported as being found in position 11 in a vector comprising
only 10 items! This is how the function IndexOf (dyadic r) reports that a value is absent.

At first sight this seems a bit surprising, but in fact it is a property which makes this function
so generally powerful, as we shall soon see.

An Example

A car manufacturer decides that he will offer his customers a discount on the catalogue price
(you can see how this example is imaginary!)

The country has been divided into 100 areas, and the discount rate will depend on the area
according to the following table:

Area Discount

17 9 %
50 8 %
59 6 %
84 5 %
89 4 %

Others 2 %

The problem is to calculate the discount rate that may be claimed for a potential customer who
lives in given area D; for example D ^ 84.

Let us begin by creating two variables:
Area 17 50 59 84 89
Discount +■ 9 8 6 5 4 2

Let us see if 84 is in the list of favoured areas:
D e Area

1 ^ Yes, it's there

4
Area r D

^ 84 is the 4th item in the list

Index 793

Null Item 505
N-Wise Reduce 380
O

Object Representation 495, 511
Object Size 487
OLE 675
Operators 105, 377
Or (function) 100
Orange 449
Order of Evaluation 94
OrIf (flow control) 170
Outer Product 386
Overtaking 301
P

Page Designer (NewLeaf) 726
Page Width 508
Partition 365, 374
Pass Numbers 547, 570
Pass-Through Value 62
PDF Format 714
Perimeter 406
Pervasive Functions 103, 346
PFK 491
Pi (trigonometry) 449
Pick 361, 376
Pie Chart (RainPro) 755
PNG Output 739
Polar Representation (RainPro) 753
Polygn Area & Perimeter 406
Polynomials 442
Position (function) 121
Power Function 44, 92
Power Operator 415
Primitive Functions 89
Print Precision 488
Print your experiments 37
Printer Object (GUI) 661
Printers (GUI) 637, 661
Procedural Functions 147, 154
Programmable Function Keys 491
Properties (GUI) 604
PropList (GUI) 669
Protected Copy 76, 480
Prototype 358
Pseudo Right-Inverse of a Matrix 470

Q

Quad (Evaluated Input) 203
Quad (symbol) 196
Quiet Load 478
Quit APL 78, 507
Quote (delimiter) 53
Quote-Quad (Character Input) 204
R

RainPro 738
Random Link 466
Randomised Values 444
Rank 50
Rank Error 254
Ravel 85, 132
Ravel with Axis 143
Read/Write Text Files 199
Reciprocal 97
Recursion 217
Reduction 104, 350
Reduction of Empty Vectors 425
Reformat a Function 224
Refs 588
Refs in a function 498
Relationship Functions 93
Remainder 94
Repeat (flow control) 178
Replay Input 223
Replication (Replicate) 120
Representation of Values 554
Representation of Variables 557
Reset the State Indicator 250
Reshape 47
Residue 94, 145
Reverse 312
Rho 47
Right Arrow 167
Right-align Text 443
Right-to-Left Evaluation 95
Roll (monadic ?) 445
Root Object 604
Root Object (GUI) 636
Rotate 314
Round Up/Down 98

794 Dyalog APL - Tutorial

S

SALT 693
Save a WS 74, 481
Scalar 51
Scalar Dyadic Functions 90
Scan 383
Scattered Points (RainPro) 744
Scientific Representation 83, 295
Script Files (SALT) 694
Scroll Back/Forward 39
Search / Find 435
Search Path 74, 586
Search Tool 253
Select (flow control) 174
Selective Assignment 327, 364
Semi-colon 59
Session Log 38
Session Namespace 594
Set Union/Intersection 451
Sets of Equations 454
Settings (SALT) 698, 709
Shadowed Names 230, 497
Shape 50
Shape of a Result 84, 111
Shape of an Array 47
Shared Component Files 544
Shortest Route in a Graph 401
Show/Hide Line Numbers 224
Shy Result 210, 216
Signum 97
Size of Objects 487
Sorting Data 431
Source-Code Management 693
Spawn 418
Special Notations 111, 117, 121
Special Syntax 420
Split 354, 374
Squad 62, 678
Startup Expression 477
State Indicator 241
Statement Separator (Diamond) 205
Stop (Trap action code) 523
Stops 262
Stops (Break points) 262, 265
Strand Notation 64, 331
Strong Interrupt 183

Styles (NewLeaf) 718
Synonyms 218
Syntax Error 256
System Commands 72, 473
System Interfaces 473
System Variables/Functions 473
T

Table 51
Take 299
Target (SALT) 698
Terminal Control 374, 504
Text Editor 160, 220
Threads 205, 418
Time Limit 513
Time Stamp 488
Trace Points 265
Tracing Call-Back Functions 628
Transpose (dyadic) 316, 322
Transpose (monadic) 312
Trap 520
Trigonometry 449
Type 302, 358, 374
U

UK APL Keyboard 35
Underscore 45
Underscored Letters 45
Undo / Redo 222
Unicode Conversions 504
Unicode Edition 31, 433, 504
Union 369, 451
Unique (function) 132
Universal Character Set 504
Unnamed D-Fns 153
Unnamed Namespace 579
Until (flow control) 178
US APL Keyboard 36
User Identity 545
User-Defined Events (GUI) 640
User-Defined Functions 89
User-Defined Operators 421
V

Valence of a Function 207, 499
Value Error 252
Variable/Function Names 45

Index 795

Vector 51
Vector Notation 64, 331
Vector Representation 495
Verify & Fix Input 512
Version Management (SALT) 702
Visual Representation 159
W

Weak Interrupt 183
While (flow control) 178
Windows Language Bar 32
With (control structure) 591, 609
Without (function) 102
Workspace 36, 72

Workspace Explorer 600
Workspace Identification 77, 476
Workspace Management 475
Workspace Search Path 74, 478
WS 72
WS Full (error) 256

Xor (function) 100
Z

Zilde 126

796 Dyalog APL - Tutorial

