NEUROLOGY

Edited by Professor I.A. HRYHOROVA, Professor L.I. SOKOLOVA

APPROVED

by the Ministry of Education and Science of Ukraine as a textbook for students of higher education establishments — medical universities, institutes, and academies

PUBLISHED

pursuant to the Order of the Ministry of Health of Ukraine No. 502 as of 22 June 2010 as a national textbook for students of higher education establishments — medical universities, institutes, and academies

Kyiv AUS Medicine Publishing 2017

UDC 616.8 LBC 56.1ya73

N40

Approved by the Ministry of Education and Science of Ukraine as a textbook for students of higher education establishments — medical universities, institutes, and academies (letter No. 1/11-20846, 31 December 2013)

Published pursuant to the Order of the Ministry of Health of Ukraine No. 502 as of 22 June 2010 as a national textbook for students of higher education establishments — medical universities, institutes, and academies

Authors:

I.A. Hryhorova, L.I. Sokolova, R.D. Herasymchuk, V.A. Hryb, L.A. Dziak,

O.A. Koziolkin, L.L. Korsunska, H.M. Kushnir, V.P. Lyseniuk, N.V. Lytvynenko,

T.V. Myronenko, S.P. Moskovko, V.M. Pashkovskyi, M.I. Pityk, S.S. Pshyk, V.I. Smolanka,

A.S. Son, O.A. Statinova, O.L. Tovazhnianska, V.M. Shkolnyk, S.I. Shkrobot

Reviewers:

A.V. Pavenok - Doctor of Medical Sciences, Professor, Head of the Department of Neuropathology and Neurosurgery of the Postgraduate Faculty of Danylo Halytsky Lviv National Medical University;

N.M. Buchakchiyska – Doctor of Medical Sciences, Professor, Head of the Department of Nervous Diseases of the State Establishment "Zaporizhzhia Medical Academy of Postgraduate Education of the Ministry of Health of Ukraine";

T.A. Litovchenko — Doctor of Medical Sciences, Professor, Head of the Department of Neurology and Children's Neurology of Kharkiv Academy of Postgraduate Education

Specialist editor:

L.V. Panteleienko - Candidate of Medical Sciences, Associate Professor of the Department of Neurology of O.O. Bohomolets National Medical University

Neurology=Неврологія : textbook / I.A. Hryhorova, L.I. Sokolova, R.D. He-N40 rasymchuk et al.; edited by I.A. Hryhorova, L.I. Sokolova. — Kyiv : AUS Medicine Publishing, 2017. - 624 p. + 32 p. color insert. ISBN 978-617-505-595-3

The national textbook presents topical diagnostics of nervous system diseases and the main sections of clinical neurology from the standpoint of classical medicine and current scientific advances. The main topical principles of the structure of the central and peripheral nervous system, symptoms of cranial nerve disorders, issues of neurophysiology and its peculiarities in childhood are discussed in detail. The book outlines the fundamentals of modern diagnostics of nervous diseases and its methods (electrophysiological, ultrasound, computed tomography, biochemical), which make it possible to study the structure and functions of the nervous system, its metabolism, and hemodynamics under conditions of physiology and pathology.

The textbook is intended for students of higher education establishments — medical universities, institutes, and academies, and also interns, neurologists, and family doctors.

> **UDC 616.8** LBC 56.1ya73

- © I.A. Hryhorova, L.I. Sokolova, R.D. Herasymchuk,
 - V.A. Hryb, L.A. Dziak, O.A. Koziolkin, L.L. Korsunska, H.M. Kushnir, V.P. Lyseniuk, N.V. Lytvynenko,
 - T.V. Myronenko, S.P. Moskovko, V.M. Pashkovskyi,

 - M.I. Pityk, S.S. Pshyk, V.I. Smolanka, A.S. Son, O.A. Statinova, O.L. Tovazhnianska, V.M. Shkolnyk, S.I. Shkrobot, 2017

© AUS Medicine Publishing, design, 2017

ISBN 978-617-505-595-3

CONTENTS

Abbreviations	7
Preface	9
PART 1 GENERAL NEUROLOGY	
Chapter 1. BASIC PRINCIPLES OF STRUCTURE AND FUNCTIONING OF THE NERVOUS SYSTEM	11 11 12
General Principles of Functioning of the Nervous System	13
Chapter 2. SENSITIVE SYSTEM AND SYMPTOMS OF ITS LESION	18 20
and the Tactile Part)	
Different Methods of Research of Sensitivity	23
Syndromes of the Lesion of Sensitive Pathways at Different Levels	23
Chapter 3. THE SYSTEM OF MOTOR ACTIVITY The Defley Activity	32 37
The Netlex Activity	
The Extrapyramidal System	
Statocoordinatory System	53
Chapter 4. GENERAL ANATOMIC-PHYSIOLOGICAL CHARACTERISTIC OF THE CRANIAL NERVES	58
Chapter 5. INTEGRATIONAL SYSTEMS OF THE BRAIN	78
The Cerebral Cortex	78
The White Matter of Cerebral Hemispheres	
The Cognitive Functions and Their Disturbance	88
Chapter 6. AUTONOMIC NERVOUS SYSTEM	93
Anatomotunctsional Features	
Methods of Research of the Autonomic Nervous System	
Syndromes of the Lesion of the Autonomic Nervous System	
	107
General Data on the Development of the Nervous System in Children	
Features of the Reflex Sphere in Newborns	
Development of the Motor Functions	111
Features of Formation of the Highest Mental Functions	
Features of the Neurologic Examination of Children	
Chapter 8. THE CEREBROSPINAL FLUID. SYNDROMES OF OF IRRITATION OF THE MENINGES	126
Investigation of the Cerebrospinal Fluid	
Symptom-Complex of Irritation of the Meninges	
	\frown
	-(3)

CONTENTS

Chapter 9. ADDITIONAL METHODS OF INVESTIGATION	135
Electrophysiological Methods of Investigation	. 135
The Ultrasonic Methods of Investigation	. 148
The Methods of Visualization of the Skull, Vertebral Column, Vessels, Brain, and Spinal Cord	. 153
The Morphological Methods of Investigation	. 163
Other Methods of Investigation	. 164
TESTS TO PART 1 "THE GENERAL NEUROLOGY"	169

PART 2 SPECIAL NEUROLOGY

Chapter 10. VASCULAR DISEASES OF THE BRAIN AND SPINAL CORD	178
The Blood Supply of the Brain	178
The Vascular Diseases of the Brain	181
The Blood Supply of the Spinal Cord	225
The Disorders of the Circulation of the Spinal Cord	227
Chapter 11. DISEASES OF THE PERIPHERAL NERVOUS SYSTEM	233
Vertebrogenic Lesions of the Peripheral Nervous System	235
Lesions of the Intervertebral Ganglia and Plexuses	242
Lesion of the Roots and Nerves of the Spinal Cord	245
Lesions Of Separate Nerves Of The Spinal Nerves	257
Neuralgia And Neuropathy Of The Cranial Nerves	259
Chapter 12. INFECTIOUS DISEASES OF THE CENTRAL NERVOUS SYSTEM	263
Meningites	263
The Cerebral Arachnoiditis	279
Encephalites	281
Prion Diseases	296
Neuroborreliosis	302
Chapter 13. PARASITIC AND FUNGAL DISEASES OF THE NERVOUS SYSTEM	309
Toxoplasmosis	309
Echinococcosis	312
Cysticercosis	314
Candidiasis	316
Cryptococcosis	317
Coccidioidomycosis	318
Chapter 14. NEUROAIDS	319
General Characteristic of HIV Infection	319
The Neurologic Implications of the HIV Infection Caused by Direct Influence of the Virus	
on the Nervous System	321
The Treatment	327
Chapter 15. NEUROSYPHILIS	328
Chapter 16. DAMAGE OF THE NERVOUS SYSTEM IN TUBERCULOSIS	335
The Tuberculous Meninglus (Meningocephalius)	330
The Proin Tuberculous Vascullus	330
The Tuberculous Abscess of the Brain	330
The Tuberculous Myelonathies	339
The Tuberculous Meningocephalitis In Combination With The Lesion of the Nervous System	
on the Aids	341

The Tuberculous Meningocephalitis in Combination With The Fungal Infection of the Nervous	317
The Tuberculous Intoxication (Vegetative Dystonia Syndrome Somatogenically Caused by the Tuberculous Intoxication)	342
Chapter 17. DEMYELINATING DISEASES	343
The Acute Disceminated Encentralomyalitic	343
The Acute Disseminated Encephatomyentis	555
Chapter 18 . HEREDITARY DISEASES OF THE NERVOUS SYSTEM	358
Hereditary Diseases with the Primary Lesion of the Neuromuscular System	358
The Hereditary Diseases with the Primary Lesion of the Pyramidal System	378
The Hereditary Diseases with the Primary Lesion of the Extrapylating System	380
Chapter 19. MYASTHENIA AND THE MYASTHENIC SYNDROME	
	202
	572
Chapter 21. PARKINSON'S DISEASE	396
Chapter 22. AMYOTROPHIC LATERAL SCLEROSIS	403
Chapter 23. DEMENTIA	406
Chapter 24. THE PERINATAL LESIONS OF THE NERVOUS SYSTEM	413
The Hypoxic-Ischemic Lesions of the Brain	415
The Hypoxic-Hemorrhagic Lesions of the Brain	416
The Infantile Cerebral Palsy	422
Chapter 25. CONGENITAL DEFECTS OF THE SPINE AND SPINAL CORD, SYRINGOMYELIA	427
Congenital Defects of the Spine And Spinal Cord	427
Craniovertebral Maldevelopments	429
Syringimyellia	430
Chapter 26. THE HEADACHE	435
Chapter 27. SLEEP AND ITS DISORDERS	444
The Anatomic Substrate and Physiology of the Sleep	444
The Options of the Sleep Disorders	447
Chapter 28. PAROXYSMAL STATES IN THE CLINIC OF THE NERVOUS DISEASES	458
Epilepsy	458
The Paroxysmal States of the Non-Epileptic Origin	466
Chapter 29. LESIONS OF THE NERVOUS SYSTEM CAUSED BY PHYSICAL FACTORS	473
Neurologic Disturbances in the Radiation Disease	473
Neurologic Manifestations of the Occupational Diseases Caused by Influence of Physical Factors .	476
Capter 30. THE EXOGENOUS NEUROINTOXICATIONS	481
General Characteristic	481
Intoxication with Mercury and its Compounds	483
Intoxication with Lead and its Compounds	485
Exogenous Intoxication with Arsenic and its Compounds	490
Intoxication with Hydrogen Sulfide	492
Intoxication with Carbon Monoxide	493
Intoxication with Chlororganic Compounds	494
Intoxication with Organophosphorus Compounds	495
	5

CONTENTS

Intoxication with Tricresylphosphate	496
Intoxication with Methyl Alcohol	497
Intoxication with Gasoline	498
Poisoning with Ethyl Alcohol	498
Chapter 31. TUMORS OF THE CNS	501
The Primary Tumors of the Brain	501
The Primary Tumors of the Spinal Cord	514
The Secondary (Metastatic) Tumors	514
The Treatment of the Brain Tumors	515
The Treatment of the Tumors of the Spinal Cord	517
Chapter 32. TRAUMATIC LESIONS OF THE CNS AND PERIPHERAL NERVES	519
The Craniocerebral Trauma (CCT)	519
The Spinal Trauma (ST)	534
Trauma of the Peripheral Nervous System	539
The Problems of Rehabilitation of Trauma of the Nervous System	542
Chapter 33. SOMATONEUROLOGIC SYNDROMES	545
Damage of the Nervous System in the Cardiac Vascular Diseases	547
Damage of the Nervous System in Diseases of the Respiratory Organs	548
Damage of the Nervous System in Diseases of the Digestive System	549
The Neurologic Disorders in Kidney Diseases	551
Damage of the Nervous System in the Endocrine Diseases	552
Damage of the Nervous System in Diseases of the Blood System	557
Damage of the Nervous System in the Connective Tissue Diseases	559
The Neurological Disorders in the Malignant Neoplasms of the Non-Cerebral And Non-Spinal	
Localization	560
Chapter 34. NEUROSTOMATOLOGIC DISEASES	562
The Pain Phenomena	563
The Syndromes of the Lesion of the Facial, Glossopharyngeal, Vagus, and Hypogossal Nerves	580
The Paresthetic Syndrome (Glossodynia)	585
Other Neurogenic Diseases of the Face	588
Chapter 35. METHODOLOGY OF THE NEUROLOGICAL DIAGNOSIS. YATROGENIYA, DEONTOLOGY,	
AND ETHICS IN THE PRACTICE OF NEUROLOGIST	591
Methodology of the Neurological Diagnosis	591
Yatrogeniya, Deontology, and Ethics in the Practice of the Neurologist	599
TESTS FOR THE PART 2 "SPECIAL NEUROLOGY"	601
TASKS FOR THE PART 2 "SPECIAL NEUROLOGY"	610

6

ABBREVIATIONS

А	— Amplitude	CC	 Concussion, Commotio Cerebri
ABP	 Average Blood Pressure 	CA	 Coefficient of Absorption
ABCDE	- Airways, Breathing, Circulation,	CAG	 Cerebral Angiography
	Disabilities, Explosure	CBR	- The Complement Binding Reaction
ABSEP	- Acoustical Brain Stem Evoked Po-	CCA	 Common Carotid Artery
	tential	CCT	 Craniocerebral Trauma
ACE	- Angiotensin Converting Enzyme (In-	CFT	 Complement Fixation Test
	hibitors)	CHC	 Cerebral Hypertensive Crisis
ACEP	 Anticholinesterase Preparations 	CHD	- Coronary Heart Disease
ACTH	— Adrenocorticotrophic Hormone	CJD	 The Creutzfeldt—Jakob disease
ADCC	 Acute Disturbances of the Cerebral 	CNS	 Central Nervous System
	Circulation	СР	- Cerebral Pasly
ADEM	- Acute Disseminated Encephalomy-	CPP	 Cerebral Perfusion Pressure
	elitis	CRD	 Chronic Radial Disease
AHE	— The Acute Hypertensive Encepha-	Chr.	- Chromosome
	lopathy	CSH	 Chronic Subdural Hematoma
AIDS	- Acquired Immune Deficiency Syn-	CT	 Computed Tomography
	drome	DBS	- Deep Brain Stimulation
ALS	 Amyotrophic-Lateral Sclerosis 	DE	 Discirculatory Encephalopathy
ANS	- Autonomic Nervous System	DICS	- Disseminated Intravascular Coagula-
APDT	- Adsorbed Pertussis-Diphtheritic-		tion Syndrome
	Tetanic (vaccine)	DM	 Diabetes Mellitus
APMU	- Action Potential of the Motor Units	DNase	 Deoxyribonuclease
APTT	 Activated Partial Thromboplastic 	EAP	 Electro Active Potential
	Time	Echoes	 Echoencephalography
APV	 Artificial Pulmonary Ventilation 	ECG	- Electrocardiography
ARA-II	 Antagonists of the Receptors to 	EEG	- Electroencephalography
	Angiotensin II	ELISA	 Enzyme-Linked Immunosorbent
ARC	- AIDS-related complex		Assay
ARVI (A	RVD) — Acute Respiratory Viral Infec-	EMG	- Electromyography
`	tions (Diseases)	EMP	 Evoked Motor Potentials
ARS	- Acute Radiation Synrome	EP	 Evoked Potentials
ART	 Antiretroviral Therapy 	ESR	 Erythrocyte Sedimentation Rate
APTT	- Activated Partial Thromboplastin	FAG	 Fluorescent Angiography
	Time	FI	— Fatal Insomnia
ASA	 American Stroke Association 	FNT	 Factor of Necrosis of Tumors
ASEM	 Acute Scattered Encephalomyelitis 	FLAIR	- Fluid Attenuated Inversion Recovery
ACE	- Angiotensin-converting Enzyme	FM	- Frontal Mastoidal (lead)
ATF	 Adenotriphosphoric Acid 	FMRT	- Functional Magnetic Resonance
AVPU	- Alert, Voice, Pain, Unresponsiveness		Tomography
BAL	- British Antilewisite (antidotum)	GABA	 — Gamma-Aminobutyric Acid
BBM	— Bulbar Biomicroscopy	HAIT	 Hemagglutination Inhibition Tests
BI	— Brain Injury	HAART	- High-Active Anti-Retroviral Therapy
BP	- Blood Pressure	HC	- Hypertensive Crisis
BPM	- Base Protein of Myelin	HEB	- Hematoencephalic Barrier
	•		*

HIV	- Human Immunodeficier	cv Virus PR	 The Precipitation Reaction
HLA	- Human Leukocyte Antig	en PRNP	 Prion Protein Gene
HR	- Heart Rate	PrPc	- Normal Isoform of Prion Protein
HT	- Hemorrhagic Transform	ation PrP ^{sc}	 Pathlogic Isoform of Prion Protein
ICA	 Internal Carotid Artery 	PPh	- Polyphase
ICH	 Intracranial Hematoma 	PT	- Physiotherapy
ICPH	- Intracranial Parenchima	tous Hemo- PVL	- Periventricular Leukomalacia
	rrhage	RIHA	- Reaction of Inhibition of Hemagglu-
ICrP	- Intracranial Pressure		tination
IL	- Interleukins	RPHA	 Reaction of Passive Hemagglutina-
IM	- Intramuscularly		tion
INR	- International Normalize	d Ratio (R)CFT	— Reiter's Complement Fixation Test
ISCDB	- Initial Signs of the Circu	latory Defi- REG	- Rheoencephalography
	ciency of the Brain	RIF	 Reaction Immunofluorescence
IU	 International Units 	RIT	 Reaction of Immobilization of
IV	 Intravenously 		Treponema
IVH	- Internal Ventricular Her	norrhage RP	 Reaction of Precipitation
KIU	- Kininogenous Inhibiting	Units RVG	 Rheovasography
LBFV	- Linear Blood Flow Velo	city SAH	 Subarachnoidal Hemorrhage
LD	 Lyme disease 	SCT	 — Spinal Computed Tomography
LP	- Latent Period	SGSS	 Syndrome of Gersmann-Straussler-
LVBF	- The Linear Velocity of the	e Blood Flow	Sheinker
MBD	- The Minimal Brain Dyst	function SLE	 Systemic Lupus Erythematous
MBP	- The Myelin Basic Protei	n SPECT	 — Single Photon Emission Computed
MBT	- Micobacterium of Tuber	culosis	Tomography
MHC	- Microhemocirculation	ST	 — Spinal Trauma
MMSE	- Mini Mental State Exam	nination TB	- Tuberculosis
MOG	- Myelinoligodendrocytic	Glycoprotein T-cells	 Lymphocytes produced in the Thy-
MP-metl	nods — Magnetic Perfusion	methods	mus
MRA	- Magnetic Resonance An	giography TCDG	 Transcranial Dopplerography
MRI	- Magnetic Resonance Im	age TDCC	 Transient Disturbances of the Cere-
MRS	- Magnetic Resonance Sp	ectroscopy	bral Circulation
MSCT	- Multi-slice Computed T	omography TDS	 Titanic-Diphtheritic Serum
MU	 Motor Units 	TEL	 Tetraethyl Lead
NIHSS	- National Institute of the	Health T1	 Lymphocytes of Class 1
	Stroke Scale	T2	 Lymphocytes of Class 2
NMDA	 N-Methyl-D-aspartate 	TEH	 Traumatic Epidural Hematoma
NSMN	- Neural-Senso-Motor Ne	europathies TIA	 Transient Ischemic Attack
NMR	- Nuclear Magnetic Resor	nance TMS	 Transcranial Magnetic Stimulation
NSG	 Neurosonography 	TNF	 Tumor Necrosis Factor
OCT	- Optical Coherence Tom	ography TSH	 Traumatic Subdural Hematoma
ОМ	- Occipital Mastoidal (lead	d) UA	 Units of Action
OPCs	- Organophosphorus Com	pounds UHF	 Ultra-High Frequencies
PAMU	 Potential of Activity of t 	he Motor USDG	 Ultrasound Dopplerography
	Units	US	 — Ultrasound Study
PCR	- Polymerase Chain React	ion UVR	 Ultra-Violet Radiation
PD	 Prion Diseases 	VEP	 Visual Evoked Potencials
PEG	- Pneumoencephalography	V VEP	 Visual Electro Potential
PET	 Positron Emission Tomo 	ography VVD	 Vegeto-Vascular Dystony
PF	- Potential of Fibrillations	VHV	 Variccela/Herpes Zoster Virus
PLP	 Proteolipid Protein 	WHO	 World Health Organization

PREFACE

Neurology (from Greek *neuron* — nerve, *logos* — science) — is the science about the human nervous system in health and pathology. It studies anatomy, histology, physiology, and biochemistry of the nervous system as well as pathological processes of the human body, which cause disorders of its functions. **Neuropathology** is a part of neurology, which studies diseases of the nervous system.

As an independent clinical science neuropathology was dedicated in 1862. The important role in this process was played by the French neurologist, Professor of the Paris University *Jean Martin Charcot*, who at that time created and headed the world's first clinic in the hospital Salpetrier near Paris and the Chair of nervous diseases at the University for the patients with neurological disorders. The development of neuropathology as a separate field of medicine in the middle of the 19th century was associated with significant achievements in neuroanatomy, neurophysiology, and neurohistology.

In 1884 as an independent academic subject "The nervous and mental diseases" was included into the curriculum of medical faculties of Russian universities. At the same time the united departments of the nervous and mental diseases were established; the first of which was in the Moscow University; it was headed by A.Y. Kozhevnikov. He was also the author of the first Russian textbook on the nervous and mental diseases for students.

The development of the Ukrainian school was connected with the neurology departments of the nervous and mental diseases at the leading University hospitals in Kiev, Kharkiv, and Odessa. The first departments were established in 1884 at the medical faculty of the Kiev and Kharkiv Universities, where the teaching of neurology was carried out by well-known scientists, professors I.A. Sikorskiy and P.I. Kovalevskiy. Further in these departments fruitfully worked such famous scientists as B.N. Mankivskiy, D.I. Panchenko, N.B. Mankivsky, O.P. Vinnytskiy in the Kyiv University and S.N. Davidenkov, A.M. Greenstein, G.D. Leshchenko, E.G. Dubenko in the Kharkiv University. The third Department of the nervous and mental diseases in Ukraine was established at the Novorossiyskiy University in Odessa in 1905 under the leadership of Professor N.G. Popov. In the same year he founded the Department of neurology at the medical faculty of the Lviv University, the leaders of which in different years were Professor D.I. Panchenko, N.V. Mirtowskiy, and D.I. Proniv.

Over the past 25 years in neurology a huge breakthrough in the diagnosis and study of pathogenesis of the nervous diseases was made. Due to achievements of genetics and neurochemistry, improvement of methods of

PREFACE

neuro-imaging neurology has evolved into an exact science. All of this requires a high level of training specialists in different fields — from family physicians to specialists of the narrow specialization.

This textbook was created as the national for the purpose of optimisation the study of neurology for the medical students of higher educational institutions of Ukraine of the level IV of accreditation. The group of authors consists of leading scientists and teachers of all neurology departments of the Medical Universities of our country.

The textbook has two parts. In the first part there are the main issues of propedeutics of the nervous diseases, anatomical and physiological features of the nervous system, the symptoms and syndromes of its defeat at various levels, the methodology of the topical diagnosis. A separate chapter is devoted to additional research methods of the nervous system, which are described as the traditional neurology and the new methods of diagnosis.

The second part presents etiopathogenesis, clinical picture, diagnostics, treatment and prevention of diseases of the nervous system. This part covers almost all kinds of diseases of the nervous system from the widespread cerebrovascular, demyelinated diseases and diseases of the peripheral nervous system to the rare forms of the neurological pathology — prionic diseases, dermatomyosites, lesions of the nervous system in the case of HIV infection, etc. It clearly demonstrates the modern trends in neurology: the creation of joint scientific and practical directions — cardioneurology, somatoneurology, vertebral neurology etc. Principles of the treatment of neurological diseases are based on the system approach and principles of evidence-based medicine.

At the end of each part there are examples of the test tasks and clinical cases for selfcontrol. Figures, tables and schemes are presented to improve the perception and assimilation of the material. The textbook is written to help the students of higher medical institutions, doctors-interns, clinical residents, neurologists, and specialists of family medicine for learning the basic principles of neurology, and for intensifying fundamental knowledge for the personal improvement in the field of neurology.

PART 1

GENERAL NEUROLOGY

CHAPTER 1

BASIC PRINCIPLES OF STRUCTURE AND FUNCTIONING OF THE NERVOUS SYSTEM

GENERAL PRINCIPLES OF STRUCTURE OF THE NERVOUS SYSTEM

The main structural, functional, genetic and anatomic unit of the nervous system is the *nerves cell* or *neuron* consisting of a body and nervous processes of two types: dendrites and axons (see the Figure 1.1 on the coloured insert).

The main function of neuron is reception, processing of information and conducting irritation to other cells. The receptor endings of the sensitive nervous fibers (receptors) perceive the external and internal stimuli and conduct them in the form of impulses by **dendrites** (afferent nervous processes) to the neuron body.

The axon is a long process, which conducts the nervous impulse away from the body cell and has the corresponding effector ending. There is only one axon in the neuron, and its function is to conduct corresponding impulses by synapses from the neuron body to other neurons or working cells (muscular and glandular).

Bodies of neurons of the central nervous system (CNS) form the gray matter of the brain, and on periphery they form the cerebrospinal and autonomic nodes. In the CNS **the nervous fibers** or **processes of neurons** are the basis of the white cerebral matter, and they function as the conductors. In the peripheral part of the nervous system they are the part of roots and nerves and conduct nervous impulses from the center to periphery (*efferent fibers*), and vice versa, from the periphery to center (*afferent fibers*). The nervous fiber consists of the axial cylinder (the actual process of the neuron) and the sheath formed by oligodendroglia cells (neurilemma or Shvann's cells). They distinguish the *myelinated* nervous fibers (they also contain the myelinated membrane in addition to the axial cylinder, neurilemma, and the basal membrane), these fibers dominate in the somatic nervous

PART 1. GENERAL NEUROLOGY

system; the *unmyelinated fibers* (they consist of the axial cylinder, neurilemma and basal membrane) form the autonomic (vegetative) nervous system mainly. The rate of conducting impulse in the myelinated fibers is much higher than in the unmyelinated, and it is about 120 m/s.

In the central and peripheral nervous systems the nervous fibers are closely located with each other carrying out different functions and providing conduction to many structures in different directions of the nervous system; that needs isolation of impulses from each other. This isolation is provided by the myelinated sheaths and **neuroglia** (a set of astrocytes, oligodendrocytes and microglical cells).

The function of the neuroglia ensuring the normal functioning of the nervous cells lies in isolation of the nervous fibers to carry out the mechanical, supporting, differentiating, trophic, protective and secretory functions, the regulating influence on the ionic structure and the nervous cells metabolism, the active participation in the higher brain functions and synthesis of mediators of the CNS.

Synapses are the specialized structures providing conduction of the nervous impulse from one neuron to the other. As a rule, they are formed between axons of one cell and dendrites of another (see the Figure 1.2 on the coloured insert).

In the structure of the synapse they distinguish *the presynaptic and postsynaptic parts and the synaptic cleft*. The presynaptic part is formed by the terminal branch of the axon transferring impulse of the nervous cell. It is covered with a presynaptic membrane and contains vesicles filled with mediators (biologically active agents — acetylcholine, nor-epinephrine). The postsynaptic membrane has a special protein — the mediator receptor. The synapse provides conducting of the nervous impulse only in one way (according to the law of the dynamic or physiological polarization of Ramyny Cajal's nervous cell). As for the functional features they distinguish two types of synapses: *stimulating*, i.e. promoting generation of impulses, and *inhibitory*, or capable to terminate the action of signals.

MAIN STAGES OF DEVELOPMENT OF THE NERVOUS SYSTEM

Functioning of the nervous system depends on the body reactivity, i.e. its ability to perceive irritation and to react on it by certain, in particular, the motor reaction. The compound morphological and functional features of the nervous system were created as a result of a long evolution, during which they were able to mark out schematically the following **stages of development**:

- The stage of the diffuse, reticular or asynaptic nervous system;
- The stage of the nodular or ganglionic nervous system;
- The stage of the tubular nervous system.

For the first time the nervous system appeared in *hydroid polyps* in the form of a network of epithelial cells and was called asynaptic, as it could conduct stimuli diffusively in all directions, without synapses (the reticular or diffuse nervous system) and provided the global reflex reactions. The nervous system of *worms* was created on the ganglionic type: symmetric, with two chains of ganglia (nodes) consisting of the nervous nodes cells and fibers. This system is synaptic; it is characterized by the ability to conduct stimuli only in one direction; it provides the differentiated adaptive reactions. The presence of

the pharyngeal node in worms indicates the origin of a primitive brain. In *mollusks* the nervous system is formed by the ganglionic type (as a network of the nervous fibers, which begin with the paired nodes). The tubular nervous system for the first time appears in *ver*-*tebrates;* it develops from the ectoderma; it is constructed by the segmentary type and equipped with the skeletal motor apparatus. So, fishes have already the spinal cord and the brain stem. The corpus striatum of *birds* reaches larger sizes; it is a substrate of the higher brain functions. In *mammals* the cortex was formed; in the *human beings* it reaches the highest development as the principal organ of thinking, speech and complex activity.

During ontogenesis the nervous system repeats all stages of phylogenesis. At first the cerebral (medullary) lamina is formed from the external ectodermal layer. Its edges are connected together forming the neural tube; the spinal cord is formed from its posterior part, and from its anterior part the brain is formed. Because of irregular growth of the anterior parts of the cerebral tube, the brain vesicles are formed; and respectively the anterior (*prosencephalon*), middle (*mesencephalon*) and posterior or rhomboidal (*rhombencephalon*) brain is formed as a result. This stage was called the stage of 'three vesicles'.

With time the terminal brain *(telencephalon)* was formed from the anterior part of the brain; it consist of the cerebral hemispheres, basal ganglia and intermediate brain *(diencephalon)*. Intermediate brain was formed by the following structures: thalamus, epithalamus, hypothalamus, metathalamus, optical path ways and nerves, and retina. This stage was called the stage of 'five'. The vesicles tectum and cerebral peduncles are formed from mesencephalon. From the posterior part the pons, cerebellum and medulla oblongata are formed.

From the posterior part of the spinal cord, forms and from neural the cavity of this tube the central channel of the spinal cord begins.

In the telencephalon there are the lateral ventricles; in the diencephalon there is the third ventricle of the brain; in the midbrain the aqueduct of mesencephalon is situated; it connects the third and fourth ventricles. The fourth ventricle is localized in *metencephalon*.

Formation of extremities in the course of evolution led to emergence of enlargements in the spinal cord: cervical – for the upper extremities (formed by the C_5-T_1 segments) and lumbar – for lower extremities (formed by L_1-S_2 segments).

Thus, during evolution the nervous system passes some stages, which are important for its morphological and functional development. They distinguish such **morphological stages** as:

- Centralization of the nervous system;
- Kefalization (from Greek kephale the head);
- Corticalization (in *chordates*);
- Emergence of symmetric hemispheres (in the *highest vertebrata*).

GENERAL PRINCIPLES OF FUNCTIONING OF THE NERVOUS SYSTEM

During evolution there was a gradual centralization of the nervous system, which consisted in formation in the brain the centers subordinating the below-located structures to them. As a result the vital centers of the automatic regulation of different functions were created in the brain stem.

