
Chapter 1. Designing for People 

This book is almost entirely about the look and behavior 

of applications, web apps, and interactive devices. But 

this first chapter is the exception to the rule. No 

screenshots here; no layouts, no navigation, no 

diagrams, no visuals at all. 

Why not? After all, that’s probably why you picked up 

the book in the first place. 

It’s because good interface design doesn’t start with 

pictures. It starts with an understanding of people: what 

they’re like, why they use a given piece of software, and 

how they might interact with it. The more you know 

about them, and the more you empathize with them, the 

more effectively you can design for them. Software, 

after all, is merely a means to an end for the people who 

use it. The better you satisfy those ends, the happier 

those users will be. 

A framework for achieving this is described here. It 

covers four areas. These are not strict rules or 

requirements for creating great designs. But having a 

plan for how you will inform yourself and your team in 

each area will give you confidence that your work is 

based on real insights into valuable problems to solve 

for your target customers. Decide for yourself what level 

of time and effort is right for your project or company. 

Revisiting these areas regularly will keep key insights 



top of mind and help focus everyone’s effort, especially 

UI design, on creating great outcomes for people. 

The four part structure for understanding design for 

people is this: 

1. Context: Who is your audience? 

2. Goals: What are they trying to do? 

3. Research: Ways to understand context and goals 

4. The Patterns: Cognition and behavior related to 

interface design 

Context 

Know Your Audience 

There’s a maxim in the field of interface design: “You 

are not the user!” 

So, this chapter will talk about people. It covers a few 

fundamental ideas briefly in this introduction, and then 

discusses some patterns that differ from those in the rest 

of the book. They describe human behaviors—as 

opposed to system behaviors—that the software you 

design may need to support. Software that supports these 

human behaviors better helps users achieve their goals. 

Interactions are conversations 

Each time someone uses an application, or any digital 

product, he carries on a conversation with the machine. 



It may be literal, as with a command line or phone 

menu, or tacit, like the “conversation” an artist has with 

her paints and canvas—the give and take between the 

craftsperson and the thing being built. With social 

software, it may even be a conversation by proxy. 

Whatever the case, the user interface mediates that 

conversation, helping users achieve whatever ends they 

had in mind. 

The key points are these: 

 There are two participants in the conversation, the 

person and the software. 

 There is a constant, back and forth exchange of 

information. 

 The exchange is a series of requests, commands, 

reception, processing and responses. 

The human in the conversation needs continuous 

feedback from the interface that confirms that things are 

working normally, inputs are being processed, and that 

she is proceeding satisfactorily towards the goal of the 

moment 

For this feedback loop to work, the software—which 

can’t be as spontaneous and responsive as a real human 

(at least not yet)—should be designed to mimic a 

conversation partner. It should be understandable to its 

partner, it should indicate it’s active, when it’s 

“listening,” and it should be obvious when it’s 

responding. Another layer on this is having some 



anticipated next steps or recommendations, in the same 

way a considerate person might be helpful to another. 

As the user interface designer, then, you get to script 

that conversation, or at least define its terms. And if 

you’re going to script a conversation, you should 

understand the human’s side as well as possible. What 

are the user’s motives and intentions? What 

“vocabulary” of words, icons, and gestures does the user 

expect to employ? How can the application set 

expectations appropriately for the user? How do the user 

and the machine finally end up communicating meaning 

to each other? 

Match your content and functionality to 
your audience 

Before you start the design process, consider your 

overall approach. Think about how you might design the 

interface’s overall interaction style—its personality, if 

you will. 

When you carry on a conversation with someone about a 

given subject, you adjust what you say according to your 

understanding of the other person. You might consider 

how much he cares about the subject, how much he 

already knows about it, how receptive he is to learning 

from you, and whether he’s even interested in the 

conversation in the first place. If you get any of that 

wrong, bad things happen—he might feel patronized, 

uninterested, impatient, or utterly baffled. 



This analogy leads to some obvious design advice. The 

subject-specific vocabulary you use in your interface, 

for instance, should match your users’ level of 

knowledge; if some users won’t know that vocabulary, 

give them a way to learn the unfamiliar terms. If they 

don’t know computers very well, don’t make them use 

sophisticated widgetry or uncommon interface-design 

conventions. If their level of interest might be low, 

respect that, and don’t ask for too much effort for too 

little reward. 

Some of these concerns permeate the whole interface 

design in subtle ways. For example, do your users 

expect a short, tightly focused exchange about 

something very specific, or do they prefer a conversation 

that’s more of a free-ranging exploration? In other 

words, how much openness is there in the interface? Too 

little, and your users feel trapped and unsatisfied; too 

much, and they stand there paralyzed, not knowing what 

to do next, unprepared for that level of interaction. 

Therefore, you need to choose how much freedom your 

users have to act arbitrarily. At one end of the scale 

might be a software installation wizard: the user is 

carried through it with no opportunity to use anything 

other than Next, Previous, or Cancel. It’s tightly focused 

and specific, but quite efficient—and satisfying, to the 

extent that it works and is quick. At the other end might 

be an application such as Excel, an “open floorplan” 

interface that exposes a huge number of features in one 

place. At any given time, the user has hundreds of things 



that he could do next, but that’s considered good, 

because self-directed, skilled users can do a lot with that 

interface. Again, it’s satisfying, but for entirely different 

reasons. 

Skill Level 

How well can your audience(s) use your interface now 

and how much effort are your users willing to spend to 

learn it? 

Some of your customers may use it every day on the 

job—clearly they’d become an expert user over time. 

But they will become increasingly unhappy with even 

small dissatisfactions. Maybe they’ll use it sometimes, 

and learn it only well enough to get by (“Satisficing”). 

Difficulties in usage may be tolerated more. Maybe 

they’ll only use it once. Be honest: can you expect most 

users to become intermediates or experts, or will most 

users remain perpetual beginners? 

Software designed for intermediate-to-expert users 

includes: 

 Photoshop 

 Excel 

 Code development environments 

 System-administration tools for web servers 

In contrast, here are some things designed for occasional 

users: 



 Kiosks in tourist centers or museums 

 Windows or Mac OS controls for setting desktop 

backgrounds 

 Purchase pages for online stores 

 Installation wizards 

 Automated teller machines 

The differences between the two groups are dramatic. 

Assumptions about users’ tool knowledge permeate 

these interfaces, showing up in their screen-space usage, 

labeling, and widget sophistication, and in the places 

where help is (or isn’t) offered. 

The applications in the first group have lots of complex 

functionality, but they don’t generally walk the user 

through tasks step by step. They assume users already 

know what to do, and they optimize for efficient 

operation, not learnability; they tend to be document-

centered or list-driven (with a few being command-line 

applications). They often have entire books and courses 

written about them. Their learning curves are steep. 

The applications in the second group are the opposite: 

restrained in functionality but helpful about explaining it 

along the way. They present simplified interfaces, 

assuming no prior knowledge of document- or list-

centered application styles (e.g., menu bars, multiple 

selection, etc.). “Wizard” frequently show up, removing 

attention-focusing responsibility from the user. The key 



is that users aren’t motivated to work hard at learning 

these applications—it’s usually just not worth it! 

Now that you’ve seen the extremes, look at the 

applications in the middle of the continuum: 

 Microsoft PowerPoint 

 Email clients 

 Facebook 

 Blog-writing tools 

The truth is that most applications fall into this middle 

ground. They need to serve people on both ends 

adequately—to help new users learn the tool (and satisfy 

their need for instant gratification), while enabling 

frequent-user intermediates to get things done smoothly. 

Their designers probably knew that people wouldn’t 

take a three-day course to learn an email client. Yet the 

interfaces hold up under repeated usage. People quickly 

learn the basics, reach a proficiency level that satisfies 

them, and don’t bother learning more until they are 

motivated to do so for specific purposes. 

You may someday find yourself in tension between the 

two ends of this spectrum. Naturally you want people to 

be able to use your design “out of the box,” but you 

might also want to support frequent or expert users as 

much as possible. Find a balance that works for your 

situation. Organizational patterns in Chapter 2, such as 

“Multi-Level Help”, can help you serve both 

constituencies. 



Goals: Your interface is just a means 
to their ends 

Everyone who uses a tool—software or otherwise—has 

a reason for using it. These are their goals. Goals could 

be outcomes such as: 

 Finding some fact or object 

 Learning something 

 Performing a transaction 

 Controlling or monitoring something 

 Creating something 

 Conversing with other people 

 Being entertained 

Well-known idioms, user behaviors, and design patterns 

can support each of these abstract goals. User experience 

designers have learned, for example, how to help people 

search through vast amounts of online information for 

specific facts. They’ve learned how to present tasks so 

that it’s easy to walk through them. They’re learning 

ways to support the building of documents, illustrations, 

and code. 

Ask Why 

The first step in designing an interface is to figure out 

what its users are really trying to accomplish. Filling out 

a form, for example, is almost never a goal in and of 



itself—people only do it because they’re trying to buy 

something online, renew their driver’s license, or install 

software. They’re performing some kind of transaction. 

Asking the right questions can help you connect user 

goals to the design process. Users and clients typically 

speak to you in terms of desired features and solutions, 

not of needs and problems. When a user or client tells 

you he wants a certain feature, ask why he wants it—

determine his immediate goal. Then to the answer of this 

question, ask “why” again. And again. Keep asking until 

you move well beyond the boundaries of the immediate 

design problem.1 

Design’s value: Solve the right problem, 
then solve it right 

Why should you ask these questions if you have clear 

requirements? Because if you love designing things, it’s 

easy to get caught up in an interesting interface design 

problem. Maybe you’re good at building forms that ask 

for just the right information, with the right controls, all 

laid out nicely. But the real art of interface design lies in 

solving the right problem, defined as helping the user 

achieve their goal. 

So, don’t get too fond of designing that form. If there’s 

any way to finish the transaction without making the 

user go through that form at all, get rid of it altogether. 

That gets the user closer to his goal, with less time and 

effort spent on his part (and maybe yours, too). 

https://learning.oreilly.com/library/view/designing-interfaces-3rd/9781492051954/ch01.html#idm45872913185880


Let’s use the “why” approach to dig a little deeper into 

some typical design scenarios. 

Why does a mid-level manager use an email client? Yes, 

of course—”to read email.” Why does she read and send 

email in the first place? To converse with other people. 

Of course, other means might achieve the same ends: the 

phone, a hallway conversation, a formal document. But 

apparently, email fills some needs that the other methods 

don’t. What are they, and why are they important to her? 

The convenience of choosing when to send or respond? 

Privacy? The ability to archive a conversation? Social 

convention? What else? 

A father goes to an online travel agent, types in the city 

where his family will be taking a summer vacation, and 

tries to find plane ticket prices on various dates. He’s 

learning from what he finds, but his goal isn’t just to 

browse and explore different options. Ask why. His goal 

is actually a transaction: to buy plane tickets. Again, he 

could have done that at many different websites, or over 

the phone with a live travel agent. How is this site better 

than those other options? Is it faster? Friendlier? More 

likely to find a better deal? 

Sometimes goal analysis really isn’t enough. A 

snowboarding site might provide information (for 

learning), an online store (for transactions), and a set of 

Flash movies (for entertainment). Let’s say someone 

visits the site for a purchase, but she gets sidetracked 

into the information on snowboarding tricks—she has 

switched goals from accomplishing a transaction to 



browsing and learning. Maybe she’ll go back to 

purchasing something, maybe not. And does the lifestyle 

and entertainment part of the site successfully entertain 

both the 12-year-old and the 35-year-old? Will the 35-

year-old go elsewhere to buy his new board if he doesn’t 

feel at home there, or does he not care? It’s useful to 

expand your goal framework to include an 

understanding of the specific business purchase cycle. 

Your snowboarding customer will have different goals 

at different stages of this cycle. Alternately, you may 

want to design how you could foster a long term loyalty 

between the brand and the customer. This could be done 

via content and functionality that fosters an identity, 

builds a community, and celebrates a lifestyle. 

It’s deceptively easy to model users as a single faceless 

entity—”The User”—walking through a set of simple 

use cases, with one task-oriented goal in mind. But that 

won’t necessarily reflect your users’ reality. 

To do design well, you need to take many “softer” 

factors into account: expectations, gut reactions, 

preferences, social context, beliefs, and values. All of 

these factors could affect the design of an application or 

site. Among these softer factors, you may find the 

critical feature or design factor that makes your 

application more appealing and successful. 

So, be curious. Specialize in finding out what your users 

are really like, and what they really think and feel. 



Understanding People with 
Research 

Empirical discovery is the only really good way to 

obtain this information. Qualitative research, such as one 

on one interviews, gives you the basis for understanding 

your audience’s expectations, vocabulary, and how they 

think about their goals or structure their work. You can 

often detect patterns in what you’re hearing. These are 

your signals for guiding the design. Quantitative 

research, such as a survey, can give numerical validation 

or disqualification to your quant findings. 

To get a design started, you’ll need to characterize the 

kinds of people who will be using your design 

(including the softer factors just mentioned), and the 

best way to do that is to go out and meet them. 

Each user group is unique, of course. The target 

audience for, say, a new mobile phone app will differ 

dramatically from the target audience for a piece of 

scientific software. Even if the same person uses both, 

his expectations for each are different—a researcher 

using scientific software might tolerate a less-polished 

interface in exchange for high functionality, whereas 

that same person may stop using the mobile app if he 

finds its UI to be too hard to use after a few days. 

Each user is unique, too. What one person finds 

difficult, the next one won’t. The trick is to figure out 

what’s generally true about your users, which means 



learning about enough individual users to separate the 

quirks from the common behavior patterns. 

Specifically, you’ll want to learn: 

 Their goals in using the software or site 

 The specific tasks they undertake in pursuit of those 

goals 

 The language and words they use to describe what 

they’re doing 

 Their skill at using software similar to what you’re 

designing 

 Their attitudes toward the kind of thing you’re 

designing, and how different designs might affect 

those attitudes 

I can’t tell you what your particular target audience is 

like. You need to find out what they might do with the 

software or site, and how it fits into the broader context 

of their lives. Difficult though it may be, try to describe 

your potential audience in terms of how and why they 

might use your software. You might get several distinct 

answers, representing distinct user groups; that’s OK. 

You might be tempted to throw up your hands and say, 

“I don’t know who the users are” or “Everyone is a 

potential user.” But that doesn’t help you focus your 

design at all—without a concrete and honest description 

of those people, your design will proceed with no 

grounding in reality. 



This user-discovery phase will consume time and 

resources early in the design cycle, especially if you 

don’t really have a handle on who your audience is and 

why they might use your designs. It’s an investment. It’s 

worth it, because the understanding you and the team 

gain gives long term payback in better designs: Solving 

the right problems, and fit for purpose. 

Fortunately, lots of books, courses, and methodologies 

now exist to help you. Although this book does not 

address user research, here are some methods and topics 

to consider: 

Direct observation 

Interviews and onsite user visits put you directly into the 

user’s world. You can ask users about what their goals 

are and what tasks they typically do. Usually done “on 

location,” where users would actually use the software 

(e.g., in a workplace or at home), interviews can be 

structured—with a predefined set of questions—or 

unstructured, where you probe whatever subject comes 

up. Interviews give you a lot of flexibility; you can do 

many or a few, long or short, formal or informal, on the 

phone or in person. These are great opportunities to 

learn what you don’t know. Ask why. Ask it again. 

Case studies 

Case studies give you deep, detailed views into a few 

representative users or groups of users. You can 

sometimes use them to explore “extreme” users that 



push the boundaries of what the software can do, 

especially when the goal is a redesign of existing 

software. You can also use them as longitudinal 

studies—exploring the context of use over months or 

even years. Finally, if you’re designing custom software 

for a single user or site, you’ll want to learn as much as 

possible about the actual context of use. 

Surveys 

Written surveys can collect information from many 

users. You can actually get statistically significant 

numbers of respondents with these. Since there’s no 

direct human contact, you will miss a lot of extra 

information—whatever you don’t ask about, you won’t 

learn about—but you can get a very clear picture of 

certain aspects of your target audience. Careful survey 

design is essential. If you want reliable numbers instead 

of a qualitative “feel” for the target audience, you 

absolutely must write the questions correctly, pick the 

survey recipients correctly, and analyze the answers 

correctly—and that’s a science. 

Personas 

Personas aren’t a data-gathering method, but they do 

help you figure out what to do with your data once 

you’ve got it. This is a design technique that “models” 

the target audiences. For each major user group, you 

create a fictional person that captures the most important 

aspects of the users in that group: what tasks they’re 

trying to accomplish, their ultimate goals, and their 



experience levels in the subject domain and with 

computers in general. Personas can help you stay 

focused. As your design proceeds, you can ask yourself 

questions such as “Would this fictional person really do 

X? What would she do instead?” 

Design research is not marketing research 

You might notice that some of these methods and topics, 

such as interviews and surveys, sound suspiciously like 

marketing activities. They are closely related. Focus 

groups, for example, can be useful, but be careful. In 

group settings, not everyone will speak up, and just one 

or two people may dominate the discussion and skew 

your understanding. There is also the very robust 

marketing practice of market segmentation. It resembles 

the definition of target audiences used here, but market 

segments are defined by demographics, psychographics, 

and other characteristics. Target audiences from a UI 

design perspective are defined by their task goals and 

behaviors. 

In both cases, the whole point is to understand the 

audience as best you can.The difference is that as a 

designer, you’re trying to understand the people who use 

the software. A marketing professional tries to 

understand those who buy it. 

It’s not easy to understand the real issues that underlie 

users’ interactions with a system. Users don’t always 

have the language or introspective skill to explain what 

they really need to accomplish their goals, and it takes a 



lot of work on your part to ferret out useful design 

concepts from what they can tell you—self-reported 

observations are usually biased in subtle ways. 

Some of these techniques are very formal, and some 

aren’t. Formal and quantitative methods are valuable 

because they’re good science. When applied correctly, 

they help you see the world as it actually is, not how you 

think it is. If you do user research haphazardly, without 

accounting for biases such as the self-selection of users, 

you may end up with data that doesn’t reflect your 

actual target audience—and that can only hurt your 

design in the long run. 

But even if you don’t have time for formal methods, it’s 

better to just meet a few users informally than to not do 

any discovery at all. Talking with users is good for the 

soul. If you’re able to empathize with users and imagine 

those individuals actually using your design, you’ll 

produce something much better. 

The Patterns 

The following patterns describe some of the most 

common ways people think and behave as it relates to 

software interfaces. Even though individuals are unique, 

people in general behave predictably. Designers have 

been doing site visits and user observations for years; 

cognitive scientists and other researchers have spent 

many hundreds of hours watching how people do things 

and how they think about what they do. 



So, when you observe people using your software, or 

doing whatever activity you want to support with new 

software, you can expect them to do certain things. The 

behavioral patterns that follow are often seen in user 

observations. Odds are good that you’ll see them too, 

especially if you look for them. 

(A note for pattern enthusiasts: these patterns aren’t like 

the others in this book. They describe human 

behaviors—not interface design elements—and they’re 

not prescriptive, like the patterns in other chapters. 

Instead of being structured like the other patterns, these 

are presented as small essays.) 

Again, an interface that supports these patterns well will 

help users achieve their goals far more effectively than 

interfaces that don’t support them. And the patterns are 

not just about the interface, either. Sometimes the entire 

package—interface, underlying architecture, feature 

choice, documentation, everything—needs to be 

considered in light of these behaviors. But as the 

interface designer or interaction designer, you should 

think about these as much as anyone on your team. You 

might be in a better place than anyone to advocate for 

the users. 

 “Safe Exploration” 

 “Instant Gratification” 

 “Satisficing” 

 “Changes in Midstream” 



 “Deferred Choices” 

 “Incremental Construction” 

 “Habituation” 

 “Microbreaks” 

 “Spatial Memory” 

 “Prospective Memory” 

 “Streamlined Repetition” 

 “Keyboard Only” 

 “Social Proof” 

Safe Exploration 

“Let me explore without getting lost or getting into 

trouble.” 

When someone feels like she can explore an interface 

and not suffer dire consequences, she’s likely to learn 

more—and feel more positive about it—than someone 

who doesn’t explore. Good software allows people to try 

something unfamiliar, back out, and try something else, 

all without stress. 

Those “dire consequences” don’t even have to be very 

bad. Mere annoyance can be enough to deter someone 

from trying things out voluntarily. Clicking away pop-

up windows, reentering data that was mistakenly erased, 

suddenly muting the volume on one’s laptop when a 

website unexpectedly plays loud music—all can be 



discouraging. When you design almost any kind of 

software interface, make many avenues of exploration 

available for users to experiment with, without costing 

the user anything. 

This pattern encompasses several of the most effective 

usability guidelines, based on research, as identified by 

usability expert Jakob Nielsen. These guidelines are2: 

 Visibility of system status 

 Match between the system and the real world 

 User control and freedom 

Here are some examples of what “Safe Exploration” is 

like: 

A photographer tries out a few image filters in an image-

processing application. He then decides he doesn’t like 

the results, and clicks Undo a few times to get back to 

where he was. Then he tries another filter, and another, 

each time being able to back out of what he did. (The 

pattern named “Multi-Level Undo”, in Chapter 6, 

describes how this works.) 

A new visitor to a company’s home page clicks various 

links just to see what’s there, trusting that the Back 

button will always get her back to the main page. No 

extra windows or pop ups open, and the Back button 

keeps working predictably. You can imagine that if a 

web app does something different in response to the 

Back button—or if an application offers a button that 

seems like a Back button, but doesn’t behave quite like 

https://learning.oreilly.com/library/view/designing-interfaces-3rd/9781492051954/ch01.html#idm45872913133656


it—confusion might ensue. The user can get disoriented 

while navigating, and may abandon the app altogether. 

Instant Gratification 

“I want to accomplish something now, not later.” 

People like to see immediate results from the actions 

they take—it’s human nature. If someone starts using an 

application and gets a “success experience” within the 

first few seconds, that’s gratifying! He’ll be more likely 

to keep using it, even if it gets harder later. He will feel 

more confident in the application, and more confident in 

himself, than if it had taken a while to figure things out. 

The need to support instant gratification has many 

design ramifications. For instance, if you can predict the 

first thing a new user is likely to do, you should design 

the UI to make that first thing stunningly easy. If the 

user’s goal is to create something, for instance, then 

create a new canvas, put a call to action on it, and place 

a palette next to it. If the user’s goal is to accomplish 

some task, point the way toward a typical starting point. 

This also means you shouldn’t hide introductory 

functionality behind anything that needs to be read or 

waited for, such as registrations, long sets of 

instructions, slow-to-load screens, advertisements, and 

so on. These are discouraging because they block users 

from finishing that first task quickly. 

To summarize, anticipate their need, provide an obvious 

entry point, provide value to the customer first before 



asking for something valuable (email address, a sale) in 

return. 

Satisficing 

“This is good enough. I don’t want to spend more time 

learning to do it better.” 

When people look at a new interface, they don’t read 

every piece of it methodically and then decide, “Hmmm, 

I think this button has the best chance of getting me 

what I want.” Instead, a user will rapidly scan the 

interface, pick whatever he sees first that might get him 

what he wants, and try it—even if it might be wrong. 

The term satisficing is a combination of satisfying and 

sufficing. It was coined in 1957 by the social scientist 

Herbert Simon, who used it to describe the behavior of 

people in all kinds of economic and social situations. 

People are willing to accept “good enough” instead of 

“best” if learning all the alternatives might cost time or 

effort. 

Satisficing is actually a very rational behavior, once you 

appreciate the mental work necessary to “parse” a 

complicated interface. As Steve Krug points out in his 

book Don’t Make Me Think (Krug, Steve. Don’t Make 

Me Think, Revisited: A Common Sense Approach to Web 

Usability. New Riders, 2014.), people don’t like to think 

any more than they have to—it’s work! But if the 

interface presents an obvious option or two that the user 

sees immediately, he’ll try it. Chances are good that it 



will be the right choice, and if not, there’s little cost in 

backing out and trying something else (assuming that 

the interface supports “Safe Exploration”). 

This means several things for designers: 

 Use “calls to action” in the interface. Give 

directions on what to do first: type here, drag an 

image here, tap here to begin, and so forth. 

 Make labels short, plainly worded, and quick to 

read. (This includes menu items, buttons, links, and 

anything else identified by text.) They’ll be scanned 

and guessed about; write them so that a user’s first 

guess about meaning is correct. If he guesses wrong 

several times, he’ll be frustrated, and you’ll both be 

off to a bad start. 

 Use the layout of the interface to communicate 

meaning. Chapter 4 explains how to do so in detail. 

Users “parse” color and form on sight, and they 

follow these cues more efficiently than labels that 

must be read. 

 Make it easy to move around the interface, 

especially for going back to where a wrong choice 

might have been made hastily. Provide “escape 

hatches” (see Chapter 3). On typical websites, using 

the Back button is easy, so designing easy 

forward/backward navigation is especially 

important for web apps, installed applications, and 

mobile devices. 



Keep in mind that a complicated interface imposes a 

large cognitive cost on new users. Visual complexity 

will often tempt nonexperts to satisfice: they look for the 

first thing that may work. 

Satisficing is why many users end up with odd habits 

after they’ve been using a system for a while. Long ago, 

a user may have learned Path A to do something, and 

even though a later version of the system offers Path B 

as a better alternative (or maybe it was there all along), 

he sees no benefit in learning it—that takes effort, after 

all—and keeps using the less-efficient Path A. It’s not 

necessarily an irrational choice. Breaking old habits and 

learning something new takes energy, and a small 

improvement may not be worth the cost to the user. 

Changes in Midstream 

“I changed my mind about what I was doing.” 

Occasionally, people change what they’re doing while in 

the middle of doing it. Someone may walk into a room 

with the intent of finding a key she had left there, but 

while she’s there, she finds a newspaper and starts 

reading it. Or she may visit Amazon.com to read product 

reviews, but ends up buying a book instead. Maybe 

she’s just sidetracked; maybe the change is deliberate. 

Either way, the user’s goal changes while she’s using 

the interface you designed. 

This means designers should provide opportunities for 

people to do that. Make choices available. Don’t lock 



users into a choice-poor environment with no 

connections to other pages or functionality unless there’s 

a good reason to do so. Those reasons do exist. See the 

patterns called “Wizard” (Chapter 2) and “Modal Panel” 

(Chapter 3) for examples. 

You can also make it easy for someone to start a 

process, stop in the middle, and come back to it later to 

pick up where he left off—a property often called 

reentrance. For instance, a lawyer may start entering 

information into a form on an iPad. Then, when a client 

comes into the room, the lawyer turns off the device, 

with the intent of coming back to finish the form later. 

The entered information shouldn’t be lost. 

To support reentrance, you can make dialogs and web 

forms remember values typed previously, and they don’t 

usually need to be modal; if they’re not modal, they can 

be dragged aside on the screen for later use. Builder-

style applications—text editors, code development 

environments, and paint programs—can let a user work 

on multiple projects at one time, thus letting her put any 

number of projects aside while she works on another 

one. See the “Many Workspaces” pattern in Chapter 2 

for more information. 

Deferred Choices 

“I don’t want to answer that now; just let me finish!” 

This follows from people’s desire for instant 

gratification. If you ask a task-focused user unnecessary 



questions in the process, he may prefer to skip the 

questions and come back to them later. 

For example, some web-based bulletin boards have long 

and complicated procedures for registering users. Screen 

names, email addresses, privacy preferences, avatars, 

self-descriptions…the list goes on and on. “But I just 

wanted to post one little thing,” says the user plaintively. 

Why not allow him to skip most of the questions, answer 

the bare minimum, and come back later (if ever) to fill 

in the rest? Otherwise, he might be there for half an hour 

answering essay questions and finding the perfect avatar 

image. 

Another example is creating a new project in a video 

editor. There are some things you do have to decide up 

front, such as the name of the project, but other 

choices—where on the server are you going to put this 

when you’re done? I don’t know yet!—can easily be 

deferred. 

Sometimes it’s just a matter of not wanting to answer 

the questions. At other times, the user may not have 

enough information to answer yet. What if a music-

writing software package asked you up front for the title, 

key, and tempo of a new song, before you’ve even 

started writing it? (See Apple’s GarageBand for this bit 

of “good” design.) 

The implications for interface design are simple to 

understand, though not always easy to implement: 



 Don’t accost the user with too many upfront choices 

in the first place. 

 On the forms that he does have to use, clearly mark 

the required fields, and don’t make too many of 

them required. Let him move on without answering 

the optional ones. 

 Sometimes you can separate the few important 

questions or options from others that are less 

important. Present the short list; hide the long list. 

 Use “Good Defaults” (Chapter 8) wherever 

possible, to give users some reasonable default 

answers to start with. But keep in mind that prefilled 

answers still require the user to look at them, just in 

case they need to be changed. They have a small 

cost, too. 

 Make it possible for users to return to the deferred 

fields later, and make them accessible in obvious 

places. Some dialog boxes show the user a short 

statement, such as “You can always change this 

later by clicking the Edit Project button.” Some 

websites store a user’s half-finished form entries or 

other persistent data, such as shopping carts with 

unpurchased items. 

If registration is required at a website that provides 

useful services, users may be far more likely to register 

if they’re first allowed to experience the website—

drawn in and engaged—and then asked later about who 

they are. Some sites let you complete an entire purchase 



without registering, then ask you at the end if you want 

to create a no-hassle login with the personal information 

provided in the purchase step. 

Incremental Construction 

“Let me change this. That doesn’t look right; let me 

change it again. That’s better.” 

When people create things, they don’t usually do it all in 

a precise order. Even an expert doesn’t start at the 

beginning, work through the creation process 

methodically, and come out with something perfect and 

finished at the end. 

Quite the opposite. Instead, she starts with some small 

piece of it, works on it, steps back and looks at it, tests it 

(if it’s code or some other “runnable” thing), fixes 

what’s wrong, and starts to build other parts of it. Or 

maybe she starts over, if she really doesn’t like it. The 

creative process goes in fits and starts. It moves 

backward as much as forward sometimes, and it’s often 

incremental, done in a series of small changes instead of 

a few big ones. Sometimes it’s top-down; sometimes it’s 

bottom-up. 

Builder-style interfaces need to support that style of 

work. Make it easy for users to build small pieces. Keep 

the interface responsive to quick changes and saves. 

Feedback is critical: constantly show the user what the 

whole thing looks and behaves like, while the user 

works. If the user builds code, simulations, or other 



executable things, make the “compile” part of the cycle 

as short as possible, so the operational feedback feels 

immediate—leave little or no delay between the user 

making changes and seeing the results. 

When creative activities are well supported by good 

tools, they can induce a state of flow in the user. This is 

a state of full absorption in the activity, during which 

time distorts, other distractions fall away, and the person 

can remain engaged for hours—the enjoyment of the 

activity is its own reward. Artists, athletes, and 

programmers all know this state. 

But bad tools will keep users distracted, guaranteed. If 

the user has to wait even half a minute to see the results 

of the incremental change she just made, her 

concentration is broken; flow is disrupted. 

If you want to read more about flow, there are multiple 

books by researcher Mihaly Csikszentmihalyi. One title 

is Flow (Csikszentmihalyi, Mihaly. Flow: The 

Psychology of Optimal Experience. Harper Row, 2009.) 

Habituation 

“That gesture works everywhere else; why doesn’t it 

work here, too?” 

When one uses an interface repeatedly, some frequent 

physical actions become reflexive: pressing Ctrl-S to 

save a document, clicking the Back button to leave a 

web page, pressing Return to close a modal dialog box, 

using gestures to show and hide windows—even 



pressing a car’s brake pedal. The user no longer needs to 

think consciously about these actions. They’ve become 

habitual. 

This tendency helps people become expert users of a 

tool (and helps create a sense of flow, too). Habituation 

also measurably improves efficiency, as you can 

imagine. But it can also lay traps for the user. If a 

gesture becomes a habit, and the user tries to use it in a 

situation when it doesn’t work—or, worse, does 

something destructive—the user is caught short. He 

suddenly has to think about the tool again (What did I 

just do? How do I do what I intended?), and he might 

have to undo any damage done by the gesture. 

Millions of people have learned the following keyboard 

shortcuts based on using Microsoft Word and other 

word processors. They are true universals now. 

Consistency across applications can be an advantage to 

use in your software design. 

 Ctrl-X: Cut the selection 

 Ctrl-V: Paste the selection 

 Ctrl-S: Save the document 

Just as important, though, is consistency within an 

application. Some applications are evil because they 

establish an expectation that some gesture will do 

Action X, except in one special mode where it suddenly 

does Action Y. Don’t do that. It’s a sure bet that users 

will make mistakes, and the more experienced they 



are—that is, the more habituated they are—the more 

likely they are to make that mistake. 

Consider this carefully if you’re developing gesture-

based interfaces for mobile devices. Once someone 

learns how to use his device and gets used to it, he will 

depend on the standard gestures working consistently on 

all applications. Check that gestures in your design all 

do the expected things. 

This is also why confirmation dialog boxes often don’t 

work to protect a user against accidental changes. When 

modal dialog boxes pop up, the user can easily get rid of 

them just by clicking OK or pressing Return (if the OK 

button is the default button). If the dialogs pop up all the 

time when the user makes intended changes, such as 

deleting files, clicking OK becomes a habituated 

response. Then, when it actually matters, the dialog box 

doesn’t have any effect, because it slips right under the 

user’s consciousness. 

(I’ve seen at least one application that sets up the 

confirmation dialog box’s buttons randomly from one 

invocation to another. One actually has to read the 

buttons to figure out what to click! This isn’t necessarily 

the best way to do a confirmation dialog box—in fact, 

it’s better to not have them at all under most 

circumstances—but at least this design sidesteps 

habituation creatively.) 

 


