
Chapter 1. Introduction 

In this introductory chapter, we set the scene for the rest 

of the book by explaining a few of the core Kubernetes 

concepts used for designing and implementing 

container-based cloud-native applications. 

Understanding these new abstractions, and the related 

principles and patterns from this book, are key to 

building distributed applications made automatable by 

cloud-native platforms. 

This chapter is not a prerequisite for understanding the 

patterns described later. Readers familiar with 

Kubernetes concepts can skip it and jump straight into 

the pattern category of interest. 

The Path to Cloud Native 

The most popular application architecture on the cloud-

native platforms such as Kubernetes is the microservices 

style. This software development technique tackles 

software complexity through modularization of business 

capabilities and trading development complexity for 

operational complexity. 

As part of the microservices movement, there is a 

significant amount of theory and supplemental 

techniques for creating microservices from scratch or for 

splitting monoliths into microservices. Most of these 

practices are based on the Domain-Driven Design book 

http://dddcommunity.org/book/evans_2003/


by Eric Evans (Addison-Wesley) and the concepts of 

bounded contexts and aggregates. Bounded contexts deal 

with large models by dividing them into different 

components, and aggregates help further to group 

bounded contexts into modules with defined transaction 

boundaries. However, in addition to these business 

domain considerations, for every distributed system—

whether it is based on microservices or not—there are 

also numerous technical concerns around its 

organization, structure, and runtime behavior. 

Containers and container orchestrators such as 

Kubernetes provide many new primitives and 

abstractions to address the concerns of distributed 

applications, and here we discuss the various options to 

consider when putting a distributed system into 

Kubernetes. 

Throughout this book, we look at container and platform 

interactions by treating the containers as black boxes. 

However, we created this section to emphasize the 

importance of what goes into containers. Containers and 

cloud-native platforms bring tremendous benefits to 

your distributed applications, but if all you put into 

containers is rubbish, you will get distributed rubbish at 

scale. Figure 1-1 shows the mixture of the skills required 

for creating good cloud-native applications. 

 

https://learning.oreilly.com/library/view/kubernetes-patterns/9781492050278/ch01.html#img-path-cloud-native


Figure 1-1. The path to cloud native 

At a high level, there are multiple abstraction levels in a 

cloud-native application that require different design 

considerations: 

 At the lowest code level, every variable you define, 

every method you create, and every class you 

decide to instantiate plays a role in the long-term 

maintenance of the application. No matter what 

container technology and orchestration platform you 

use, the development team and the artifacts they 

create will have the most impact. It is important to 

grow developers who strive to write clean code, 

have the right amount of automated tests, constantly 

refactor to improve code quality, and are software 

craftsmen at heart. 

 Domain-Driven Design is about approaching 

software design from a business perspective with 

the intention of keeping the architecture as close to 

the real world as possible. This approach works best 

for object-oriented programming languages, but 

there are also other good ways to model and design 

software for real-world problems. A model with the 

right business and transaction boundaries, easy-to-

consume interfaces, and rich APIs is the foundation 

for successful containerization and automation later. 

 The microservices architectural style very quickly 

evolved to become the norm, and it provides 

valuable principles and practices for designing 

changing distributed applications. Applying these 

principles lets you create implementations that are 



optimized for scale, resiliency, and pace of change, 

which are common requirements for any modern 

software today. 

 Containers were very quickly adopted as the 

standard way of packaging and running distributed 

applications. Creating modular, reusable containers 

that are good cloud-native citizens is another 

fundamental prerequisite. With a growing number 

of containers in every organization comes the need 

to manage them using more effective methods and 

tools. Cloud native is a relatively new term used to 

describe principles, patterns, and tools to automate 

containerized microservices at scale. We use cloud 

native interchangeably with Kubernetes, which is 

the most popular open source cloud-native platform 

available today. 

In this book, we are not covering clean code, domain-

driven design, or microservices. We are focusing only 

on the patterns and practices addressing the concerns of 

the container orchestration. But for these patterns to be 

effective, your application needs to be designed well 

from the inside by applying clean code practices, 

domain-driven design, microservices patterns, and other 

relevant design techniques. 

Distributed Primitives 

To explain what we mean by new abstractions and 

primitives, here we compare them with the well-



known object-oriented programming (OOP), and Java 

specifically. In the OOP universe, we have concepts 

such as class, object, package, inheritance, 

encapsulation, and polymorphism. Then the Java 

runtime provides specific features and guarantees on 

how it manages the lifecycle of our objects and the 

application as a whole. 

The Java language and the Java Virtual Machine (JVM) 

provide local, in-process building blocks for creating 

applications. Kubernetes adds an entirely new dimension 

to this well-known mindset by offering a new set of 

distributed primitives and runtime for building 

distributed systems that spread across multiple nodes 

and processes. With Kubernetes at hand, we don’t rely 

only on the local primitives to implement the whole 

application behavior. 

We still need to use the object-oriented building blocks 

to create the components of the distributed application, 

but we can also use Kubernetes primitives for some of 

the application behaviors. Table 1-1 shows how various 

development concepts are realized differently with local 

and distributed primitives. 

Concept Local primitive Distributed primitive 

Behavior encapsulation Class Container image 

Behavior instance Object Container 

https://learning.oreilly.com/library/view/kubernetes-patterns/9781492050278/ch01.html#table-jvm_k8s


Concept Local primitive Distributed primitive 

Unit of reuse .jar Container image 

Composition Class A contains Class B Sidecar pattern 

Inheritance Class A extends Class B 
A container’s FROM parent 

image 

Deployment unit .jar/.war/.ear Pod 

Buildtime/Runtime isolation Module, Package, Class Namespace, Pod, container 

Initialization preconditions Constructor Init container 

Postinitialization trigger Init-method postStart 

Predestroy trigger Destroy-method preStop 

Cleanup procedure finalize(), shutdown hook Defer containera 

Asynchronous & parallel 

execution 
ThreadPoolExecutor, ForkJoinPool Job 

Periodic task Timer, ScheduledExecutorService CronJob 

Background task Daemon thread DaemonSet 

Configuration management System.getenv(), Properties ConfigMap, Secret 

a Defer (or de-init) containers are not yet implemented, but there is a proposal on the way to include this feature in future versions of Kubernetes. We discuss 

https://learning.oreilly.com/library/view/kubernetes-patterns/9781492050278/ch01.html#idm46299076941720
https://learning.oreilly.com/library/view/kubernetes-patterns/9781492050278/ch01.html#idm46299076941720-marker
http://bit.ly/2TegEM7


Concept Local primitive Distributed primitive 

lifecycle hooks in Chapter 5, Managed Lifecycle. 

Table 1-1. Local and distributed primitives 

The in-process primitives and the distributed primitives 

have commonalities, but they are not directly 

comparable and replaceable. They operate at different 

abstraction levels and have different preconditions and 

guarantees. Some primitives are supposed to be used 

together. For example, we still have to use classes to 

create objects and put them into container images. 

However, some other primitives such as CronJob in 

Kubernetes can replace the ExecutorService behavior in Java 

completely. 

Next, let’s see a few distributed abstractions and 

primitives from Kubernetes that are especially 

interesting for application developers. 

Containers 

Containers are the building blocks for Kubernetes-based 

cloud-native applications. If we make a comparison with 

OOP and Java, container images are like classes, and 

containers are like objects. The same way we can extend 

classes to reuse and alter behavior, we can have 

container images that extend other container images to 

reuse and alter behavior. The same way we can do 

object composition and use functionality, we can do 

https://learning.oreilly.com/library/view/kubernetes-patterns/9781492050278/ch05.html#ManagedLifecycle


container compositions by putting containers into a Pod 

and using collaborating containers. 

If we continue the comparison, Kubernetes would be 

like the JVM but spread over multiple hosts, and would 

be responsible for running and managing the containers. 

Init containers would be something like object 

constructors; DaemonSets would be similar to daemon 

threads that run in the background (like the Java 

Garbage Collector, for example). A Pod would be 

something similar to an Inversion of Control (IoC) 

context (Spring Framework, for example), where 

multiple running objects share a managed lifecycle and 

can access each other directly. 

The parallel doesn’t go much further, but the point is 

that containers play a fundamental role in Kubernetes, 

and creating modularized, reusable, single-purpose 

container images is fundamental to the long-term 

success of any project and even the containers’ 

ecosystem as a whole. Apart from the technical 

characteristics of a container image that provide 

packaging and isolation, what does a container represent 

and what is its purpose in the context of a distributed 

application? Here are a few suggestions on how to look 

at containers: 

 A container image is the unit of functionality that 

addresses a single concern. 

 A container image is owned by one team and has a 

release cycle. 



 A container image is self-contained and defines and 

carries its runtime dependencies. 

 A container image is immutable, and once it is built, 

it does not change; it is configured. 

 A container image has defined runtime 

dependencies and resource requirements. 

 A container image has well-defined APIs to expose 

its functionality. 

 A container runs typically as a single Unix process. 

 A container is disposable and safe to scale up or 

down at any moment. 

In addition to all these characteristics, a proper container 

image is modular. It is parameterized and created for 

reuse in the different environments it is going to run. But 

it is also parameterized for its various use cases. Having 

small, modular, and reusable container images leads to 

the creation of more specialized and stable container 

images in the long term, similar to a great reusable 

library in the programming language world. 

 


