
Chapter 1. Origins of Software
Architecture

We are most of us governed by epistemologies that we

know to be wrong.

Gregory Bateson

The purpose of this book is to help you design systems

well and to help you realize your designs in

practice. This book is quite practical and intended to

help you do your work better. We must begin

theoretically and historically. This chapter is meant to

introduce you to a new way of thinking about your role

as a software architect that will inform both the rest of

this text and the way in which you approach your

projects moving forward.

Software’s Conceptual Origins

We shape our buildings, and thereafter they shape us.

Winston Churchill

FADE IN:

INT. A CONFERENCE HALL IN GARMISCH GERMANY, OCTOBER

1968 — DAY

The scene: The NATO Software Engineering Conference.

Fifty international computer professors and craftspeople assembled to

determine the state of the industry in software. The use of the phrase

software engineering in the conference name was deliberately chosen to be

“provocative” because at the time the makers of software were considered so

far from performing a scientific effort that calling themselves “engineers”

would be bound to upset the established apple cart.

MCILROY

We undoubtedly get the short end of the stick in confrontations with

hardware people because they are the industrialists and we are the crofters.

(pause)

The creation of software is backwards as an industry.

KOLENCE

Agreed. Programming management will continue to deserve its current poor

reputation for cost and schedule effectiveness until such time as a more

complete understanding of the program design process is achieved.

Though these words were spoken, and recorded in

the conference minutes in 1968, they would scarce be

thought out of place if stated today.

At this conference, the idea took hold was that we must

make software in an industrial process.

That seemed natural enough, because one of their chief

concerns was that software was having trouble defining

itself as a field as it pulled away from hardware. At the

time, the most incendiary, most scary topic at the

conference was “the highly controversial question of

whether software should be priced separately from

hardware.” This topic comprised a full day of the four-

day conference.

This is a way of saying that software didn’t even know it

existed as its own field, separate from hardware, a mere

50 years ago. Very smart, accomplished professionals in

the field were not sure whether software was even a

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

“thing,” something that had any independent value. Let

that sink in for a moment.

Software was born from the mother of hardware. For

decades, the two were (literally) fused together and

could hardly be conceived of as separate matters. One

reason is that software at the time was “treated as though

it were of no financial value” because it was merely a

necessity for the hardware, the true object of desire.

Yet today you can buy a desktop computer for $100

that’s more powerful than any computer in the world

was in 1968. (At the time of the NATO Conference, a

16-bit computer—that’s two bytes—would cost you

around $60,000 in today’s dollars.)

And hardware is produced on a factory line, in a clear,

repeatable process, determined to make dozens,

thousands, millions of the same physical object.

Hardware is a commodity.

A commodity is something that is interchangeable with

something of the same type. You can type a business

email or make a word-processing document just as well

on a laptop from any of 50 manufacturers.

And the business people want to form everything around

the efficiencies of a commodity except one thing: their

“secret sauce.” Coca-Cola has nearly 1,000 plants

around the world performing repeated manufacturing,

putting Coke into bottles and cans and bags to be loaded

and shipped, thousands of times each day, every day, in

http://bit.ly/2mlnZOY

the same way. It’s a heavily scrutinized, sharply

measured business: an internal commodity. Coke is

bottled in factories in identical bottles in identical ways,

millions of times every day. Yet only a handful of

people know the secret formula for making the drink

itself. Coke is copied millions of times a day, every day,

and bottled in an identical process. But making the

recipe a commodity would put Coke out of business.

In our infancy, we in software have failed to recognize

the distinction between the commodities representing

repeated, manufacturing-style processes, and the more

mysterious, innovative, one-time work of making the

recipe.

Coke is the recipe. Its production line is the factory.

Software is the recipe. Its production line happens at

runtime in browsers, not in the cubicles of your

programmers.

Our conceptual origins are in hardware and factory lines,

and borrowed from building architecture. These

conceptual origins have confused us and dominated and

circumscribed our thinking in ways that are not optimal,

and not necessary. And this is a chief contributor to why

our project track record is so dismal.

The term “architect” as used in software was not

popularized until the early 1990s. Perhaps the first

suggestion that there would be anything for software

practitioners to learn from architects came in that NATO

Software Engineering conference in Germany in 1968,

from Peter Naur:

Software designers are in a similar position to architects

and civil engineers, particularly those concerned with the

design of large heterogeneous constructions, such as towns

and industrial plants. It therefore seems natural that we

should turn to these subjects for ideas about how to attack

the design problem. As one single example of such a source

of ideas, I would like to mention: Christopher Alexander:

Notes on the Synthesis of Form (Harvard Univ. Press,

1964) (emphasis mine).

This, and other statements from the elder statesmen of

our field at this conference in 1968, are the progenitors

of how we thought we should think about software

design. The problem with Naur’s statement is obvious:

it’s simply false. It’s also unsupported. To state that

we’re in a “similar position to architects” has no more

bearing logically, or truthfully, to stating that we’re in a

similar position to, say, philosophy professors, or

writers, or aviators, or bureaucrats, or rugby players, or

bunnies, or ponies. An argument by analogy is always

false. Here, no argument is even given. Yet here this

idea took hold, the participants returning to their native

lands around the world, writing and teaching and

mentoring for decades, shaping our entire field. This

now haunts and silently shapes—perhaps even

circumscribes and mentally constrains, however

artificially—how we conduct our work, how we think

about it, what we “know” we do.

ORIGINS

To be clear, the participants at the NATO conference in

1968 were very smart, accomplished people, searching

for a way to talk about a field that barely yet existed and

was in the process of forming and announcing itself.

This is a monumental task. I hold them in the highest

esteem. They created programming languages such as

ALGOL60, won Turing Awards, and created notations.

They made our future possible, and for this I am

grateful, and in awe. The work here is only to

understand our origins, in hopes of improving our

future. We are all standing on the shoulders of giants.

Some years later, in 1994, the Gang of Four created

their Design Patterns book. They explicitly cite as

inspiration the work of Christopher Alexander, a

professor of architecture at University of California at

Berkeley and author of A Pattern Language, which is

concerned with proven aspects of architecting towns,

public spaces, buildings, and homes. The Design

Patterns book was pivotal work, one which advanced

the area of software design and bolstered support for the

nascent idea that software designers are architects, or

are “like” them, and that we should draw our own

concerns and methods and ideas from that prior field.

This same NATO conference was attended by now-

famous Dutch systems scientist Edsger Dijkstra, one of

the foremost thinkers in modern computing technology.

Dijkstra participated in these conversations, and then

some years later, during his chairmanship at the

http://bit.ly/2mp16ua
http://bit.ly/2lW5UXM

Department of Computer Science at the University of

Texas, Austin, he voiced his vehement opposition to the

mechanization of software, refuting the use of the

term “software engineering,” likening the term

“computer science” to calling surgery “knife science.”

He concluded, rather, that “the core challenge for

computing science is hence a conceptual one;

namely, what (abstract) mechanisms we can

conceive without getting lost in the complexities of our

own making” (emphasis mine).

This same conference saw the first suggestion that

software needed a “computer engineer,” though this was

an embarrassing notion to many involved, given that

engineers did “real” work, had a discipline and known

function, and software practitioners were by comparison

ragtag. “Software belongs to the world of ideas, like

music and mathematics, and should be treated

accordingly.” Interesting. Let’s hang on to that for a

moment.

* * *

Cut to:

INT. PRESIDENT’S OFFICE, WARSAW, POLAND — DAY

The scene: The president of the Republic of Poland updates the tax laws.

In Poland, software developers are classified as creative

artists, and as such receive a government tax break of up

to 50% of their expenses (see Deloitte report). These are

the professions categorized as creative artists in Poland:

http://bit.ly/2ko2zAa

 Architectural design of buildings

 Interior and landscape

 Urban planning

 Computer software

 Fiction and poetry

 Painting and sculpture

 Music, conducting, singing, playing musical

instruments, and choreography

 Violin making

 Folk art and journalism

 Acting, directing, costume design, stage design

 Dancing and circus acrobatics

Each of these are explicitly listed in the written law. In

the eyes of the Polish government, software

development is in the same professional category as

poetry, conducting, choreography, and folk art.

And Poland is one of the leading producers of software

in the world.

Cut to: HERE—PRESENT DAY.

Perhaps something has occurred in the history of the

concept of structure that could be called an event, a

rupture that precipitates ruptures.

This rupture would not have been represented in a single

explosive moment, a comfortingly locatable and suitably

dramatic moment. It would have emerged among the

ocean tides of thought and expression, across universes,

ebbing and flowing, with fury and with lazy ease, over

time, until the slow trickling of traces and cross-

pollination reveal, only later, something had

transformed. Eventually, these traces harden into

trenches, fixing thought, and thereby fixing expression

and realization.

What this categorization illuminates is the tide of

language, the patois of a practice that shapes our ideas,

conversation, understanding, methods, means, ethics,

patterns, and designs. We name things, and thereafter,

they shape us. They circumscribe our thought patterns,

and that shapes our work.

The concept of structure within a field, such as we might

call “architecture” within the field of technology, is

thereby first an object of language.

Our language is constituted of an interplay of signs and

of metaphors. A metaphor is a poetic device whereby we

call something something that it isn’t in order to reveal a

deeper or hidden truth about that object by underscoring

or highlighting or offsetting certain attributes. “All the

world’s a stage, and all the men and women merely

players” is a well-known line from Shakespeare’s As

You Like It.

We use metaphors so freely and frequently that

sometimes we even forget they are metaphors. When

that happens, the metaphor “dies” (a metaphor itself!)

and becomes the name itself, drained of its original

juxtaposition that gave the phrase depth of meaning. We

call these “dead metaphors.” Common dead

metaphors include the “leg” of a chair, or when we

“fall” in love, or when we say time is “running out,” as

would sand from an hourglass. When we say these

things in daily conversation, we do not fancy ourselves

poets making metaphors. We don’t see the metaphor, or

intend one. It’s now just The Thing.

In technology, “architecture” is a nonnecessary

metaphor. That word, and all it’s encumbered by, directs

our attention to certain facets of our work.

Architecture is a dead metaphor: we mistake the

metaphor for The Case, the fact.

There has been considerable hot debate, for

decades, over the use of the term architect as applied to

the field of technology. There are hardware

architectures, application architectures, information

architectures, and so forth. So can we claim that

architecture is a dead metaphor if we don’t quite

understand what it is we’re even referring to? We use

the term without quite understanding what we mean by

it, what the architect’s process is, and what documents

they produce toward what value. “Architect” means,

from its trace in Greek language, “master builder.”

What difference does it make?

Copies and Creativity

No person who is not a great sculptor or painter can be an

architect. If he is not a sculptor or painter, he can only be a

builder.

John Ruskin, “True and Beautiful”

Dividing roles into distinct responsibilities within a

process is one useful and very popular way to approach

production in business. Such division makes the value

of each moment in the process, each contribution to the

whole, more direct and clear. This fashioning of the

work, the “division of labor,” has the additional value of

making each step observable and measurable.

This, in turn, affords us opportunities to state these in

terms of SMART goals, and thereby reward and punish

and promote and fire those who cannot meet the

objective measurements. Credit here goes at least in

some part to Henry Ford, who designed his car

manufacturing facilities more than 100 years ago. His

specific aim was to make his production of cars cheap

enough that he could sell them to his own poorly

compensated workers who made them, ensuring that

what he could not keep in pure profit after the

consumption of raw materials—his paid labor force—

would return to him in the form of revenue.

https://en.wikipedia.org/wiki/SMART_criteria

This way of approaching production, however, is most

(or only) useful when what is being produced is well

defined and you will make many (dozens, thousands, or

millions) of copies of identical items.

In Lean Six Sigma, processes are refined until the rate of

failure is reduced to six standard deviations from the

mean, such that your production process allows 3.4

quality failures per million opportunities. We seek to

define our field, to find the proper names, in order to

codify, and make repeatable processes, and improve our

happiness as workers (the coveted “role clarity”), and

improve the quality of our products.

But one must ask, how are our names serving us?

Processes exist to create copies. Do we ever create

copies of the software itself? Of course, we create copies

of software for distribution purposes: we used to burn

copies of web browsers onto compact discs and send

them in the mail, and today we distribute copies of

software over the internet. That is a process facilitating

distribution, however, and has little relation to the act of

creating that single software application in the first

place. In fact, we never do that.

Processes exist, too, in order to repeat the act of doing

the same kind of thing, if not making the same exact

thing. A software development methodology catalogs

the work to be done, and software development

departments have divisions and (typically vague)

notions of the processes we undergo in the act of

creating any software product or system. So, to produce

software of some kind, we define roles that participate in

some aspect of the process, which might or might not be

formally represented, communicated, and executed

accordingly.

This problem of determining our proper process, our

best approach to our work, within the context of large

organizations that expect measurable results according

to a quarterly schedule, is exacerbated because

competition and innovation are foregrounded in our field

of technology. We must innovate, make something new

and compelling, in order to compete and win in the

market. As such, we squarely and specifically aim not to

produce something again that has already been produced

before. Yet our embedded language urges us toward

processes and attendant roles that might not be optimally

serving us.

