
Chapter 1. Introduction 

Whether you’re an expert in software engineering, 

computer graphics, data science, or just a curious 

computerphile, this book is designed to show how the 

power of quantum computing might be relevant to you, 

by actually allowing you to start using it. 

To facilitate this, the following chapters do not contain 

thorough explanations of quantum physics (the laws 

underlying quantum computing) or even quantum 

information theory (how those laws determine our 

abilities to process information). Instead, they present 

working examples providing insight into the capabilities 

of this exciting new technology. Most importantly, the 

code we present for these examples can be tweaked and 

adapted. This allows you to learn from them in the most 

effective way possible: by getting hands-on. Along the 

way, core concepts are explained as they are used, and 

only insofar as they build an intuition for writing 

quantum programs. 

Our humble hope is that interested readers might be able 

to wield these insights to apply and augment 

applications of quantum computing in fields that 

physicists may not even have heard of. Admittedly, 

hoping to help spark a quantum revolution 

isn’t that humble, but it’s definitely exciting to be a 

pioneer. 



Required Background 

The physics underlying quantum computing is full of 

dense mathematics. But then so is the physics behind the 

transistor, and yet learning C++ need not involve a 

single physics equation. In this book we take a 

similarly programmer-centric approach, circumventing 

any significant mathematical background. That said, 

here is a short list of knowledge that may be helpful in 

digesting the concepts we introduce: 

 Familiarity with programming control structures 

(if, while, etc.). JavaScript is used in this book to 

provide lightweight access to samples that can be 

run online. If you’re new to JavaScript but have 

some prior programming experience, the level of 

background you need could likely be picked up in 

less than an hour. For a more thorough introduction 

to JavaScript, see Learning JavaScript by Todd 

Brown (O’Reilly). 

 Some relevant programmer-level mathematics, 

necessitating: 

 An understanding of using mathematical 

functions 

 Familiarity with trigonometric functions 

 Comfort manipulating binary numbers and 

converting between binary and decimal 

representations 

http://shop.oreilly.com/product/0636920035534.do


 A comprehension of the basic meaning of 

complex numbers 

 A very elementary understanding of how to assess 

the computational complexity of an algorithm 

(i.e., big-o notation). 

One part of the book that reaches beyond these 

requirements is Chapter 13, where we survey a number 

of applications of quantum computing to machine 

learning. Due to space constraints our survey gives only 

very cursory introductions to each machine-learning 

application before showing how a quantum computer 

can provide an advantage. Although we intend the 

content to be understandable to a general reader, those 

wishing to really experiment with these applications will 

benefit from a bit more of a machine-learning 

background. 

This book is about programming (not building, nor 

researching) quantum computers, which is why we can 

do without advanced mathematics and quantum theory. 

However, for those interested in exploring the more 

academic literature on the topic, Chapter 14 provides 

some good initial references and links the concepts we 

introduce to mathematical notations commonly used by 

the quantum computing research community. 

What Is a QPU? 

Despite its ubiquity, the term “quantum computer” can 

be a bit misleading. It conjures images of an entirely 

https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch13.html#mach_learning_chapter_id
https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch14.html#staying_on_top_unique_chapter_id


new and alien kind of machine—one that supplants all 

existing computing software with a futuristic alternative. 

At the time of writing this is a common, albeit huge, 

misconception. The promise of quantum computers 

stems not from them being a conventional computer 

killer, but rather from their ability to dramatically extend 

the kinds of problems that are tractable within 

computing. There are important computational problems 

that are easily calculable on a quantum computer, but 

that would quite literally be impossible on any 

conceivable standard computing device that we could 

ever hope to build.1 

But crucially, these kinds of speedups have only been 

seen for certain problems (many of which we later 

elucidate on), and although it is anticipated that more 

will be discovered, it’s highly unlikely that it would ever 

make sense to run all computations on a quantum 

computer. For most of the tasks taking up your laptop’s 

clock cycles, a quantum computer performs no better. 

In other words—from the programmer’s point of view—

a quantum computer is really a co-processor. In the past, 

computers have used a wide variety of co-processors, 

each suited to their own specialties, such as floating-

point arithmetic, signal processing, and real-time 

graphics. With this in mind, we will use the 

term QPU (Quantum Processing Unit) to refer to the 

device on which our code samples run. We feel this 

reinforces the important context within which quantum 

computing should be placed. 

https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch01.html#idm45755399416824


As with other co-processors such as the GPU (Graphics 

Processing Unit), programming for a QPU involves the 

programmer writing code that will primarily run on the 

CPU (Central Processing Unit) of a normal computer. 

The CPU issues the QPU co-processor commands only 

to initiate tasks suited to its capabilities. 

A Hands-on Approach 

Hands-on samples form the backbone of this book. But 

at the time of writing, a full-blown, general-purpose 

QPU does not exist—so how can you hope to ever run 

our code? Fortunately (and excitingly), even at the time 

of writing a few prototype QPUs are currently available, 

and can be accessed on the cloud. Furthermore, for 

smaller problems it’s possible to simulate the behavior 

of a QPU on conventional computing hardware. 

Although simulating larger QPU programs becomes 

impossible, for smaller code snippets it’s a convenient 

way to learn how to control an actual QPU. The code 

samples in this book are compatible with both of these 

scenarios, and will remain both usable and pedagogical 

even as more sophisticated QPUs become available. 

There are many QPU simulators, libraries, and systems 

available. You can find a list of links to several well-

supported systems at http://oreilly-qc.github.io. On that 

page, we provide the code samples from this book, 

whenever possible, in a variety of languages. However, 

to prevent code samples from overwhelming the text, we 

http://oreilly-qc.github.io/


provide samples only in JavaScript for QCEngine. 

QCEngine is a free online quantum computation 

simulator, allowing users to run samples in a browser, 

with no software installation at all. This simulator was 

developed by the authors, initially for their own use and 

now as a companion for this book. QCEngine is 

especially useful for us, both because it can be run 

without the need to download any software and because 

it incorporates the circle notation that we use as a 

visualization tool throughout the book. 

A QCEngine Primer 

Since we’ll rely heavily on QCEngine, it’s worth 

spending a little time to see how to navigate the 

simulator, which you can find at http://oreilly-

qc.github.io. 

RUNNING CODE 

The QCEngine web interface, shown in Figure 1-1, 

allows you to easily produce the various visualizations 

that we’ll rely on. You can create these visualizations by 

simply entering code into the QCEngine code editor. 

 

Figure 1-1. The QCEngine UI 

To run one of the code samples from the book, select it 

from the drop-down list at the top of the editor and click 

the Run Program button. Some new interactive UI 

http://oreilly-qc.github.io/
http://oreilly-qc.github.io/
https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch01.html#ch_intro_qcengine1


elements will appear for visualizing the results of 

running your code (see Figure 1-2). 

Quantum circuit visualizer 

This element presents a visual representation of the 

circuit representing your code. We introduce the 

symbols used in these circuits in Chapters 2 and 3. 

This view can also be used to interactively step 

through the program (see Figure 1-2). 

Circle-notation visualizer 

This displays the so-called circle-

notation visualization of the QPU (or simulator) 

register. We explain how to read and use this 

notation in Chapter 2. 

QCEngine output console 

This is where any text appears that may have been 

printed from within your code (i.e., for debugging) 

using the qc.print() command. Anything printed with 

the standard JavaScript console.log() function will still 

go to your web browser’s JavaScript console. 

 

Figure 1-2. QCEngine UI elements for visualizing QPU results 

DEBUGGING CODE 

Debugging QPU programs can be tough. Quite often the 

easiest way to understand what a program is doing is to 

slowly step through it, inspecting the visualizations at 

each step. Hovering your mouse over the circuit 

visualizer, you should see a vertical orange line appear 

https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch01.html#ch_intro_qcengine2
https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch02.html#qubit_unique_chapter_id
https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch03.html#multi_qubits_unique_chapter_id
https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch01.html#ch_intro_qcengine2
https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch02.html#qubit_unique_chapter_id


at a fixed position and a gray vertical line wherever in 

the circuit your cursor happens to be. The orange line 

shows which position in the circuit (and therefore the 

program) the circle-notation visualizer currently 

represents. By default this is the end of the program, but 

by clicking other parts of the circuit, you can have the 

circle-notation visualizer show the configuration of the 

QPU at that point in the program. For 

example, Figure 1-3 shows how the circle-notation 

visualizer changes as we switch between two different 

steps in the default QCEngine program. 

 

Figure 1-3. Stepping through a QCEngine program using the circuit and circle-notation visualizers 

Having access to a QPU simulator, you’re probably keen 

to start tinkering. Don’t let us stop you! 

In Chapter 2 we’ll walk through code for increasingly 

complex QPU programs. 

Native QPU Instructions 

QCEngine is one of several tools allowing us to run and 

inspect QPU code, but what does QPU code actually 

look like? Conventional high-level languages are 

commonly used to control lower-level QPU instructions 

(as we’ve already seen with the JavaScript-based 

QCEngine). In this book we’ll regularly cross between 

these levels. Describing the programming of a QPU with 

distinctly quantum machine-level operations helps us get 

https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch01.html#ch_intro_qcengine3
https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch02.html#qubit_unique_chapter_id


to grips with the fundamental novel logic of a QPU, 

while seeing how to manipulate these operations from 

higher-level conventional languages like JavaScript, 

Python, or C++ gives us a more pragmatic paradigm for 

actually writing code. The definition of new, 

bespoke, quantum programming languages is an active 

area of development. We won’t highlight these in this 

book, but references for the interested reader are offered 

in Chapter 14. 

To whet your appetite, we list some of the fundamental 

QPU instructions in Table 1-1, each of which will be 

explained in more detail within the chapters ahead. 

 

https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch14.html#staying_on_top_unique_chapter_id
https://learning.oreilly.com/library/view/programming-quantum-computers/9781492039679/ch01.html#table_instruction_ref

