
Chapter 1. Serverless and OpenWhisk 
Architecture 

Welcome to the world of Apache OpenWhisk, an open 

source serverless platform designed to make it simple to 

develop applications in the cloud. The project was 

developed in the open by the Apache Software 

Foundation, so the correct name is “Apache 

OpenWhisk,” but for simplicity we’ll use “OpenWhisk” 

throughout. 

Note that “serverless” does not mean “without a 

server”—it means “without managing the server.” 

Indeed, we will learn how to build complex applications 

without being concerned with installing and configuring 

the servers to run the code; we only have to deal with 

the servers when we first deploy the platform. 

A serverless environment is most suitable 

for applications needing processing “in the cloud” 

because it allows you to split your application into 

multiple simpler services. This approach is often 

referred to as a “microservices” architecture. 

To begin with, we will take a look at the architecture of 

OpenWhisk to understand its strengths and weaknesses. 

After that we’ll discuss the architecture itself, focusing 

on the serverless model to show you what it can and 

cannot do. 

We’ll wrap up this chapter by comparing OpenWhisk 

with another widely used similar architecture, Java EE. 



The problems previously solved by Java EE application 

servers can now be solved by serverless environments, 

only at a greater scale (even hundreds of servers) and 

with more flexibility (not just with Java, but with many 

other programming languages). 

TIP 

Since the project is active, new features are added 

almost daily. Be sure to check the book’s website for 

important updates and corrections. 

OpenWhisk Architecture 

Apache OpenWhisk, as shown in Figure 1-1, is a 

serverless open source cloud platform. It works by 

executing functions (called actions) in response to 

events. Events can originate from multiple sources, 

including timers, databases, message queues, or websites 

like Slack or GitHub. 

OpenWhisk accepts source code as input that provisions 

executing a single command with a command-line 

interface (CLI), and then delivers services through the 

web to multiple consumers, such as other websites, 

mobile applications, or services based on REST APIs. 

 

Figure 1-1. How Apache OpenWhisk works 

Functions and Events 

http://bit.ly/2J0V5ws
https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html#openwhisk-from-the-outside


OpenWhisk completes its tasks using functions. A 

function is typically a piece of code that receives some 

input and provides an output in response. It is important 

to note that a function is generally expected to 

be stateless. 

Backend web applications are stateful. Just think of a 

shopping cart application for e-commerce: while you 

navigate the website, you add your items to the basket to 

buy them at the end. You keep a state, which is the 

contents of the cart. 

But being stateful is expensive; it limits scalability 

because you need a place to store your data. Most 

importantly, you will need something to synchronize the 

state between invocations. When your load increases, 

this “state-keeping” infrastructure will limit your ability 

to grow. If you are stateless, you can usually add more 

servers because you do not have the housekeeping of 

keeping the state in sync among the servers, which is 

complex, expensive, and has limits. 

In OpenWhisk, and in serverless environments in 

general, the functions must be stateless. In a serverless 

environment you can keep state, but not at the level of a 

single function. You have to use some special storage 

that is designed for high scalability. As we will see later, 

you can use a NoSQL database for this. 

The OpenWhisk environment manages the 

infrastructure, waiting for something important to occur. 



This something important is called an event. Only when 

an event happens a function is invoked. 

Event processing is actually the most important 

operation the serverless environment manages. We will 

discuss in detail next how this happens. Developers want 

to write code that responds correctly when something 

happens—e.g., a request from the user or the arrival of 

new data—and processes the event quickly. The rest 

belongs to the cloud environment. 

In conclusion, serverless environments allow you to 

build your application out of simple stateless functions, 

or actions as they are called in the context of 

OpenWhisk, that are triggered by events. We will see 

later in this chapter what other constraints those actions 

must satisfy. 

Architecture Overview 

Now that we know what OpenWhisk is and what it does, 

let’s take a look at how it works under the hood. Figure 

1-2 provides a high-level overview. 

 

Figure 1-2. An example deployment with actions in multiple languages 

In Figure 1-2, the big container in the center is 

OpenWhisk itself. It acts as a container of actions. We 

will learn more about the container and these actions 

shortly, but as you can see, actions can be developed in 

many programming languages. Next, we’ll discuss the 

various options available. 

https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html#openwhisk-overview


NOTE 

The “container” schedules the actions, creating and 

destroying them as needed needed, and it will also scale 

them, creating duplicates in response to an increase in 

load. 

Programming Languages for OpenWhisk 

You can write actions in many programming languages. 

Typically, interpreted programming languages are used, 

such as JavaScript (actually, Node.js), Python, or 

PHP. These programming languages give immediate 

feedback because you can execute them without a 

compilation step. While these are higher-level languages 

and are easier to use, they are also slower than compiled 

languages. Since OpenWhisk is a highly responsive 

system (you can immediately run your code in the 

cloud), most developers prefer to use those interpreted 

languages as their use is more interactive. 

TIP 

While JavaScript is the most widely used language for 

OpenWhisk, other languages can also be used without 

issue. 

In addition to purely interpreted (or more correctly, 

compiled-on-the-fly) languages, you can also use 

the precompiled interpreted languages in the Java 

family such as Java, Scala, and Kotlin. These languages 

run on the Java Virtual Machine (JVM) and are 



distributed in an intermediate form. This means you 

have to create a .jar file to run your action. This file 

includes the so-called “bytecode” OpenWhisk executes 

when it is deployed. A JVM actually executes the action. 

Finally, in OpenWhisk you can use compiled 

languages. These languages use a binary executable that 

runs on “bare metal” without interpreters or virtual 

machines (VMs). These binary languages include Swift, 

Go, and the classic C/C++. Currently, OpenWhisk 

supports Go and Swift out of the box. However, you can 

use any other compiled programming language as long 

as you can compile the code in Linux elf format for 

the amd64 processor architecture. In fact, you can use 

any language or system that you can package as a 

Docker image and publish on Docker Hub: OpenWhisk 

is able to retrieve this type of image and run it, as long 

as you follow its conventions. 

NOTE 

Each release of OpenWhisk includes a set of runtimes 

for specific versions of programming languages. For the 

released combinations of programming languages and 

versions, you can deploy actions using the switch --

kind on the command line (e.g., --kind nodejs:6 or --kind go:1.11). 

For single file actions, OpenWhisk will select a default 

runtime to use based on the extension of the file. You 

can find more runtimes for programming languages or 

versions not yet released on Docker Hub that can be 

used with the switch --docker followed by the image name. 



Actions and Action Composition 

OpenWhisk applications are collections of 

actions. Figure 1-3 shows how they are assembled to 

build applications. 

 

Figure 1-3. Overview of OpenWhisk action runtimes 

An action is a piece of code, written in one of the 

supported programming languages (or even an 

unsupported language, as long as you can produce an 

executable and package it in a Docker image), that you 

can invoke. On invocation, the action will receive some 

information as input. 

To standardize parameter passing among multiple 

programming languages, OpenWhisk uses the widely 

supported JavaScript Object Notation (JSON) format, 

because it’s pretty simple and there are libraries to 

encode and decode this format available for basically 

every programming language. 

The parameters are passed to actions as JSON objects 

serialized as strings that the action receives when it 

starts and is expected to process. At the end of the 

processing, each action must produce a result, which is 

returned as a JSON object value. 

You can group actions in packages. A package is a unit 

of distribution. You can share a package with others 

using bindings. You can also customize a package, 

providing parameters that are different for each binding. 

https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html#openwhisk-overview-bis


Action Chaining 

Actions can be combined in many ways. The simplest 

way is chaining them into sequences. 

Chained actions use as input the output of the preceding 

actions. Of course, the first action of a sequence will 

receive the parameters (in JSON format), and the last 

action of the sequence will produce the final result as a 

JSON string. However, since not all the flows can be 

implemented as a linear pipeline of input and output, 

there is also a way to split the flows of an action into 

multiple directions. This feature is implemented using 

triggers and rules. A trigger is merely a named 

invocation. By itself a trigger does nothing. However, 

you can associate the trigger with one or more actions 

using rules. Once you have created the trigger and 

associated some action with it, you can fire the trigger 

by providing parameters. 

NOTE 

Triggers cannot be part of a package. but they can be 

part of a namespace, as we’ll see in Chapter 3. 

The actions used to fire a trigger are called a feed and 

must follow an implementation pattern. In particular, as 

we will learn in “Observer”, actions must implement an 

Observer pattern and be able to activate a trigger when 

an event happens. 

https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch03.html#openwhisk_cli_and_javascript_api
https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch05.html#CH3-Observer


When you create an action that follows the Observer 

pattern (which can be implemented in many different 

ways), you can mark the action as a feed in a 

package. You can then combine a trigger and a feed 

when you deploy the application, to use a feed as a 

source of events for a trigger (and in turn activate other 

actions). 

How OpenWhisk Works 

Now that you know the different components of 

OpenWhisk, let’s look at how OpenWhisk executes an 

action. 

The process is straightforward for the end user, but 

internally it executes several steps. We saw before the 

user visible components of OpenWhisk. We are now 

going to look under the hood and learn about the internal 

components. Those components are not visible by the 

user but the knowledge of how it works is critical to use 

OpenWhisk correctly. OpenWhisk is “built on the 

shoulders of giants,” and it uses some widely known and 

well-developed open source projects. 

These include: 

Nginx 

A high-performance web server and reverse proxy 

CouchDB 

A scalable, document-oriented NoSQL database 



Kafka 

A distributed, high-performing publish/subscribe 

messaging system 

All the components are Docker containers, a format to 

package applications in an efficient but constrained, 

virtual machine–like environment. They can be run any 

environment supporting this format, like Kubernetes. 

Furthermore, OpenWhisk can be split into some 

components of its own: 

Controller 

Managing entities, handling trigger fires, and 

routing actions invocations 

Invoker 

Launching the containers to execute the actions 

Action Containers 

Actually executing the actions 

In Figure 1-4 you can see how the processing happens. 

We are going to discuss it in detail, step by step. 

 

Figure 1-4. How OpenWhisk processes an action 

NOTE 

Basically, all the processing done in OpenWhisk is 

asynchronous, so we will go into the details of an 

https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html#openwhisk-async-processing


asynchronous action invocation. Synchronous execution 

fires an asynchronous action and then waits for the 

result. 

Nginx 

Everything starts when an action is invoked. There are 

different ways to invoke an action: 

 From the web, when the action is exposed as a web 

action 

 When another action invokes it through the API 

 When a trigger is activated and there is a rule to 

invoke the action 

 From the CLI 

Let’s call the client the subject who invokes the 

action. OpenWhisk is a RESTful system, so every 

invocation is translated to an HTTPS call and hits the 

so-called “edge” node. The edge is actually the web 

server and reverse proxy Nginx. The primary purpose of 

Nginx is to implement support for the HTTPS secure 

web protocol, so it deploys all the certificates required 

for secure processing. Nginx then forwards the requests 

to the actual internal service component, the controller. 

 


