
Chapter 1. Getting Started: 

Compiling, Running, and 
Debugging 

1.0 Introduction 

This chapter covers some entry-level tasks that you need 

to know how to do before you can go on—it is said you 

must crawl before you can walk, and walk before you 

can ride a bicycle. Before you can try out anything in 

this book, you need to be able to compile and run your 

Java code, so I start there, showing several ways: the 

JDK way, the Integrated Development Environment 

(IDE) way, and the build tools (Ant, Maven, etc.) way. 

Another issue people run into is setting CLASSPATH 

correctly, so that’s dealt with next. Deprecation 

warnings follow after that, because you’re likely to 

encounter them in maintaining “old” Java code. The 

chapter ends with some general information about 

conditional compilation, unit testing, assertions, and 

debugging. 

If you don’t already have Java installed, you’ll need to 

download it. Be aware that there are several different 

downloads. The JRE (Java Runtime Environment) is a 

smaller download for end users. The JDK or Java SDK 

download is the full development environment, which 



you’ll want if you’re going to be developing Java 

software. 

Standard downloads for the current release of Java are 

available at Oracle’s website. 

You can sometimes find prerelease builds of the next 

major Java version on http://java.net. The entire 

(almost) JDK is maintained as an open source project, 

and the OpenJDK source tree is used (with changes and 

additions) to build the commercial and supported Oracle 

JDKs. 

If you’re already happy with your IDE, you may wish to 

skip some or all of this material. It’s here to ensure that 

everybody can compile and debug their programs before 

we move on. 

1.1 Compiling and Running Java: 
JDK 

Problem 

You need to compile and run your Java program. 

Solution 

This is one of the few areas where your computer’s 

operating system impinges on Java’s portability, so let’s 

get it out of the way first. 

http://bit.ly/TEA7iC
http://java.net/


JDK 

Using the command-line Java Development Kit (JDK) 

may be the best way to keep up with the very latest 

improvements in Java. Assuming you have the standard 

JDK installed in the standard location and/or have set its 

location in your PATH, you should be able to run the 

command-line JDK tools. Use the commands javac to 

compile and java to run your program (and, on 

Windows only, javaw to run a program without a 

console window). For example: 

C:\javasrc>javac HelloWorld.java 

 

C:\javasrc>java HelloWorld 

Hello, World 

 

C:\javasrc> 

If the program refers to other classes for which source is 

available (in the same directory) and a compiled .class 

file is not, javac will automatically compile it for you. 

Effective with Java 11, for simple programs that don’t 

need any such co-compilation, you can combine the two 

operations, simply passing the Java source file to 

the java command: 

java HelloWorld.java 

As you can see from the compiler’s (lack of) output, this 

compiler works on the Unix “no news is good news” 

philosophy: if a program was able to do what you asked 



it to, it shouldn’t bother nattering at you to say that it did 

so. Many people use this compiler or one of its clones. 

There is an optional setting called CLASSPATH, 

discussed in Recipe 1.4, that controls where Java looks 

for classes. CLASSPATH, if set, is used by 

both javac and java. In older versions of Java, you had to 

set your CLASSPATH to include “.”, even to run a 

simple program from the current directory; this is no 

longer true on current Java implementations. 

Sun/Oracle’s javac compiler is the official reference 

implementation. There were several alternative open 

source command-line compilers, 

including Jikes and Kaffe but they are, for the most part, 

no longer actively maintained. 

There have also been some Java runtime clones, 

including Apache Harmony, Japhar, the IBM Jikes 

Runtime (from the same site as Jikes), and even JNODE, 

a complete, standalone operating system written in Java, 

but since the Sun/Oracle JVM has been open-sourced 

(GPL), most of these projects have become 

unmaintained. Harmony was retired by Apache in 

November 2011. 

MAC OS X 

The JDK is pure command line. At the other end of the 

spectrum in terms of keyboard-versus-visual, we have 

the Apple Macintosh. Books have been written about 

how great the Mac user interface is, and I won’t step 

https://learning.oreilly.com/library/view/java-cookbook-4th/9781492072577/ch01.html#javacook-getstarted-SECT-4
http://bit.ly/1l5jP5I
http://www.kaffe.org/
http://harmony.apache.org/
http://bit.ly/1n72D0b
http://www.jnode.org/


into that debate. Mac OS X (Release 10.x of Mac OS) is 

built upon a BSD Unix (and “Mach”) base. As such, it 

has a regular command line (the Terminal application, 

hidden away under /Applications/Utilities), as well as 

both the traditional Unix command-line tools and the 

graphical Mac tools. Mac OS X users can use the 

command-line JDK tools as above or any of the modern 

build tools. Compiled classes can be packaged into 

“clickable applications” using the Jar Packager 

discussed in [Link to Come]. Mac fans can use one of 

the many full IDE tools discussed in Recipe 1.2. Apple 

provides XCode as their IDE, but out of the box it isn’t 

very Java-friendly. 

GRAALVM 

A new VM implementation called GraalVM is now 

available. Graal promises to offer better performance, 

the ability to mix-and-match programming languages, 

and the ability to pre-compile your Java code into 

executable form for a given platform. See The Graal 

VM web site for more information on GraalVM. 

1.2 Compiling, Running, and Testing 
with an IDE 

Problem 

It is cumbersome to use several tools for the various 

development tasks. 

https://learning.oreilly.com/library/view/java-cookbook-4th/9781492072577/ch01.html#javacook-getstarted-SECT-3
https://www.graalvm.org/
https://www.graalvm.org/


Solution 

Use an integrated development environment (IDE), 

which combines editing, testing, compiling, running, 

debugging, and package management. 

Discussion 

Many programmers find that using a handful of separate 

tools—a text editor, a compiler, and a runner program, 

not to mention a debugger—is too many. An 

IDE integrates all of these into a single toolset with a 

graphical user interface. Many IDEs are available, 

ranging all the way up to fully integrated tools with their 

own compilers and virtual machines. Class browsers and 

other features of IDEs round out the ease-of-use feature 

sets of these tools. It has been argued many times 

whether an IDE really makes you more productive or if 

you just have more fun doing the same thing. However, 

today most developers use an IDE because of the 

productivity gains. Although I started as a command-

line junkie, I do find that the following IDE benefits 

make me more productive: 

Code completion 

Ian’s Rule here is that I never type more than three 

characters of any name that is known to the IDE; let 

the computer do the typing! 

“Incremental compiling” features 

Note and report compilation errors as you type, 

instead of waiting until you are finished typing. 



Refactoring 

The ability to make far-reaching yet behavior-

preserving changes to a code base without having to 

manually edit dozens of individual files. 

Beyond that, I don’t plan to debate the IDE versus the 

command-line process; I use both modes at different 

times and on different projects. I’m just going to show a 

few examples of using a couple of the Java-based IDEs. 

The three most popular Java IDEs, which run on all 

mainstream computing platforms and quite a few niche 

ones, are Eclipse, NetBeans, and IntelliJ IDEA. Eclipse 

is the most widely used, but the others each have a 

special place in the hearts and minds of some 

developers. If you develop for Android, the ADT has 

traditionally been developed for Eclipse, but it has now 

transitioned IntelliJ as the basis for “Android Studio,” 

which is the standard IDE for Android, and for Google’s 

other mobile platform, Flutter. All three are plug-in 

based and offer a wide selection of optional and third-

party plugins to enhance the IDE, such as supporting 

other programming languages, frameworks, file types, 

and so on. While the following shows creating and 

running a program with Eclipse, the IntelliJ IDea and 

Netbeans IDEs all offer similar capabilities. 

Perhaps the most popular cross-platform, open 

source IDE for Java is Eclipse, originally from IBM and 

now shepherded by the Eclipse Foundation, the home of 

many software projects including Jakarta, the follow-on 

https://flutter.io/
http://eclipse.org/
https://projects.eclipse.org/projects/ee4j.jakartaee-platform


to the Java Enterprise Edition. Eclipse is also used as the 

basis of other tools such as SpringSource Tool Suite 

(STS) and IBM’s Rational Application Developer 

(RAD). All IDEs do basically the same thing for you 

when getting started; see, for example, the Eclipse New 

Java Class Wizard shown in Figure 1-1. Eclipse also 

features a number of refactoring capabilities, shown 

in Figure 1-2. 

 

https://learning.oreilly.com/library/view/java-cookbook-4th/9781492072577/ch01.html#javacook-getstarted-FIG-5
https://learning.oreilly.com/library/view/java-cookbook-4th/9781492072577/ch01.html#javacook-getstarted-FIG-6

