
Chapter 1. Python Essentials for DevOps

DevOps, the combination of software development with

information technology operations, has been a hot field

during the last decade. Traditional boundaries between

software development, deployment, maintenance, and

quality assurance are broken, enabling more integrated

teams. Python has been a popular language both in

traditional IT operations and in DevOps due to its

combination of flexibility, power, and ease of use.

The Python programming language was publically

released in the early 1990s for use in system

administration. It has been a great success in this area

and has gained wide adoption. Python is a general-

purpose programming language used in just about every

domain. Visual effects and the motion picture industry

have embraced it. More recently, it has become the de

facto language of data science and machine learning

(ML). It has been used across industries from aviation to

bioinformatics. Python has an extensive arsenal of tools

to cover the wide-ranging needs of its users. Learning

the whole Python Standard Library (the capabilities that

come with any Python installation) would be a daunting

task. Trying to learn all the third-party packages that

enliven the Python ecosystem, would be an immense

undertaking. The good news is that you don’t need to do

those things. You can become a powerful DevOps

practitioner knowing only a small subset of Python.

In this chapter, we draw on our decades of Python

DevOps experience to teach only the elements of the

language that you need. These are the parts of Python

DevOps uses daily. They form the essential toolbox to

get things done. Once you have these core concepts

down, you can add more complicated tools, as you’ll see

in later chapters.

Installing and Running Python

If you want to try the code in this overview, you need

version Python 3.7 or later installed (the latest release is

3.7.4 as of this writing), and access to a shell. In macOs

X, Windows, and most Linux distributions, you can

open the terminal application to access a shell. To check

the version of Python you are using, open a shell, and

type python --version.

$ python --version

Python 3.7.4

Python installers can be downloaded directly from

the Python.org website. Alternatively, you can use a

package manager such as Apt, RPM, MacPorts,

Homebrew, Chocolatey, or many others.

The Python Shell

https://www.python.org/downloads/

The simplest way to run Python is to use the built-in

interactive interpreter. Just type python in a shell. You can

then interactively run Python statements. Type exit() to

exit the shell.

$ python

Python 3.7.4 (default, Sep 23 2018, 09:47:03)

[Clang 9.0.0 (clang-900.0.38)] on darwin

Type "help", "copyright", "credits" or

"license" for more information.

>>> 1 + 2

3

>>> exit()

PYTHON SCRIPTS

Python code runs from a file with the .py extension.

This is my first Python script

print('Hello world!')

Save this code to a file named hello.py. To invoke the

script, in a shell run python followed by the filename.

$ python hello.py

Hello world!

Python scripts are the way most production Python code

runs.

IPYTHON

Besides the built-in interactive shell, several third-party

interactive shells run Python code. One of the most

popular is IPython. IPython offers introspection (the

ability to dynamically get information about objects),

syntax highlighting, special magic commands (which we

touch on later in this chapter), and many more features

making it a pleasure to use for exploring Python. To

install IPython, use the Python package manager, pip:

$ pip install ipython

Running is similar to running the built-in an interactive

shell of the previous section:

$ ipython

Python 3.7.4 (default, Sep 23 2018, 09:47:03)

Type 'copyright', 'credits' or 'license' for

more information

IPython 7.5.0 -- An enhanced Interactive

Python. Type '?' for help.

In [1]: print('Hello')

https://ipython.org/

Hello

In [2]: exit()

Jupyter Notebooks

A spin-off from the iPython project, the Jupyter project

allows documents containing text, code, and

visualizations. These documents are a powerful tool for

combining running code, output, and formatted text.

Jupyter enables the delivery of documentation along

with the code. It has achieved widespread popularity,

especially in the data science world. To install and run

Jupyter notebooks:

$ pip install jupyter

$ jupyter notebook

This command opens a web browser tab showing the

current working directory. From here, you can open

existing notebooks in the current project or create new

ones.

Procedural Programming

If you’ve been around programming at all, you’ve

probably heard terms like object oriented programming

(OOP) and functional programming. These are different

architectural paradigms used to organizing programs.

One of the most basic paradigms, procedural

Programming, is an excellent place to start. Procedural

programming is the issuing instructions to a computer in

an ordered sequence:

>>> i = 3
>>> j = i +1
>>> i + j
7

As you can see in this example, there are three

statements, which execute in order from the first line to

the last. Each statement uses the state produced by the

previous ones. In this case, the first statement assigns the

value 3 to a variable named i. In the second statement,

this variable’s value is used to assign a value to a

variable named j, and in the third statement, the values

from both variables add together. Don’t worry about the

details of these statements yet, notice that they are

executed in order and rely on the state left by the

previous statements.

Variables

A variable is a name that points to some value. In the

previous example, these variables are i and j . Variables

in Python can assign to new values:

>>> dog_name = 'spot'

>>> dog_name

'spot'

>>> dog_name = 'rex'

>>> dog_name

'rex'

>>> dog_name = 't-' + dog_name

>>> dog_name

't-rex'

>>>

Python variables use dynamic typing. In practice, this

means that they can be reassigned to values of different

types or classes:

>>> big = 'large'

>>> big

'large'

>>> big = 1000*1000

>>> big

1000000

>>> big = {}

>>> big

{}

>>>

Here the same variable is set to a string, a number, and a

dictionary. Variables can be reassigned to values of any

type.

Basic Math

Basic math operations such as addition, subtraction,

multiplication, and division can all be performed using

built-in math operators:

>>> 1 + 1

2

>>> 3 - 4

–1

>>> 2*5

10

>>> 2/3

0.6666666666666666

Note that a // symbol is for integer division. The

symbol ** creates an exponent, and % is the modulo

operator:

>>> 5/2

2.5

>>> 5//2

2

>>> 3**2

9

>>> 5%2

1

Comments

Comments are text ignored by the Python interpreter.

They are useful for documentation of code and can be

mined by some services to provide standalone

documentation. Single line comments are delineated by

prepending with . A single line comment can start at the

beginning of a line, or any point following. Everything

after the is part of the comment until a new line break.

 # This is a comment
 1 + 1 # This comment follows a statement

Multi-line comments enclose themselves in blocks

beginning and ending with either """ or '.

"""
This statement is a block comment.
It can run for multiple lines
"""

'''
This statement is also a block comment
'''

Built-in Functions

Functions are statements grouped to be called as a unit.

You invoke a function by calling the function name

followed by parentheses. If the function takes

arguments, the arguments appear within the parenthesis.

Python has many built-in functions. Two of the most

widely used build-in functions are print and range.

Print

The print function produces output that a user of a

program can view. It is less relevant in interactive

environments but is a fundamental tool when writing

Python scripts. In the previous example, the argument to

the print function is written as output when the script

runs:

This is my first Python script

print("Hello world!")

$ python hello.py

Hello world!

print can be used to see the value of a variable or to give

feedback as to the state of a program. print generally

outputs to standard out and is visible as program output

in a shell.

Range

Though range is a built-in function, it is technically not a

function at all. It is a type representing a sequence of

numbers. When calling the range() constructor, an object

representing a sequence of numbers is returned. Range

objects count through a sequence of numbers.

The range function takes up to three integer arguments. If

only one argument appears, then the sequence is

represented by the numbers from zero up to, but not

including that number. If a second argument appears, it

represents the starting point, rather than the default of

starting from 0. The third argument can be used to

specify the step distance, and it defaults to 1.

>>> range(10)
range(0, 10)
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5, 10))
[5, 6, 7, 8, 9]
>>> list(range(5, 10, 3))
[5, 8]
>>>

range maintains a small memory footprint, even over

extended sequences as it only stores the start, stop, and

step values. The range function can iterate through long

sequences of numbers without performance constraints.

Execution Control

Python has many constructs to control the flow of

statement execution. You can group statements you wish

to run together as a block of code. These blocks can be

run multiple times using for and while loops, or only run

under certain conditions using if statements, while loops,

or try-except blocks. Using these constructs is the first step

to taking advantage of the power of programming.

Different languages demarcate blocks of code using

different conventions. Many languages with syntax

similar to the C language (a very influential language

used in writing Unix) use curly brackets around a group

of statements to define a block. In Python, indentation is

used to indicate a block. Statements are grouped by

indentation into blocks which execute as a unit.

NOTE

The Python interpreter does not care if you use tabs or

spaces to indent, as long as you are consistent. The

Python style guide, PEP-8, however, recommends using

four whitespaces for each level of indentation.

if/elif/else

https://www.python.org/dev/peps/pep-0008/

if/elif/else statements are a common way to branch

between decisions in code. A block directly after

an if statement runs if that statement evaluates to True:

>>> i = 45
>>> if i == 45:
... print('i is 45')
...
...
i is 45
>>>

Here we used the == operator which returns True if items

are equal and False if not. This block can optionally

follow an elif or else statement with an accompanying

block. In the case of an elif statement, this block only

executes if the elif evaluated to True.

>>> i = 35
>>> if i == 45:
... print('i is 45')
... elif i == 35:
... print('i is 35')
...
...
i is 35
>>>

Multiple elif loops can append together. If you are

familiar with switch statements in other languages, this

simulates that same behavior of choosing from multiple

choices. Adding an else statement at the end runs a block

if none of the other conditions evaluate as True:

>>> i = 0
>>> if i == 45:
... print('i is 45')
... elif i == 35:
... print('i is 35')
... elif i > 10:
... print('i is greater than 10')
... elif i%3 == 0:
... print('i is a multiple of 3')
... else:
... print('I don't know much about i...')
...
...

i is a multiple of 3
>>>

You can nest if statements, creating blocks

containing if statements which only execute if an

outer if statement is True.

>>> cat = 'spot'
>>> if 's' in cat:
... print("Found an 's' in a cat")
... if cat == 'Sheba':
... print("I found Sheba")
... else:
... print("Some other cat")
... else:
... print(" a cat without 's'")
...
...
Found an 's' in a cat
Some other cat
>>>

For Loops

for loops allow you to repeat a block of statements (a

code block) once for each member of

a sequence (ordered groups of items). As you iterate

through the sequence, the current item can be accessed

by the code block. One of most common uses of for

loops is to iterate through a range object to do a task a set

number of times.

>>> for i in range(10):
... x = i*2
... print(x)
...
...
0
2
4
6
8
10
12
14
16
18
>>>

In this example, our block of code is as follows:

... x = i*2

... print(x)

We repeat this code 10 times, each time assigning the

variable i the next number in the sequence of integers 0–

9. for loops can be used to iterate through any of the

Python Sequence types. You will see these later in this

chapter.

CONTINUE

The continue statement skips a step in a loop, jumping to

the next item in the sequence.

>>> for i in range(6):
... if i == 3:
... continue
... print(i)
...
...
0
1
2
4
5
>>>

While Loops

while loops repeat a block as long as a condition evaluates

to True.

>>> count = 0
>>> while count < 3:
... print(f"The count is {count}")
... count += 1
...

...
The count is 0
The count is 1
The count is 2
>>>

It is essential to define a way for your loop to end.

Otherwise, you will be stuck in the loop until your

program crashes. One way to handle this is to define

your conditional statement such that it eventually

evaluates to False. An alternative pattern uses

the break statement to exit a loop using a nested

conditional.

>>> count = 0
>>> while True:
... print(f"The count is {count}")
... if count > 5:
... break
... count += 1
...
...
The count is 0
The count is 1
The count is 2
The count is 3
The count is 4
The count is 5
The count is 6
>>>

Handling Exceptions

Exceptions are a type of error causing your program to

crash if not handled (caught). Catching them with a try-

except block allows the program to continue. These blocks

are created by indenting the block in which the

exception might be raised and putting a try statement

before it and an except statement after, followed by a code

block which should run when the error occurs:

>>> thinkers = ['Plato', 'PlayDo', 'Gumby']
>>> while True:

... try:

... thinker = thinkers.pop()

... print(thinker)

... except IndexError as e:

... print("We tried to pop too many thinkers")

... print(e)

... break

...

...

...
Gumby
PlayDo
Plato
We tried to pop too many thinkers
pop from empty list
>>>

There are many built-in exceptions, such as IOError, KeyError,

and ImportError. Many third-party packages also define

their own exception classes. They indicate that

something has gone very wrong, so it pays only to catch

them if you are confident that the problem should not be

fatal to your software. You can specify explicitly which

exception type you will catch. Ideally, you should catch

the exact exception type (in our example this was the

exception IndexError).

Built-in Objects

In this overview, we will not be covering object oriented

programming. The Python language, however, comes

with quite a few built-in classes.

What Is an Object?

In object-oriented programming (OOP), data or state and

functionality appear together. The essential concepts to

understand when working with objects are class

instantiation (creating objects from classes) and dot

syntax (the syntax for accessing an object’s attributes

and methods). A class defines attributes and methods

shared by its objects. Think of it as the technical

drawing describing a car model. The class can then be

instantiated to create an instance. The instance, or

object, is a single car built based on those drawings.

>>> # Define a class for fancy defining fancy

cars

>>> class FancyCar():

... pass

...

>>> type(FancyCar)

<class 'type'>

>>> # Instantiate a fancy car

>>> my_car = FancyCar()

>>> type(my_car)

<class '__main__.FancyCar'>

You don’t need to worry about creating your own

classes at this point. Just understand that each object is

an instantiation of a class.

Object Methods and Attributes

Objects store data in attributes. These attributes are

variables attached to the object or object class. Objects

define functionality in object methods (methods defined

for all objects in a class) and class methods (methods

attached to a class, and shared by all objects in the

class), which are functions attached to the object.

NOTE

In Python documentation functions attached to Objects

and classes are referred to as methods.

These functions have access to the object’s attributes

and can modify and use the object’s data. To call an

object’s method or access one of its attributes, we use

dot syntax:

>>> # Define a class for fancy defining fancy cars
>>> class FancyCar():
... # Add a class variable
... wheels = 4
... # Add a method
... def driveFast(self):
... print("Driving so fast")
...
...
...
>>> # Instantiate a fancy car
>>> my_car = FancyCar()
>>> # Access the class attribute
>>> my_car.wheels
4
>>> # Invoke the method
>>> my_car.driveFast()
Driving so fast
>>>

So here our FancyCar class defines a method

called driveFast and an attribute wheels. When you instantiate

an instance of FancyCar named my_car, you can access the

attribute and invoke the method using the dot syntax.

Sequences

Sequences are a family of built-in types including

the list, tuple, range, string, and binary types. Sequences

represent ordered and finite collections of items.

SEQUENCE OPERATIONS

There are many operations which work across all of the

types of sequences. We cover some of the most

commonly used here.

You can use the in and not in operators to test if an item

exists in a sequence:

>>> 2 in [1,2,3]
True
>>> 'a' not in 'cat'
False
>>> 10 in range(12)
True
>>> 10 not in range(2, 4)
True

You can reference the contents of a sequence by using

its index number. To access the item at some index, use

square brackets with the index number as an argument.

The first item indexed is at position 0, the second at 1

and so forth up the number one less than the number of

items:

>>> my_sequence = 'Bill Cheatham'
>>> my_sequence[0]
'B'
>>> my_sequence[2]
'l'
>>> my_sequence[12]
'm'

Indexing can appear from the end of a sequence rather

than the front using negative numbers. The last item has

the index of –1, the second to last –2 and so forth:

>>> my_sequence = "Bill Cheatham"
>>> my_sequence[–1]
'm'
>>> my_sequence[–2]
'a'
>>> my_sequence[–13]
'B'

The index of an item results from the index method. By

default, it returns the index of the first occurrence of the

item, but optional arguments can define a sub-range in

which to search:

>>> my_sequence = "Bill Cheatham"
>>> my_sequence.index('C')
5
>>> my_sequence.index('a')
8
>>> my_sequence.index('a',9, 12)
11
>>> my_sequence[11]
'a'
>>>

You can produce a new sequence from a sequence using

slicing. A slice appears by invoking a sequence with

brackets containing optional start, stop, and step arguments:

my_sequence[start:stop:step]

start is the index of the first item to use in the new

sequence, stop the first index beyond that point, and step,

the distance between items. These arguments are all

optional and are replaced with default values if omitted.

This statement produces a copy of the original sequence.

The default value for start is 0, for stop is the length of the

sequence, and step is 1. Note that if the step does not

appear, the corresponding : can also be dropped:

>>> my_sequence = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> my_sequence[2:5]
['c', 'd', 'e']
>>> my_sequence[:5]
['a', 'b', 'c', 'd', 'e']
>>> my_sequence[3:]
['d', 'e', 'f', 'g']
>>>

Negative numbers can be used to index backward:

>>> my_sequence[–6:]
['b', 'c', 'd', 'e', 'f', 'g']
>>> my_sequence[3:–1]
['d', 'e', 'f']
>>>

Sequences share many operations for getting

information about them and their contents. len returns the

lengths of the sequence, min the smallest member, max the

largest, and count the number of a particular

item. min and max work only on sequences with items that

are comparable. Remember that these work with any

sequence type:

>>> my_sequence = [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4]
>>> len(my_sequence)
12
>>> min(my_sequence)
0
>>> max(my_sequence)
4
>>> my_sequence.count(1)
3
>>>

LISTS

Lists, one of the most commonly used Python data

structures, represent an ordered collection of items of

any type. The use of square brackets indicates a list

syntax.

The function list() can be used to create an empty list or

a list based on another finite iterable object (such as

another sequence):

>>> list()
[]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list("Henry Miller")
['H', 'e', 'n', 'r', 'y', ' ', 'M', 'i', 'l', 'l', 'e', 'r']
>>>

Lists created by using square brackets directly are the

most common form. Items in the list need to be

enumerated explicitly in this case. Remember that the

items in a list can be of different types:

>>> empty = []
>>> empty
[]
>>> nine = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> nine
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> mixed = [0, 'a', empty, 'WheelHoss']
>>> mixed
[0, 'a', [], 'WheelHoss']
>>>

The most efficient way to add a single item to a list is

to append the item to the end of the list. A less efficient

method, insert, allows you to insert an item at the index

position of your choice:

>>> pies = ['cherry', 'apple']
>>> pies
['cherry', 'apple']
>>> pies.append('rhubarb')
>>> pies
['cherry', 'apple', 'rhubarb']
>>> pies.insert(1, 'cream')
>>> pies
['cherry', 'cream', 'apple', 'rhubarb']
>>>

The contents of one list can be added to another using

the extend method:

>>> pies
['cherry', 'cream', 'apple', 'rhubarb']
>>> desserts = ['cookies', 'paste']
>>> desserts
['cookies', 'paste']
>>> desserts.extend(pies)
>>> desserts
['cookies', 'paste', 'cherry', 'cream', 'apple', 'rhubarb']
>>>

The most efficient and common way of removing the

last item from a list and returning its value is to pop it. An

index can be passed to this method, removing and

returning the item at that index. This technique is less

efficient as the list needs to be re-indexed:

>>> pies
['cherry', 'cream', 'apple', 'rhubarb']
>>> pies.pop()
'rhubarb'
>>> pies
['cherry', 'cream', 'apple']
>>> pies.pop(1)
'cream'
>>> pies
['cherry', 'apple']

There is also a remove method, which removes the first

occurrence of an item.

>>> pies.remove('apple')
>>> pies
['cherry']
>>>

One of the most potent and idiomatic Python features,

list comprehensions, allow you to use the functionality

of a for loop in a single line. Lets look at a simple

example, starting with a for loop squaring all of the

numbers 0–9 and appending them to a list:

>>> squares = []
>>> for i in range(10):
... squared = i*i
... squares.append(squared)
...
...
>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>>

In order to replace this with a list comprehension, we do

the following:

>>> squares = [i*i for i in range(10)]
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>>

Note that the functionality of the inner block is put first,

followed for the for statement. You can also add

conditionals to list comprehensions, filtering the results:

>>> squares = [i*i for i in range(10) if i%2==0]
>>> squares
[0, 4, 16, 36, 64]
>>>

Other techniques for list comprehensions include nesting

them and using multiple variables, but the more

straightforward form shown here is the most common.

STRINGS

The string sequence type is a collection of ordered

characters surrounded by quotation marks. As of Python

3, strings default to using UTF-8 encoding.

You can create strings either using the string constructor

method, str(), or by directly enclosing the text in

quotation marks:

>>> str()
''
>>> "some new string!"
'some new string!'
>>> 'or with single quotes'
'or with single quotes'

The string constructor can be used to make strings from

other objects.

>>> my_list = list()
>>> str(my_list)
'[]'

You can create multiple line strings by using triple

quotes around the content:

>>> multi_line = """This is a
... multi-line string,
... which includes linebreaks.
... """
>>> print(multi_line)
This is a
multi-line string,
which includes linebreaks.
>>>

In addition to the methods shared by all sequences,

strings have quite a few methods distinct to their class.

It is relatively common for user text to have trailing or

leading whitespace. If someone types ' yes ' in a form

instead of yes, you usually want to treat them the same.

Python strings have a strip method just for this case. It

returns a string with the whitespace removed from the

beginning and end. There are also methods to remove

the whitespace from only the right or left side of the

string:

>>> input = " I want more "
>>> input.strip()
'I want more'
>>> input.rstrip()
' I want more'
>>> input.lstrip()
'I want more '

On the other hand, if you want to add padding to a

string, you can use the ljust or rjust methods. Either one

pads with whitespace by default, or takes a character

argument:

>>> output = 'Barry'
>>> output.ljust(10)
'Barry '
>>> output.rjust(10, '*')
'*****Barry'

Sometimes you want to break a string up into a list of

sub-strings. Perhaps you have a sentence you want to

turn into a list of words or string of words separated by

commas. The split method breaks a string broken into a

list of strings. By default, it uses whitespace as the token

to make the breaks. An optional argument can be used to

pass in another character to break on:

>>> text = "Mary had a little lamb"
>>> text.split()
['Mary', 'had', 'a', 'little', 'lamb']
>>> url = "gt.motomomo.io/v2/api/asset/143"
>>> url.split('/')
['gt.motomomo.io', 'v2', 'api', 'asset', '143']

You can easily create a new string from a sequence of

strings and join them into a single string. This method

inserts a string as a separator between a list of other

strings:

>>> items = ['cow', 'milk', 'bread', 'butter']
>>> " and ".join(items)
'cow and milk and bread and butter'

Changing the case of text is a common occurrence,

whether it is making the case uniform for comparison or

changing in preparation for user consumption. Python

strings have several methods to make this an easy

process:

>>> name = "bill monroe"
>>> name.capitalize()
'Bill monroe'

>>> name.upper()
'BILL MONROE'
>>> name.title()
'Bill Monroe'
>>> name.swapcase()
'BILL MONROE'
>>> name = "BILL MONROE"
>>> name.lower()
'bill monroe'

Python also provides methods to understand a strings

content. Whether it’s checking the case of the text, or

seeing if it represents a number, there are quite a few

built-in methods for interrogation. Here are just a few of

the most commonly used ones:

>>> "William".startswith('W')
True
>>> "William".startswith('Bill')
False
>>> "Molly".endswith('olly')
True
>>> "abc123".isalnum()
True
>>> "abc123".isalpha()
False
>>> "abc".isalnum()
True
>>> "123".isnumeric()
True
>>> "Sandy".istitle()
True
>>> "Sandy".islower()
False
>>> "SANDY".isupper()
True

You can insert content into a string and control its

format at run-time. Your program can use the values of

variables or other calculated content in strings. This

approach is used in both creating user consumed text

and for writing software logs.

The older form of string formatting in Python comes

from the C language printf function. You can use the

modulus operator, %, to insert formatted values into a

string. This technique applies to the form string % values,

where values can be a single non-tuple or a tuple of

multiple values. The string itself must have a conversion

specifier for each value. The conversion specifier, at a

minimum, starts with a % and is followed by a character

representing the type of value inserted:

>>> "%s + %s = %s" % (1, 2, "Three")
'1 + 2 = Three'
>>>

Additional format arguments include the conversion

specifier. For example, you can control the number of

places a float, %f prints:

>>> "%.3f" % 1.234567
'1.235'

This mechanism for string formatting was the dominant

one in Python for years, and you encounter it in legacy

code. This approach offers some compelling features,

such as sharing syntax with other languages. It also has

some pitfalls. In particular, due to the use of a sequence

to hold the arguments, errors related to

displaying tuple and dict objects are common. We

recommend adopting newer formatting options, such as

the string format method, template strings, and f-strings, to

both avoid these errors and increase the simplicity and

readability of your code.

Python 3 introduced a new way of formatting strings

using the string method format. This way of formatting has

been backported to Python 2 as well. This specification

uses curly brackets in the string to indicate replacement

fields rather than the modulus based conversion

specifiers of the old-style formatting. The insert values

become arguments to the string format method. The order

of the arguments determines their placement order in the

target string:

>>> '{} comes before {}'.format('first', 'second')
'first comes before second'
>>>

You can specify index numbers in the brackets to insert

values in an order different than that in the argument list.

You can also repeat a value by specifying the same

index number in multiple replacement fields:

>>> '{1} comes after {0}, but {1} comes before {2}'.format('first',

'second',

'third')
'second comes after first, but second comes before third'
>>>

An even more powerful feature is that the insert values

can be specified by name:

>>> '''{country} is an island.
... {country} is off of the coast of
... {continent} in the {ocean}'''.format(ocean='Indian Ocean',
...
continent='Africa',
...
country='Madagascar')
'Madagascar is an island.
Madagascar is off of the coast of
Africa in the Indian Ocean'

Here a dict works to supply the key values for name–

based replacement fields:

>>> values = {'first': 'Bill', 'last': 'Bailey'}
>>> "Won't you come home {first} {last}?".format(**values)
"Won't you come home Bill Bailey?"

You can also specify format specification arguments.

Here they add left and right padding using > and <. In the

second example, we specify a character to use in the

padding:

>>> text = "|{0:>22}||{0:<22}|"
>>> text.format('O','O')
'| O||O |'
>>> text = "|{0:<>22}||{0:><22}|"
>>> text.format('O','O')
'|<<<<<<<<<<<<<<<<<<<<<O||O>>>>>>>>>>>>>>>>>>>>>|'

Format specifications are done using the format

specification mini-language. Our topic also uses this

type of language, F-strings.

Python f-strings use the same formatting language as

the format method, but offer a more straightforward and

intuitive mechanism for using it. F-strings are pre-

pended with either f or F before the first quotation mark.

Like the format string previously described, F-strings use

curly braces to demarcate replacement fields. In an F-

string, however, the content of the replacement field is

an expression. This approach means it can refer to

variables defined in the current scope or involve

calculations:

>>> a = 1
>>> b = 2
>>> f"a is {a}, b is {b}. Adding them results in {a + b}"
'a is 1, b is 2. Adding them results in 3'

As in format strings, format specifications in F-strings

happen within the curly brackets after the value

expression and start with a ::

>>> count = 43
>>> f"|{count:5d}"
'| 43'

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/string.html#format-specification-mini-language

The value expression can contain nested expressions,

referencing variables, and expressions in the

construction of the parent expression:

>>> padding = 10
>>> f"|{count:{padding}d}"
'| 43'

TIP

We highly recommend using F-strings for the majority

of your string formatting. They combine the power of

the specification mini-language with a simple and

intuitive syntax.

Template strings are designed to offer a straightforward

string substitution mechanism. These built-in methods

work for tasks such as internationalization where simple

word substitutions are necessary. They use $ as a

substitution character, with optional curly braces

surrounding. The characters directly following

the $ identify the value to be inserted. When

the substitute method of the string template executes, these

names are used to assign values.

NOTE

Built-in types and functions are available whenever you

run Python code, but to access the broader world of

functionality available in the Python ecosystem, you

need to use the import statement. This approach lets you

add functionality from the Python Standard Library or

third-party services into your environment. You can

selectively import parts of a package by using

the from keyword.

>>> from string import Template
>>> greeting = Template("$hello Mark Anthony")
>>> greeting.substitute(hello="Bonjour")
'Bonjour Mark Anthony'
>>> greeting.substitute(hello="Zdravstvuyte")
'Zdravstvuyte Mark Anthony'
>>> greeting.substitute(hello="Nǐn hǎo")
'Nǐn hǎo Mark Anthony'

DICTS

Aside from strings and lists, dicts may be the most used

of the Python built-in classes. A dict is a mapping of

keys to values. The lookup of any particular value using

a key is highly efficient and fast. The keys can be

strings, numbers, custom objects, or any other non-

mutable type.

NOTE

A mutable object is one whose contents can change in

place. Lists are a primary example; the contents of the

list can change without the list’s identity changing.

Strings are not mutable. You create a new string each

time you change the contents of an existing one.

Dicts are represented as comma–separated key/value

pairs surrounded by curly braces. The key/value pairs

consist of a key, a colon (:), and then a value.

You can create a dict object using the dict() constructor.

With no arguments, it creates an empty dict. It takes a

sequence of key/value pairs as an argument as well:

>>> map = dict()

>>> type(map)
<class 'dict'>
>>> map
{}
>>> kv_list = [['key-1', 'value-1'], ['key-2', 'value-2']]
>>> dict(kv_list)
{'key-1': 'value-1', 'key-2': 'value-2'}

You can also create a dict directly using curly braces:

>>> map = {'key-1': 'value-1', 'key-2': 'value-2'}
>>> map
{'key-1': 'value-1', 'key-2': 'value-2'}

You can access the value associated with a key using

square bracket syntax:

>>> map['key-1']
'value-1'
>>> map['key-2']
'value-2'

You can use the same syntax to set a value. If the key is

not in the dict, it adds as a new entry. If it already exists,

the value changes to the new value:

>>> map
{'key-1': 'value-1', 'key-2': 'value-2'}
>>> map['key-3'] = 'value-3'
>>> map
{'key-1': 'value-1', 'key-2': 'value-2', 'key-3': 'value-3'}
>>> map['key-1'] = 13
>>> map
{'key-1': 13, 'key-2': 'value-2', 'key-3': 'value-3'}

If you try to access a key that has not been defined in a

dict, a KeyError exception will be thrown:

>>> map['key-4']
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 map['key-4']
KeyError: 'key-4'

You can check if the exists in a dict using the in syntax

we saw with Sequences. In the case of dicts, it checks

for the existence of keys.

>>> if 'key-4' in map:
... print(map['key-4'])
... else:
... print('key-4 not there')
...
...
key-4 not there

A more intuitive solution is to use the get() method. If

you have not defined a key in a dict, it returns a supplied

default value. If you have not supplied a default value is

supplied it returns None:

>>> map.get('key-4', 'default-value')
'default-value'

Use del to remove a key-value pair from a dict.

>>> del(map['key-1'])
>>> map
{'key-2': 'value-2', 'key-3': 'value-3'}

The keys() method returns an dict_keys object with the dict’s

keys. The values() method returns an dict_values object and

the items() method returns key-value pairs. This last

method is useful for iterating through the contents of

a dict.

>>> map.keys()
dict_keys(['key-1', 'key-2'])
>>> map.values()
dict_values(['value-1', 'value-2'])
>>> for key, value in map.items():
... print(f"{key}: {value}")
...
...
key-1: value-1
key-2: value-2

Similar to list comprehensions, dict comprehensions are

one line statements returning a dict by iterating through

a sequence:

>>> letters = 'abcde'
>>> # mapping individual letters to their upper-case representations
>>> cap_map = {x: x.upper() for x in letters}

>>> cap_map['b']
'B'

Functions

You have seen some Python built-in functions already.

Now move on to writing your own. Remember,

a function is a mechanism for encapsulating a block of

code. You can repeat the behavior of this block in

multiple spots without having to duplicate the code.

Your code will be better organized, more testable,

maintainable, and easier to understand.

Anatomy of a Function

The first line of a function definition starts with the

keyword def, followed by the function name, function

parameters enclosed in parenthesis, and then :. The rest

of the function is a code block and is indented:

def <FUNCTION NAME>(<PARAMETERS>):

 <CODE BLOCK>

If a string using multi-line syntax is provided first in the

indented block, it acts as documentation. Use these to

describe what your function does, how parameters work,

and what it can be expected to return. You will find

these docstrings are invaluable to communicate with

future users of your code. Various programs and

services also use them to create documentation.

Providing docstrings is considered a best practice and is

highly recommended:

>>> def my_function():
... '''This is a doc string.
...
... It should describe what the function does,
... what parameters work, and what the
... function returns.
... '''

Function arguments occur in the parenthesis following

the function name. They can be either positional or

keyword. Positional arguments use the order of the

arguments to assign value:

>>> def positioned(first, second):
... """Assignment based on order."""
... print(f"first: {first}")
... print(f"second: {second}")
...
...
>>> positioned(1, 2)
first: 1
second: 2
>>>

With keyword arguments, assign each argument a

default value.

>>> def keywords(first=1, second=2):
... '''Default values assigned'''
... print(f"first: {first}")
... print(f"second: {second}")
...
...

The default values are used when no values are passed

during function invocation. The keyword parameters can

be called by name during function invocation, in which

case the order will not matter.

>>> keywords(0)
first: 0
second: 2
>>> keywords(3,4)
first: 3
second: 4

>>> keywords(second='one', first='two')
first: two
second: one

When using keyword parameters, all parameters defined

after a keyword parameter must be keyword parameters

as well. All functions return a value. The return keyword

is used to set this value. If not set from a function

definition, the function returns None.

>>> def no_return():
... '''No return defined'''
... pass
...
>>> result = no_return()
>>> print(result)
None
>>> def return_one():
... '''Returns 1'''
... return 1
...
>>> result = return_one()
>>> print(result)
1

Functions as Objects

Functions are objects. They can be passed around, or

stored in data structures. You can define two functions,

put them in a list, and then iterate through the list to

invoke them:

>>> def double(input):
... '''double input'''
... return input*2
...
>>> double
<function double at 0x107d34ae8>
>>> type(double)
<class 'function'>
>>> def triple(input):
... '''Triple input'''
... return input*3
...
>>> functions = [double, triple]
>>> for function in functions:
... print(function(3))
...
...
6

9

Anonymous Functions

When you need to create a very limited function, you

can create an unnamed (anonymous) one using

the lambda keyword. Generally, you should limit their use

to situations where a function expects a small function

as a argument. In this example, you take

a list of lists and sort it. The default sorting mechanism

compares based on the first item of each sub-list:

>>> items = [[0, 'a', 2], [5, 'b', 0], [2, 'c', 1]]
>>> sorted(items)
[[0, 'a', 2], [2, 'c', 1], [5, 'b', 0]]

To sort based on something other than the first entry,

you can define a method which returns the item’s second

entry and pass it into the sorting function’s key parameter.

>>> def second(item):
... '''return second entry'''
... return item[1]
...
>>> sorted(items, key=second)
[[0, 'a', 2], [5, 'b', 0], [2, 'c', 1]]

With the lambda keyword, you can do the same thing

without the full function definition. Lambda’s work with

the lambda keyword followed by a parameter name, then a

colon and a return value

lambda <PARAM>: <RETURN EXPRESSION>

Sort using lambdas, first using the second entry, and

then using the third.

>>> sorted(items, key=lambda item: item[1])
[[0, 'a', 2], [5, 'b', 0], [2, 'c', 1]]

>>> sorted(items, key=lambda item: item[2])
[[5, 'b', 0], [2, 'c', 1], [0, 'a', 2]]

Be cautious of using lambdas more generally, they can

create code that is poorly documented and confusing to

read if used in place of general functions.

Using Regular Expressions

The need to match patterns in strings comes up again

and again. It could be looking for an identifier in a log

file or checking user input for keywords, a myriad of

other cases. You have already seen simple pattern

matching using the in operation for sequences or the

string .endswith and .startswith methods. To do more

sophisticated matching, you need a more powerful tool.

Regular expressions, often referred to as regex, are the

answer. Regular expressions use a string of characters to

define search patterns. The Python re package offers

regular expression operations similar to those found

Perl. The re module uses backslashes (\) to delineate

special characters used in matching. To avoid confusion

with regular string escape sequences, raw strings are

recommended in defining regular expression patterns.

Raw strings are prepended with an r before the first

quotation mark.

NOTE

Python strings have several escape sequences. Among

the most common are linefeed \n and tab \t

Searching

Let say you have a cc list from an email as a text and

you want to understand more about who is in this list:

In [1]: cc_list = '''Ezra Koenig <ekoenig@vpwk.com>,
 ...: Rostam Batmanglij <rostam@vpwk.com>,
 ...: Chris Tomson <ctomson@vpwk.com,
 ...: Bobbi Baio <bbaio@vpwk.com'''

If you want to know whether a name is in this text, you

could use the in sequence membership syntax:

In [2]: 'Rostam' in cc_list
Out[2]: True

To get similar behavior, you can use the re.search function,

which returns a re.Match object only if there is a match:

In [3]: import re

In [4]: re.search(r'Rostam', cc_list)
Out[4]: <re.Match object; span=(32, 38), match='Rostam'>

You can use this as a conditional to test for membership:

>>> if re.search(r'Rostam', cc_list):
... print('Found Rostam')
...
...
Found Rostam

Character sets

Okay, so far re hasn’t given you anything you couldn’t

do with the in operator. However, what if you are

looking for a person in a text, but you can’t remember if

their name is Bobbi or Robby?

With regular expressions, you can use groups of

character, any one of which could appear in a spot.

These are called character sets. The characters from

which a match should be chosen are enclosed by square

brackets in the regular expression definition. You can

match on B or R followed by obb and either i or y:

In [5]: re.search(r'[R,B]obb[i,y]', cc_list)
Out[5]: <re.Match object; span=(101, 106), match='Bobbi'>

You can put comma–separated individual characters in a

character set, or use ranges. The range A-Z includes all

the capitalized letters, 0–9 the digits from zero to nine:

In [6]: re.search(r'Chr[a-z][a-z]', cc_list)
Out [6]: <re.Match object; span=(69, 74), match='Chris'>

The + after an item in a regular expression matches one

or more of it. A number in brackets matches an exact

number of characters.

In [7]: re.search(r'[A-Za-z]+', cc_list)
Out [7]: <re.Match object; span=(0, 4), match='Ezra'>
In [8]: re.search(r'[A-Za-z]{6}', cc_list)
Out [8]: <re.Match object; span=(5, 11), match='Koenig'>

We can construct a match using a combination of

character sets and other characters to make a naive

match of an email address. The . character has a special

meaning. It is a wildcard and matches any character. To

match against the actual . character, you must escape it

using a backslash:

In [9]: re.search(r'[A-Za-z]+@[a-z]+\.[a-z]+', cc_list)
Out[9]: <re.Match object; span=(13, 29), match='ekoenig@vpwk.com'>

This example is just a demonstration of character sets. It

does not represent the full complexity of a production-

ready regex for emails.

Character Classes

In addition to character sets, Python’s re offers character

classes. These are pre-made characters sets. Some

commonly used ones are \w, which is equivalent to [a-zA-

Z0-9_] and \d which is equivalent to [0-9]. You can use

the + modifier to match for multiple characters:

>>> re.search(r'\w+', cc_list)
<re.Match object; span=(0, 4), match='Ezra'>

And you can replace our primative email matcher

with \w:

>>> re.search(r'\w+\@\w+\.\w+', cc_list)
<re.Match object; span=(13, 29), match='ekoenig@vpwk.com'>

Groups

You can use parentheses to define groups in a match.

These groups can be accessed from the match object.

They are numbered in the order they appear, with the

zero group being the full match.

>>> re.search(r'(\w+)\@(\w+)\.(\w+)', cc_list)
<re.Match object; span=(13, 29), match='ekoenig@vpwk.com'>
>>> matched = re.search(r'(\w+)\@(\w+)\.(\w+)', cc_list)
>>> matched.group(0)
'ekoenig@vpwk.com'
>>> matched.group(1)
'ekoenig'
>>> matched.group(2)
'vpwk'
>>> matched.group(3)
'com'

Named Groups

You can also supply names for the groups by

adding ?P<NAME> in the group definition. Then you can

access the groups by name instead of number:

>>> matched = re.search(r'(?P<name>\w+)\@(?P<SLD>\w+)\.(?P<TLD>\w+)',
cc_list)
>>> matched.group('name')

'ekoenig'
>>> print(f'''name: {matched.group("name")}
... Secondary Level Domain: {matched.group("SLD")}
... Top Level Domain: {matched.group("TLD")}''')
name: ekoenig
Secondary Level Domain: vpwk
Top Level Domain: com

Find All

Up until now, we have demonstrated returning just the

first match found. We can also use findall to return all of

the matches as a list of strings:

>>> matched = re.findall(r'\w+\@\w+\.\w+', cc_list)
>>> matched
['ekoenig@vpwk.com', 'rostam@vpwk.com', 'ctomson@vpwk.com',
'cbaio@vpwk.com']
>>> matched = re.findall(r'(\w+)\@(\w+)\.(\w+)', cc_list)
>>> matched
[('ekoenig', 'vpwk', 'com'), ('rostam', 'vpwk', 'com'),
 ('ctomson', 'vpwk', 'com'), ('cbaio', 'vpwk', 'com')]
>>> names = [x[0] for x in matched]
>>> names
['ekoenig', 'rostam', 'ctomson', 'cbaio']

Find Iterator

When dealing with large texts, such as logs, it is useful

to not process the text all at once. You can produce

an iterator object using the finditer method. This object

processes text until it finds a match, and then stop.

Passing it to the next function returns the current match

and continues processing until finding the next match. In

this way, you can deal with each match individually

without devoting resources to process all of the input at

once.

>>> matched = re.finditer(r'\w+\@\w+\.\w+', cc_list)
>>> matched
<callable_iterator object at 0x108e68748>
>>> next(matched)
<re.Match object; span=(13, 29), match='ekoenig@vpwk.com'>
>>> next(matched)
<re.Match object; span=(51, 66), match='rostam@vpwk.com'>

>>> next(matched)
<re.Match object; span=(83, 99), match='ctomson@vpwk.com'>

The iterator object, matched, can be used in a for loop as

well.

>>> matched = re.finditer("(?P<name>\w+)\@(?P<SLD>\w+)\.(?P<TLD>\w+)",
cc_list)
>>> for m in matched:
... print(m.groupdict())
...
...
{'name': 'ekoenig', 'SLD': 'vpwk', 'TLD': 'com'}
{'name': 'rostam', 'SLD': 'vpwk', 'TLD': 'com'}
{'name': 'ctomson', 'SLD': 'vpwk', 'TLD': 'com'}
{'name': 'cbaio', 'SLD': 'vpwk', 'TLD': 'com'}

Substitution

Besides searching and matching, regexes can be used to

substitute part or all of a string:

>>> re.sub("\d", "#", "The passcode you entered was 09876")
'The passcode you entered was #####'
>>> users = re.sub("(?P<name>\w+)\@(?P<SLD>\w+)\.(?P<TLD>\w+)",
 "\g<TLD>.\g<SLD>.\g<name>", cc_list)
>>> print(users)
Ezra Koenig <com.vpwk.ekoenig>,
Rostam Batmanglij <com.vpwk.rostam>,
Chris Tomson <com.vpwk.ctomson,
Chris Baio <com.vpwk.cbaio

Compiling

All of the examples so far have called methods on

the re module directly. This is adequate for many cases,

but if the same match is going to happen many times,

performance gains can be had by compiling the regular

expression into an object. This object can be re-used for

matches without re-compiling:

>>> regex = re.compile(r'\w+\@\w+\.\w+')
>>> regex.search(cc_list)
<re.Match object; span=(13, 29), match='ekoenig@vpwk.com'>

Regular expressions offer many more features than we

have dealt with here. Indeed many books have been

written on their use, but you should now be prepared for

most basic cases.

Lazy Evaluation

Lazy evaluation is the idea that, especially when dealing

with large amounts of data, you do not want process all

of the data before using the results. You have already

seen this with the range type, where the memory footprint

is the same, even for one representing a large group of

numbers.

Generators

You can use generators in a similar way to range objects.

They perform some operation on data in chunks as

requested. They pause their state in between calls. This

means that you can store variables that are needed to

calculate output and they are accessed every time the

generator is called.

To write a generator function, use the yield keyword

rather than a return statement. Every time the generator

is called, it returns the value specified by yield and then

pauses it’s state until it is next called. Let’s write a

generator that simply counts, return each subsequent

number:

>>> def count():
... n = 0
... while True:

... n += 1

... yield n

...

...
>>> counter = count()
>>> counter
<generator object count at 0x10e8509a8>
>>> next(counter)
1
>>> next(counter)
2
>>> next(counter)
3

Note that the generator keeps track of its state, and

hence the variable n in each call to the generator reflects

the value previously set. Let’s implement a Fibonacci

generator:

>>> def fib():
... first = 0
... last = 1
... while True:
... first, last = last, first + last
... yield first
...
>>> f = fib()
>>> next(f)
1
>>> next(f)
1
>>> next(f)
2
>>> next(f)
3

We can also iterate using the generator in a for loop.

>>> f = fib()
>>> for x in f:
... print(x)
... if x > 12:
... break
...
1
1
2
3
5
8
13

Generator Comprehensions

We can use generator comprehensions to create one–line

generators. They are created using a similar syntax to

list comprehensions, but parentheses are used rather than

square brackets.

>>> list_o_nums = [x for x in range(100)]
>>> gen_o_nums = (x for x in range(100))
>>> list_o_nums
[0, 1, 2, 3, ... 97, 98, 99]
>>> gen_o_nums
<generator object <genexpr> at 0x10ea14408>

Even with this small example, we can see the difference

in memory used by using the sys.getsizeof method which

returns the size of an object in bytes.

>>> import sys
>>> sys.getsizeof(list_o_nums)
912
>>> sys.getsizeof(gen_o_nums)
120

More IPython Features

You saw some of IPython’s features at the beginning of

the chapter. Now let’s look at some more advanced

features, running shell commands from within the

IPython interpreter and using magic functions.

Using IPython to Run Unix Shell
Commands

You can use IPython to run shell commands. This is one

of the most compelling reasons to perform DevOps

actions in the IPython shell. Let’s take a look at a very

simple example where the ! character, which IPython

uses to identify shell commands, is put in front of the

command ls:

In [3]: var_ls = !ls -l
In [4]: type(var_ls)
Out[4]: IPython.utils.text.SList

The output of the command is assigned to a Python

variable var_ls. The type of this variable

is IPython.utils.text.SList. The SList type converts a regular

shell command into an object that has three main

methods: fields, grep, sort. Here is an example in action

using the Unix df command. The sort method can

interpret the white space from this Unix command and

then sort the third column by size.

In [6]: df = !df
In [7]: df.sort(3, nums = True)

Let’s take a look at SList and .grep next. Here is an

example that greps for what kill commands are installed

in the /usr/bin directory:

In [10]: ls = !ls -l /usr/bin
In [11]: ls.grep("kill")
Out[11]:
['-rwxr-xr-x 1 root wheel 1621 Aug 20 2018 kill.d',
 '-rwxr-xr-x 1 root wheel 23984 Mar 20 23:10 killall',
 '-rwxr-xr-x 1 root wheel 30512 Mar 20 23:10 pkill']

The key take away here is this is that IPython a dream

environment for hacking around with little shell scripts.

USING IPYTHON MAGIC COMMANDS

If you get in the habit of using IPython, you should also

get in the habit of using built-in magic commands. They

are essentially shortcuts that pack a big punch. Magic

commands are indicated by prepending them with %%.

Here is an example of how to write inline bash inside of

IPython. Note, this is just a small command, but it could

be an entire bash script:

In [13]: %%bash
 ...: uname -a
 ...:
 ...:
Darwin nogibjj.local 18.5.0 Darwin Kernel Version 18.5.0: Mon Mar ...

The %%writefile is pretty tricky because you can write and

test Python or Bash scripts on the fly, using IPython to

execute them. Not a bad party trick at all:

In [16]: %%writefile print_time.py
 ...: #!/usr/bin/env python
 ...: import datetime
 ...: print(datetime.datetime.now().time())
 ...:
 ...:
 ...:
Writing print_time.py

In [17]: cat print_time.py
#!/usr/bin/env python
import datetime
print(datetime.datetime.now().time())

In [18]: !python print_time.py
19:06:00.594914

Another very useful command, %who, will show you what

is loaded into memory. It comes in quite handy when

you have been working in a terminal that has been

running for a long time:

In [20]: %who
df ls var_ls

Exercises

 Write a Python function which takes a name as an

argument and prints that name.

 Write a Python function which takes a string as an

argument and prints whether it is upper or lower

case.

 Write a list comprehension which results in a list of

every letter in the word smogtether capitalized.

 Write a generator which alternates between

returning Even and Odd.

