
Chapter 1. What Is Cloud Native? 

Cloud native is more than a tool set. It is a complete architecture, a 

philosophical approach for building applications that take full advantage 

of cloud computing. It is also complex, both conceptually and in 

practice. 

In this chapter we will take a look at the major components of a cloud 

native system—the five principles—and how they work together. 

Understanding these core concepts helps newcomers see how the true 

value of cloud native lies in harnessing the ecosystem of extraordinarily 

sophisticated services now available to all enterprises, not just the tech 

giants. 

Cloud Native Is Not “The Cloud” 

Though the terms are often confused, cloud computing and cloud native 

are two entirely separate entities. 

Cloud computing—often referred to simply as “the Cloud”—is the on-

demand delivery of infrastructure (hardware/servers), storage, databases, 

and all kinds of application services via the internet. Frequently these are 

delivered by a cloud services platform like Amazon Web Services, 

Google Cloud, or Microsoft Azure, with metered pricing so you pay 

only for the resources you actually consume. 

Cloud native is an architecture for assembling all of the above cloud-

based components in a way that is optimized for the cloud 

environment. It’s not about the servers, but the services. So cloud native 

is also an organizational destination: the current goal for enterprises 

looking to modernize their infrastructure and process, and even 

organizational culture, carefully choosing the cloud technologies that 

best fit their specific case. (At least, the goal for now—eventually, even 

quite soon, cloud native will be replaced by another paradigm that once 

again completely changes our way of doing things). 

There! That was easy. 



Perhaps too easy, actually. After all, there are innumerable paths for 

reaching your cloud native migration destination. Identifying, 

provisioning, and then deploying the just-right combination of services 

to best take advantage of this new, rapidly evolving world among the 

clouds can take very different forms, depending on the needs of a 

particular organization. It’s easy to get lost. 

For enterprises ready to undertake their own cloud migration, staying on 

track means focusing on the architecture: understanding and prioritizing 

design before jumping into full-on implementation and deployment. 

Over the course of five years spent guiding enterprises onto the cloud, 

Container Solutions engineers have learned a thing or two (or three) 

about helping each company find its own optimal route. We are most 

definitely not prescribing any “top-down” one-size-fits-all solution. We 

have by now, however, through observation and experience, collected 

enough data to identify some landmarks necessary for mapping that 

route. 

Developing a cloud native pattern language is the next step in drawing a 

useful, and reusable, roadmap. A shared language for identifying 

common contexts and discussing tools, techniques, and methods is 

essential for developers to be able to discuss, learn, and apply the best 

practices in cloud native—even as they continue emerging. 

But first let’s take a quick, basic look at how cloud native works. 

A Cloud Native Primer 

Let’s begin with the closest thing to an official definition for “cloud 

native”: 

Cloud native computing uses an open source software stack to deploy 

applications as microservices, packaging each part into its own 

container, and dynamically orchestrating those containers to optimize 

resource utilization. 

This comes from the Cloud Native Computing Foundation (CNCF), the 

entity that oversees and coordinates the emergence of open source 

technologies that support cloud native software development. CNCF 



emphasizes open source technologies, but there are also important cloud 

native tools offered by commercial providers. 

Essentially, cloud native is the name of a particular approach to 

designing, building, and running computer applications. The architecture 

rests upon Infrastructure-as-a-Service, combined with new operational 

tools and services like continuous integration, container engines, and 

orchestrators. The objective, usually, is to improve speed. Companies of 

all sizes now see strategic advantage in being able to move quickly and 

get to market fast—putting a new idea into production within days or 

even hours, instead of months. 

In fact, most enterprises migrating to cloud native these days cite 

velocity as their primary motive. 

How Do I Know Cloud Native When I See It? 

The fundamentals of cloud native are most often described as container 

packaging, dynamic management, and a modular distributed 

architecture. 

We, however, believe cloud native is actually about adopting five 

architectural principles (which is hard) plus two cultural ones (which is 

even harder): 

 Containerization: Encapsulating applications together with their 

dependencies/operating environment, all in a single package. This 

makes them easy to test, move, and deploy. 

 Dynamic management: Using cloud-based servers that can be 

flexibly provisioned on demand; if on a public cloud, which is 

typical, companies pay only for resources when they are actually 

used. 

 Microservices: Designing applications as a collection of small, 

decoupled component services. Each microservice can be 

deployed, upgraded, scaled, and restarted independent of other 

services in the application, and with no impact on the end user. 

Microservices increase velocity by allowing teams to develop in 

parallel, working on their components simultaneously yet 

independently, thanks to the elimination of dependencies and the 

coordination efforts that come with them. 



 Automation: Replacing manual tasks, like maintenance and 

updating, with scripts or code so they happen seamlessly and 

reliably. 

 Orchestration: Tying it all together by automating the 

deployment, scaling, and management of containerized 

applications. Specifically, using Kubernetes (or another 

orchestration tool) to control and automate tasks such as the 

availability, provisioning, and deployment of containers, load 

balancing of containers across infrastructure, and scaling up/down 

by adding/removing containers as needed. 

The two cultural principles are: 

 Delegation: Offering individuals the tools, training, and discretion 

they need to safely make changes, then deploy and monitor them 

as autonomously as possible (i.e., without needing to hand off to 

other teams or seek permission through a slow management 

approval process). 

 Dynamic strategy: Communicating strategy to teams, but allow 

them to modify that strategy in response to their results. That is the 

ultimate purpose of the fast, experimental deployment that cloud 

native provides: there’s no point running experiments if you don’t 

make use of what you learn. 

Ultimately, cloud native is about how we create and deliver, not where. 

So, when you see an application built and deployed in rapid iterations by 

a squad of independent, compact feature development teams—and those 

teams are collaborating via an integrated platform that decouples 

infrastructure while providing automated monitoring and testing—that is 

when you know you are looking at the cloud native approach in action. 

We are not considering the cloud native approach because it’s the 

current hot tech (though this is undeniably true). Our motivation is 

pragmatic: cloud native works well with fast, modern software delivery 

methods like continuous delivery to provide faster time to value; it 

scales horizontally and effortlessly; and it can be very efficient to 

operate. cloud native architecture also allows us to create complex 

systems by dividing them into smaller components built by independent 

teams. This differs from traditional monolithic application complexity, 



which is limited by the ability of the developers and architects to fully 

understand it even as it chains them together to deliver in unison. 

Most importantly, cloud native can help reduce risk in a new way: going 

fast but small. So how and where do we start building? 

It’s All About Services 

The heart of cloud native is cloud-based services. This is the platform 

upon which we build, launch, and operate our distributed, containerized, 

and automated modular application empire. There are different types of 

services available from public cloud providers: 

 Infrastructure-as-a-Service: This is the obvious one, and it 

includes off-premises hardware, data storage, and networking. 

Hiring infrastructure rather than owning it allows you to maximize 

the creativity of each team instead of limiting it to the capabilities 

of a central architecture team. 

 Platform-as-a-Service: This can be used to manage and maintain 

all that virtualized infrastructure, greatly reducing the load on your 

Ops (or Platform) team. 

 Software-as-a-Service: Allows you to pick and choose component 

applications, everything from traditional business software (think 

MS Office 365 or Adobe Creative Cloud) to virtual infrastructure 

management tools, all delivered via—and operated over—the web. 

The provider ensures security, availability, and performance. 

 Container-as-a-Service: Lets you hand over container engines, 

orchestration, and all underlying compute resources for delivery to 

users as a service from your cloud provider. 

 *-as-a-Service: If you can dream it, if your business requires it, 

there is probably a service for it. If it doesn’t exist right now, just 

wait a month or two. Backend-as-a-Service, Functions-as-a-

Service—these once pie-in-the-sky services are now crossing the 

chasm into full enterprise introduction even as we write this book. 

All cloud services arrive pre-built and ready to wire up with any other 

services, so you can get right to work more or less instantly. However, in 

order to use them effectively, you must use the right architecture. 

Understanding the Principles 



Cloud native is a lot to wrap your head around: it’s an architecture, a 

tech stack, an approach to software development and delivery, and a 

complete paradigm shift all rolled into one! To confuse things even 

more, cloud native implementations vary widely between enterprises 

thanks to the sheer number of tools available as well as the complexity 

they offer. It’s dangerous to go alone, so take this: the five principles of 

cloud native architecture. They are the defining elements that appear (or 

at least very much ought to appear) in every cloud native 

implementation, no matter what your company’s size or sector. 

Recognizing these five principles, and understanding how they 

interrelate and support each other, will give you a working knowledge of 

cloud native fundamentals. 

To reiterate, the five principles consist of: 

 Containerization 

 Dynamic management 

 Microservices 

 Automation 

 Orchestration 

Containerization: Once you’ve defined your service-based architecture, 

it only makes sense (for just about everybody, everywhere) to 

containerize things. Containers are lightweight, standalone executable 

software packages that include everything required to run an application: 

code, runtime, system tools, libraries, and settings. They are a sort of 

“standard unit” of software that packages up the code with all of its 

dependencies so it can run anywhere, in any computing environment. 

You can link containers together, set security policies, limit resource 

usage, and more. 

Think of them as scalable and isolated virtual machines in which you 

run your applications. (We know this statement has historically launched 

a thousand flame wars, so let’s at least agree that containers are simply 

much faster, OK?). Containers isolate an application and its 

dependencies, even its own operating system, into a self-contained unit 

that can run on any platform, anywhere. This means you can host and 



deploy duplicate containers worldwide (thanks to your Infrastructure-as-

a-Service!) so your operations are flexible, reliable, and fast. 

Dynamic management: This is where your new system absolutely 

shines. In short, dynamic management means making optimum use of 

the benefits conferred by your new cloud platform. Compute, network, 

and storage resources are provisioned on-demand, using standardized 

APIs, without upfront costs—and in real-time response to real business 

needs. 

Dynamic management takes away the costs typically involved in 

capacity planning and provisioning of hardware resources. Instead, a 

team of engineers can start deploying value to production in a matter of 

hours. Resources can also be de-allocated just as quickly, closely 

mirroring changes in customer demand. 

Operating compute, network, and storage resources is traditionally a 

difficult task that requires specialized skills. Obtaining these skills is 

often time-consuming and expensive. Even more important, though, is 

speed: humans are never going to be able to respond as quickly to cycle 

up and down as demand surges and sinks. Letting your chosen cloud 

platform run things dynamically means resource life cycles get managed 

automatically and according to unwaveringly high availability, 

reliability, and security standards. 

Microservices: Microservices (microservice architecture) is an 

approach to application development in which a large application is built 

as a suite of modular components or services. Each service runs a unique 

process and often manages its own database. A service can generate 

alerts, log data, support UIs and authentication, and perform various 

other tasks. Microservices communicate via APIs and enable each 

service to be isolated, rebuilt, redeployed, and managed independently. 

They also enable development teams to take a more decentralized (non-

hierarchical) and cross-functional approach to building software. By 

using microservices to break up a monolithic entity into smaller distinct 

pieces, each team can own one piece of the process and deliver it 

independently. Ideally, some of these parts can even be acquired as an 

on-demand *-as-a-Service from the cloud. 



Think about the companies setting the bar for everyone else in terms of 

performance, availability and user experience: Netflix, Amazon, the 

instant messaging platform WhatsApp, the customer-relationship 

management application Salesforce, even Google’s core search 

application. Each of these systems require everything from login 

functionality, user profiles, recommendation engines, personalization, 

relational databases, object databases, content delivery networks, and 

numerous other components all served up cohesively to the user. By 

breaking all this functionality into modular pieces and delivering each 

service separately and independently, you increase agility. Each 

microservice can be written in the most appropriate language for its 

particular purpose, managed by its own dedicated team, and scaled up or 

down independently as needed. And, unlike in a tightly coupled 

monolithic application, the blast radius from any change is contained 

within that microservice’s footprint. 

Automation: Manual tasks are replaced with automated steps in scripts 

or code. Examples are automated test frameworks, configuration 

management, continuous integration, and continuous deployment tools. 

Automation improves the reliability of the system by limiting human 

errors in repetitive tasks and operationally intensive procedures. In turn, 

this frees up people and resources to focus on the core business instead 

of endless maintenance tasks. 

Simply put, if you are trying to go cloud native but don’t have 

automation then you are rapidly going to get yourself in a mess. 

Enterprises come to the cloud to deploy more quickly and frequently. If 

you haven’t fully automated your deployment processes, then suddenly 

your Ops staff are spending all that time they save by no longer 

managing those on-premises servers to instead manually deploy your 

new, expedited production cycle. More frequent deployments also mean 

more opportunities to screw up every week; putting things into 

production faster and scaling them faster also means generating bugs 

faster. Automated deployment takes the grunt work out of constant 

implementation, while automated testing finds problems before they 

become crises. 

Orchestration: Once microservices architecture is in place and 

containerized, it is time to orchestrate the pieces. A true enterprise-level 

application will span multiple containers, which must be deployed 



across multiple server hosts that form a comprehensive container 

infrastructure, including security, networking, storage, and other 

services. An orchestration engine deploys the containers, at scale, for 

required workloads while scheduling them across a cluster while scaling 

and maintaining them—all the while integrating everything with the 

container infrastructure. 

Orchestration encourages the use of common patterns when planning the 

architecture of services and applications, which both improves reliability 

and reduces engineering efforts. Developers are freed from solving 

lower-level abstractions and get to focus on the application’s overall 

architecture. 

This is where Kubernetes comes in, and it is one of the very last things 

to be done in a cloud native migration. If you implement an orchestrator 

first, you are fighting a battle on simultaneous fronts. Using an 

orchestrator effectively is a highly complex endeavor; getting that right 

often depends on the flexibility, speed, and ability to iterate you have put 

in place first. Other cloud native principles—cloud 

infrastructure/dynamic management and automation—must be in place 

first. Quite often, when experts are called in to work with a company 

whose cloud migration has gone wrong, what we find is that they have 

put in an orchestrator before things were otherwise in place. 

Use your platform to build your platform—before you start worrying 

about orchestrating all the pieces! 

Fitting Everything Together 

The five (technical) principles, constructed in the proper order, are all 

essential supports in a cloud native architecture. One, however, may be 

even more important than all the others: microservices. 

Microservices occupy a central role among the five principles. In order 

to get microservices right, you must have a mature approach to all four 

of the other principles. At the same time, containers, dynamic 

management, automation, and orchestration are truly powerful only 

when combined with microservices architecture. Figure 1-1 shows how 

everything fits together. 

https://learning.oreilly.com/library/view/cloud-native-transformation/9781492048893/ch01.html#the_relationship_diagram_between_the


 

Figure 1-1. The relationship diagram between the five principles of cloud native architecture 

For example, one of the main advantages of containerization is that it 

enables heterogeneous applications to be packaged in a standardized 

way. This is not very compelling if your entire business logic is built 

inside a monolith. Similarly, you could apply dynamic management to 

such a classic homogeneous enterprise application on public 

infrastructure or a Platform-as-a-Service cloud provider. Doing so, 

though, means wasting the capability of scaling up and down in response 

to your business needs. 

And, yes, while it is true that automation can still be applied to 

monolithic architecture, at least to a certain degree, the level of 

automation achievable with microservices is vastly higher given their 

self-contained, independent nature. Finally, modern orchestration 

platforms assume that applications will be composed of smaller, 

containerized services. A “lift and shift” cloud migration of a traditional 

application to run in containers on top of modern orchestrators is 

possible. However, it requires a great deal of adaptation and 

investment—all while failing to capture the significant benefits of 

microservices architecture. 

There are cases where doing a lift and shift of an existing monolithic app 

to run on a cloud native platform is a reasonable choice. Companies with 

existing cloud native expertise can find advantages in moving an 

application to the cloud first, before re-architecting to optimize it to run 

there. This doesn’t get you to full cloud native, but instead jump-starts 

your journey in two out of five areas as a starting point for further 

transformation. So, in the right circumstances, there can be some value 

in this approach. 

Experience is essential, however: if you’re going to use an experienced 

partner to guide your cloud native transformation, you may get it right. 

But the risk of doing it on your own is way too high for the value. We 

too often see companies with limited cloud knowledge trying to simply 

shift their existing monolith onto the cloud as an end goal rather than a 

starting point. This requires a lot of time and resource investment with 

only limited benefits—at which point many companies will get 

discouraged and delay, or even cancel, further transformation efforts. 



The most compelling argument for placing microservices at the center of 

cloud native principles is the fact that they encapsulate business logic, 

the differentiating factor for any enterprise. Microservices are capable of 

representing the processes by which a business delivers value to its 

customers. Ultimately, this shortens the distance between strategy 

definition and execution—serving the need for speed that brings most 

enterprises to cloud native in the first place. 

However they are deployed, these five principles now have techniques 

and tools behind them that are approaching full maturity and 

commoditization. The ease of use and robust tooling offered by current 

containers and orchestration platforms is truly impressive. Once upon a 

time (four years ago) the world’s most advanced technologies were 

attainable at true production scale only by large companies who could 

maintain in-house IT teams dedicated to the development, care, and 

feeding of powerful but still immature innovations like containers and 

microservices. The competitive advantages these technologies confer are 

now publicly available, commoditized and available to anyone with an 

internet connection and a credit card. 

 


