
Chapter 1. Introducing Asyncio 

My story is a lot like yours, only more interesting ’cause it involves robots. 

Bender, Futurama episode “30% Iron Chef” 

The most common questions I receive about Asyncio in Python 3 are 

these: “What is it, and what do I do with it?” The following story 

provides a backdrop for answering these questions. The central focus of 

Asyncio is about how to best perform multiple concurrent tasks at the 

same time. And not just any sort of tasks, but specifically tasks that 

involve waiting periods. The key insight required with this style of 

programming is that while you wait for this task to complete, work 

on other tasks can be performed. 

The Restaurant of ThreadBots 

The year is 2051, and you find yourself in the restaurant business. 

Automation, largely by robot workers, powers most of the economy, but 

it turns out that humans still enjoy going out to eat once in a while. In 

your restaurant, all the employees are robots—humanoid, of course, but 

unmistakably robots. The most successful manufacturer of robots is of 

course Threading Inc., and robot workers from this company have come 

to be called “ThreadBots.” 

Except for this small robotic detail, your restaurant looks and operates 

like one of those old-time restaurants from, say, 2018. Your guests will 

be looking for that vintage experience. They want fresh food prepared 

from scratch. They want to sit at tables. They want to wait for their 

meals—but only a little. They want to pay at the end, and they 

sometimes even want to leave a tip, for old-time’s sake, of course. 

Naturally, being new to the robotic restaurant business, you do what 

every other restaurateur does, and you hire a small fleet of robots: one to 

greet new diners at the front desk (GreetBot), one to wait tables and take 

orders (WaitBot), one to do the cooking (ChefBot), and one to manage 

the bar (WineBot). 



Hungry diners will arrive at the front desk and be welcomed by 

GreetBot, your front-of-house ThreadBot. They are then directed to a 

table, and once they are seated, WaitBot will take their order. Then, 

WaitBot will take that order to the kitchen on a slip of paper (because 

you want to preserve that old-time experience, remember?). The 

ChefBot will look up the order on the slip and begin preparing the food. 

The WaitBot will periodically check whether the food is ready, and 

when it is, will immediately take the dish to the customer’s table. When 

the guests are ready to leave, they return to GreetBot who calculates the 

bill, and graciously wishes them a pleasant evening. 

You open your restaurant, and exactly as you had anticipated, your 

menu is a hit and you soon grow a large customer base. Your robot 

employees do exactly what they’re told, and they are perfectly good at 

the tasks you assign them. Everything is going really well, and you 

really couldn’t be happier. 

Over time, however, you do begin to notice some problems. Oh, it’s 

nothing truly serious. Just a few things that seem to go wrong. Every 

other robotic restaurant owner seems to have similar niggling glitches. It 

is a little worrying that these problems seem to get worse the more 

successful you become. 

Though rare, there are the occasional collisions that are very unsettling: 

sometimes, when a plate of food is ready in the kitchen, the WaitBot 

will grab it before the ChefBot has even let go of the plate. This usually 

shatters the plate and leaves a big mess. ChefBot cleans it up of course, 

but still, you’d think that these top-notch robots would know how to be a 

bit more synchronized with each other. This happens at the bar too: 

sometimes WineBot will place a new drink order on the bar and WaitBot 

will grab it before WineBot has let go, resulting in broken glass and 

spilled Nederburg Cabernet Sauvignon. 

Sometimes GreetBot will seat new diners at exactly the same moment 

that WaitBot has decided to clean what it thought was an empty table. 

It’s pretty awkward for the diners. You’ve tried adding delay logic to the 

WaitBot’s cleaning function, or delays to the GreetBot’s seating 

function, but these don’t really help, because the collisions still occur. 

But at least these events are rare. 



Well, these used to be rare events. Your restaurant got so popular that 

you’ve had to hire a few more ThreadBots. For very busy Friday and 

Saturday evenings, you’ve had to add a second GreetBot and two extra 

WaitBots. Unfortunately the hiring contracts for ThreadBots mean that 

you have to hire for a whole week, so this effectively means that for 

most of the quiet part of the week, you’re carrying three extra 

ThreadBots that you don’t really need. 

The other resource problem, in addition to the extra cost, of course, is 

that it’s more work for you to deal with these extra ThreadBots. It was 

fine to keep tabs on just four bots, but now you’re up to seven. Keeping 

track of seven ThreadBots is a lot more work, and because your 

restaurant keeps getting more and more famous, you become worried 

about taking on even more ThreadBots. It’s going to become a full-time 

job just to keep track of what each ThreadBot is doing. Another thing: 

these extra ThreadBots are using up a lot more space inside your 

restaurant. It’s becoming a tight squeeze for your customers, what with 

all these robots zipping around. You’re worried that if you need to add 

even more bots, this space problem is going to get even worse. You 

want to use the space in your restaurant for customers, not ThreadBots. 

The collisions have also become worse since you added more 

ThreadBots. Now, sometimes two WaitBots take the exact same order 

from the same table at the same time. It’s as if they both noticed that the 

table was ready to order and moved in to take it, without noticing that 

the other WaitBot was doing the exact same thing. As you can imagine, 

this results in duplicated food orders, which causes extra load on the 

kitchen and increases the chance of collisions when picking up the ready 

plates. You’re worried that if you added more WaitBots, this problem 

might get worse. 

Time passes. 

Then, during one very, very busy Friday night service, you have a 

singular moment of clarity: time slows, lucidity overwhelms you, and 

you see a snapshot of your restaurant frozen in time. My ThreadBots are 

doing nothing! Not really nothing, to be fair, but they’re just…waiting. 

Each of your three WaitBots at different tables is waiting for one of the 

diners at their table to give their order. The WineBot already prepared 



17 drinks, which are now waiting to be collected (it took only a few 

seconds), and is now waiting for a new drink order. One of the 

GreetBots has greeted a new party of guests, told them they need to wait 

a minute to be seated, and is waiting for the guest to respond. The other 

hostbot, now processing a credit card payment for another guest that is 

leaving, is waiting for confirmation on the payment gateway device. 

Even the ChefBot, who is currently cooking 35 meals, is not actually 

doing anything at this moment, but is simply waiting for one of the 

meals to complete cooking so that it can be plated up and handed over to 

a WaitBot. 

You realize that even though your restaurant is now full of ThreadBots, 

and you’re even considering getting more (with all the problems that 

entails), the ones that you currently have are not even being fully 

utilized. 

The moment passes, but not the realization. On Sunday, you add a data 

collection module to your ThreadBots. For each threadbot, you’re 

measuring how much time is spent waiting and how much is spent 

actively doing work. Over the course of the following week, the data is 

collected and then on Sunday evening you analyze the results. It turns 

out that even when your restaurant is at full capacity, the most 

hardworking ThreadBot is idle about 98% of the time. The ThreadBots 

are so enormously efficient that they can perform any task in fractions of 

a second. 

As an entrepreneur, this inefficiency really bugs you. You know that 

every other robotic restaurant owner is running their business the same 

as you, with many of the same problems. But, you think, slamming your 

fist on your desk, “There must be a better way.” 

So the very next day, which is a quiet Monday, you try something very 

bold: you program a single ThreadBot to do all the tasks. Every time it 

begins to wait, even for a second, instead of waiting, the ThreadBot 

switches to the next task, whatever it may be in the entire restaurant. It 

sounds incredible at face value, only one ThreadBot doing the work of 

all the others, but you’re confident that your calculations are correct. 

And besides, Monday is a very quiet day; even if something goes wrong, 

the impact will be small. For this new project, you call the bot “loopbot” 

because it will loop over all the jobs in the restaurant. 



The programming was more difficult than usual. It isn’t just that you had 

to program one ThreadBot with all the different tasks; you also had to 

program some of the logic of when to switch between tasks. But by this 

stage, you’ve had a lot of experience with programming these 

ThreadBots so you manage to get it done. 

You watch your loopbot like a hawk. It moves between stations in 

fractions of a second, checking whether there is work to be done. Not 

long after opening, the first guest arrives at the front desk. The loopbot 

shows up almost immediately, and asks whether the guest would like a 

table near the window or near the bar. But then, as the loopbot begins to 

wait, its programming tells it to switch to the next task, and it whizzes 

off. This seems like a dreadful error, but then you see that as the guest 

begins to say “window please,” the loopbot is back. It receives the 

answer and directs the guest to table 42. And off it goes again, checking 

for drinks orders, food orders, table cleanup, and arriving guests, over 

and over again. 

Late Monday evening, you congratulate yourself on a remarkable 

success. You check the data collection module on the loopbot, and it 

confirms that even with a single ThreadBot doing the work of seven, the 

idle time was still around 97%. This result gives you the confidence to 

continue the experiment all through the rest of the week. 

As the busy Friday service approaches, you reflect on the great success 

of your experiment. For service during a normal working week, you can 

easily manage the workload with a single loopbot. And there is another 

thing you’ve noticed: you don’t see any more collisions. It makes sense: 

since there is only one loopbot, it cannot get confused with itself. No 

more duplicate orders going to the kitchen, and no more confusion about 

when to grab a plate or drink. 

Friday evening service begins, and as you had hoped, the single 

ThreadBot keeps up with all the customers and tasks, and service is 

proceeding even better than before. You imagine that you can take on 

even more customers now, and you don’t have to worry about having to 

bring on more ThreadBots. You think of all the money you’re going to 

save. 



Unfortunately, something goes wrong: one of the meals, an intricate 

souffle, has flopped. This has never happened before in your restaurant. 

You begin to study the loopbot more closely. It turns out that at one of 

your tables, there is a very chatty guest. This guest has come to your 

restaurant alone, and keeps trying to make conversation with your 

loopbot, even sometimes holding your loopbot by the hand. When this 

happens, your loopbot is unable to dash off and attend to the ever-

growing list of tasks elsewhere in your restaurant. This is why the 

kitchen produced its first flopped souffle. Your loopbot was unable to 

make it back to the kitchen to remove a souffle from the oven, because it 

was held up by a guest. 

Friday service finishes, and you head home to reflect on what you have 

learned. It’s true that the loopbot could still do all the work that was 

required on a busy Friday service; but on the other hand, your kitchen 

produced its very first spoiled meal, something that had never happened 

before. Chatty guests used to keep WaitBots busy all the time, but that 

never affected the kitchen service at all. 

All things considered, you decide, it is still better to continue using a 

single loopbot. Those worrying collisions no longer occur, and there is 

much more space in your restaurant, space that you can use for more 

customers. But you realize something profound about the loopbot: it can 

only be effective if every task is short; or at least can be performed in a 

very short period of time. If any activity keeps the loopbot busy for too 

long, other tasks will begin to suffer neglect. 

It is difficult to know in advance which tasks may take too much time. 

What if a guest orders a cocktail that requires very intricate preparation, 

much more than usual? What if a guest wants to complain about a meal 

at the front desk, refuses to pay, and grabs the loopbot by the arm, 

preventing it from task-switching? You decide that instead of figuring 

out all of these issues up front, it is better to continue with the loopbot, 

record as much information as possible, and deal with any problems 

later as they arise. 

More time passes. 

Gradually, other restaurant owners notice your operation, and eventually 

they figure out that they too can get by, and even thrive, with only a 



single ThreadBot. Word spreads. Soon every single restaurant operates 

in this way, and it becomes difficult to remember that robotic restaurants 

ever operated with multiple ThreadBots at all. 

Epilogue 

In our story, each of the robot workers in the restaurant is a single 

thread. The key observation in the story is that the nature of the work in 

our restaurant involves a great deal of waiting, just as requests.get() is 

waiting for a response from a server. 

In a restaurant, the worker time spent waiting isn’t huge when slow 

humans are doing manual work, but when super-efficient and quick 

robots are doing the work, then nearly all their time is spent waiting. 

With computer programming, the same is true when network 

programming is involved. CPUs do “work” and “wait” on network I/O. 

CPUs in modern computers are extremely fast—hundreds of thousands 

of times faster than network traffic. Thus, CPUs running networking 

programs spend a great deal of time waiting. 

The insight in the story is that programs can be written to explicitly 

direct the CPU to move between work tasks as necessary. Although 

there is an improvement in economy (using fewer CPUs for the same 

work), the real advantage, compared to a threading (multi-CPU) 

approach, is the elimination of race conditions. 

It’s not all roses, however: as we found in the story, there are benefits 

and drawbacks to most technology solutions. The introduction of the 

loopbot solved a certain class of problems, but also introduced new 

problems—not least of which is that the restaurant owner had to learn a 

slightly different way of programming. 

 


