
Chapter 1. The Architecture of Swift

It will be useful at the outset for you to have a general sense of how the

Swift language is constructed and what a Swift-based iOS program

looks like. This chapter will survey the overall architecture and nature of

the Swift language. Subsequent chapters will fill in the details.

Ground of Being

A complete Swift command is a statement. A Swift text file consists of

multiple lines of text. Line breaks are meaningful. The typical layout of

a program is one statement, one line:

print("hello")

print("world")

(The print command provides instant feedback in the Xcode console.)

You can combine more than one statement on a line, but then you need

to put a semicolon between them:

print("hello"); print("world")

You are free to put a semicolon at the end of a statement that is last or

alone on its line, but no one ever does (except out of habit, because C

and Objective-C require the semicolon):

print("hello");

print("world");

Conversely, a single statement can be broken into multiple lines, to

prevent long statements from becoming long lines. But you should try to

do this at sensible places so as not to confuse Swift. After an opening

parenthesis is a good place:

print(

 "world")

Comments are everything after two slashes in a line (so-called C++-style

comments):

print("world") // this is a comment, so Swift ignores it

You can also enclose comments in /*...*/, as in C. Unlike C, C-style

comments can be nested.

Many constructs in Swift use curly braces as delimiters:

class Dog {

 func bark() {

 print("woof")

 }

}

By convention, the contents of curly braces are preceded and followed

by line breaks and are indented for clarity, as shown in the preceding

code. Xcode will help impose this convention, but the truth is that Swift

doesn’t care, and layouts like this are legal (and are sometimes more

convenient):

class Dog { func bark() { print("woof") }}

Swift is a compiled language. This means that your code must build —

passing through the compiler and being turned from text into some

lower-level form that a computer can understand — before it

can run and actually do the things it says to do. The Swift compiler is

very strict; in the course of writing a program, you will often try to build

and run, only to discover that you can’t even build in the first place,

because the compiler will flag some error, which you will have to fix if

you want the code to run. Less often, the compiler will let you off with

a warning; the code can run, but in general you should take warnings

seriously and fix whatever they are telling you about. The strictness of

the compiler is one of Swift’s greatest strengths, and provides your code

with a large measure of audited correctness even before it ever runs.

The Swift compiler’s error and warning messages range from the

insightful to the obtuse to the downright misleading. You will

sometimes know that something is wrong with a line of code, but the

Swift compiler will not be telling you clearly exactly what is wrong or

even where in the line to focus your attention. My advice in these

situations is to pull the line apart into several lines of simpler code until

you reach a point where you can guess what the issue is. Try to love the

compiler despite the occasional unhelpful nature of its messages.

Remember, it knows more than you do, even if it is sometimes rather

inarticulate about its knowledge.

Everything Is an Object?

In Swift, “everything is an object.” That’s a boast common to various

modern object-oriented languages, but what does it mean? Well, that

depends on what you mean by “object” — and what you mean by

“everything.”

Let’s start by stipulating that an object, roughly speaking, is something

you can send a message to. A message, roughly speaking, is an

imperative instruction. For example, you can give commands to a dog:

“Bark!” “Sit!” In this analogy, those phrases are messages, and the dog

is the object to which you are sending those messages.

In Swift, the syntax of message-sending is dot-notation. We start with

the object; then there’s a dot (a period); then there’s the message. (Some

messages are also followed by parentheses, but ignore them for now; the

full syntax of message-sending is one of those details we’ll be filling in

later.) This is valid Swift syntax:

fido.bark()

rover.sit()

By the way, a dot is also another good place to break up a long line

(before the dot):

fido

 .bark()

The idea of everything being an object is a way of suggesting that even

“primitive” linguistic entities can be sent messages. Take, for

example, 1. It appears to be a literal digit and no more. It will not

surprise you, if you’ve ever used any programming language, that you

can say things like this in Swift:

let sum = 1 + 2

But it is surprising to find that 1 can be followed by a dot and a message.

This is legal and meaningful in Swift (don’t worry about what it actually

means):

let s = 1.description

But we can go further. Return to that innocent-looking 1 + 2 from our

earlier code. It turns out that this is actually a kind of syntactic trickery,

a convenient way of expressing and hiding what’s really going on. Just

as 1 is actually an object, + is actually a message; but it’s a message with

special syntax (operator syntax). In Swift, every noun is an object, and

every verb is a message.

Perhaps the ultimate acid test for whether something is an object in

Swift is whether you can modify it. An object type can be extended in

Swift, meaning that you can define your own messages on that type. For

example, you can’t normally send the sayHello message to a number, but

you can change a number type so that you can:

extension Int {

 func sayHello() {

 print("Hello, I'm \(self)")

 }

}

1.sayHello() // outputs: "Hello, I'm 1"

In Swift, then, 1 is an object. In some languages, such as Objective-C, it

clearly is not; it is a “primitive” or scalar built-in data type. So the

distinction being drawn here is between object types on the one hand

and scalars on the other. In Swift, there are no scalars; all types are

ultimately object types. That’s what “everything is an object” really

means.

Three Flavors of Object Type

If you know Objective-C or some other object-oriented language, you

may be surprised by Swift’s notion of what kind of object 1 is. In many

languages, such as Objective-C, an object is a class or an instance of a

class (I’ll explain later what an instance is). Swift has classes, but 1 in

Swift is not a class or an instance of a class: the type of 1, namely Int, is

a struct, and 1 is an instance of a struct. And Swift has yet another kind

of thing you can send messages to, called an enum.

So Swift has three kinds of object type: classes, structs, and enums. I

like to refer to these as the three flavors of object type. Exactly how they

differ from one another will emerge in due course. But they are all very

definitely object types, and their similarities to one another are far

stronger than their differences. For now, just bear in mind that these

three flavors exist.

(The fact that a struct or enum is an object type in Swift will surprise

you particularly if you know Objective-C. Objective-C has structs and

enums, but they are not objects. Swift structs, in particular, are much

more important and pervasive than Objective-C structs. This difference

between how Swift views structs and enums and how Objective-C views

them can matter when you are talking to Cocoa.)

Variables

A variable is a name for an object. Technically, it refers to an object; it

is an object reference. Nontechnically, you can think of it as a shoebox

into which an object is placed. The object may undergo changes, or it

may be replaced inside the shoebox by another object, but the name has

an integrity all its own. The object to which the variable refers is the

variable’s value.

In Swift, no variable comes implicitly into existence; all variables must

be declared. If you need a name for something, you must say “I’m

creating a name.” You do this with one of two keywords: let or var. In

Swift, declaration is usually accompanied by initialization — you use an

equal sign to give the variable a value immediately, as part of the

declaration. These are both variable declarations (and initializations):

let one = 1

var two = 2

Once the name exists, you are free to use it. We can change the value

of two to be the same as the value of one:

let one = 1

var two = 2

two = one

The last line of that code uses both the name one and the

name two declared in the first two lines: the name one, on the right side of

the equal sign, is used merely to refer to the value inside the

shoebox one (namely 1); but the name two, on the left side of the equal

sign, is used to replace the value inside the shoebox two. Before

saying two = one, the value of two was 2; afterward, it is 1.

A statement with a variable name on the left side of an equal sign is

called an assignment, and the equal sign is the assignment operator. The

equal sign is not an assertion of equality, as it might be in an algebraic

formula; it is a command. It means: “Get the value of what’s on the right

side of me, and use it to replace the value of what’s on the left side of

me.”

The two kinds of variable declaration differ in that a name declared

with let cannot have its initial value replaced. A variable declared

with let is a constant; its value is assigned once and stays. This won’t

even compile:

let one = 1

var two = 2

one = two // compile error

It is always possible to declare a name with var to give yourself the most

flexibility, but if you know you’re never going to replace the initial

value of a variable, it’s better to use let, as this permits Swift to behave

more efficiently — in fact, the Swift compiler will call your attention to

any case of your using var where you could have used let, offering to

change it for you.

Variables also have a type. This type is established when the variable is

declared and can never change. This won’t compile:

var two = 2

two = "hello" // compile error

Once two is declared and initialized as 2, it is a number (properly

speaking, an Int) and it must always be so. You can replace its value

with 1 because that’s also an Int, but you can’t replace its value

with "hello" because that’s a string (properly speaking, a String) — and a

String is not an Int.

Variables literally have a life of their own — more accurately,

a lifetime of their own. As long as a variable exists, it keeps its value

alive. Thus, a variable can be not only a way of

conveniently naming something, but also a way of preserving it. I’ll

have more to say about that later.

WARNING

By convention, type names such as String or Int (or Dog) start with a

capital letter; variable names start with a small letter. Do not violate this

convention. If you do, your code might still compile and run just fine,

but I will personally send agents to your house to remove your kneecaps

in the dead of night.

Functions

Executable code, like fido.bark() or one = two or print("hello"), cannot go

just anywhere in your program. Failure to appreciate this fact is a

common beginner mistake, and can result in a mysterious compile error

message such as “Expected declaration.”

In general, executable code must live inside the body of a function. A

function is a batch of code that can be told, as a batch, to run. Its body is

delimited by curly braces. Typically, a function has a name, and it gets

that name through a function declaration. Function declaration syntax is

another of those details that will be filled in later, but here’s an example:

func go() {

 let one = 1

 var two = 2

 two = one

}

That describes a sequence of things to do — declare one, declare two,

change the value of two to match the value of one — and it gives that

sequence a name, go; but it doesn’t perform the sequence. The sequence

is performed when someone calls the function. Thus, we might say,

elsewhere:

go()

That is a command to the go function that it should actually run. But

again, that command is itself executable code, so it cannot live on its

own either. It might live in the body of a different function:

func doGo() {

 go()

}

But wait! This is getting a little nutty. That, too, is just a function

declaration; to run it, someone must call doGo by saying doGo() — and

that’s executable code too. This seems like some kind of infinite

regression; it looks like none of our code will ever run. If all executable

code has to live in a function, who will tell any function to run? The

initial impetus must come from somewhere.

In real life, fortunately, this regression problem doesn’t arise. Remember

that your goal is ultimately to write an iOS app. Your app will be run on

an iOS device (or the Simulator) by a runtime that already wants to call

certain functions. So you start by writing special functions that you

know the runtime itself will call. That gives your app a way to get

started and gives you places to put functions that will be called by the

runtime at key moments.

TIP

Swift also has a special rule that a file called main.swift,

exceptionally, can have executable code at its top level, outside any

function body, and this is the code that actually runs when the program

runs. You can construct your app with a main.swift file, but in general

you won’t need to. In the rest of this chapter I’ll assume that we are not

in a main.swift file.

The Structure of a Swift File

A Swift program can consist of one file or many files. In Swift, a file is a

meaningful unit, and there are definite rules about the structure of the

Swift code that can go inside it. Only certain things can go at the top

level of a Swift file — chiefly the following:

Module import statements

A module is an even higher-level unit than a file. A module can

consist of multiple files, and these can all see each other

automatically. Your app’s files belong to a single module and can

see each other. But a module can’t see another module without

an import statement. That is how you are able to talk to Cocoa in an

iOS program: the first line of your file says import UIKit.

Variable declarations

A variable declared at the top level of a file is a global variable: all

code in any file will be able to see and access it, without explicitly

sending a message to any object.

Function declarations

A function declared at the top level of a file is a global function:

all code in any file will be able to see and call it, without explicitly

sending a message to any object.

Object type declarations

The declaration for a class, a struct, or an enum.

This is a legal Swift file containing at its top level (just to demonstrate

that it can be done) an import statement, a variable declaration, a function

declaration, a class declaration, a struct declaration, and an enum

declaration:

import UIKit

var one = 1

func changeOne() {

}

class Manny {

}

struct Moe {

}

enum Jack {

}

That’s a very silly and mostly empty example, but remember, our goal is

to survey the parts of the language and the structure of a file, and the

example shows them.

So much for the top level of a file. But now let’s talk about what can go

inside the curly braces that we see in our example. It turns out that they,

too, can all have variable declarations, function declarations, and object

type declarations within them! Indeed, any structural curly braces can

contain such declarations.

But what about executable code? You’ll notice that I did not say that

executable code can go at the top level of a file. That’s because it

can’t! Only a function body can contain executable code. A statement

like one = two or print("hello") is executable code, and can’t go at the top

level of a file. But in our previous example, func changeOne() is a function

declaration, so executable code can go inside its curly braces, because

they constitute a function body:

var one = 1

// executable code can't go here!

func changeOne() {

 let two = 2 // executable code

 one = two // executable code

}

Similarly, executable code can’t go directly inside the curly braces that

accompany the class Manny declaration; that’s the top level of a class

declaration, not a function body. But a class declaration can contain a

function declaration, and that function declaration can contain

executable code:

class Manny {

 let name = "manny"

 // executable code can't go here!

 func sayName() {

 print(name) // executable code

 }

}

To sum up, Example 1-1 is a legal Swift file, schematically illustrating

the structural possibilities. (Ignore the hanky-panky with

the name variable declaration inside the enum declaration for Jack; enum

top-level variables have some special rules that I’ll explain later.)

Example 1-1. Schematic structure of a legal Swift file
import UIKit

var one = 1

func changeOne() {

 let two = 2

 func sayTwo() {

 print(two)

 }

 class Klass {}

 struct Struct {}

 enum Enum {}

 one = two

}

class Manny {

 let name = "manny"

 func sayName() {

 print(name)

 }

 class Klass {}

 struct Struct {}

 enum Enum {}

https://learning.oreilly.com/library/view/ios-13-programming/9781492074526/part01ch01.html#EXswiftfilestructure

}

struct Moe {

 let name = "moe"

 func sayName() {

 print(name)

 }

 class Klass {}

 struct Struct {}

 enum Enum {}

}

enum Jack {

 var name : String {

 return "jack"

 }

 func sayName() {

 print(name)

 }

 class Klass {}

 struct Struct {}

 enum Enum {}

}

Obviously, we can recurse down as far we like: we could have a class

declaration containing a class declaration containing a class declaration,

and so on. But I’m sure you have the idea by now, so there’s no point

illustrating further.

Scope and Lifetime

In a Swift program, things have a scope. This refers to their ability to be

seen by other things. Things are nested inside of other things, making a

nested hierarchy of things. The rule is that things can see things at their

own level and at a higher level containing them. The levels are:

 A module is a scope.

 A file is a scope.

 Curly braces are a scope.

When something is declared, it is declared at some level within that

hierarchy. Its place in the hierarchy — its scope — determines whether

it can be seen by other things.

Look again at Example 1-1. Inside the declaration of Manny is

a name variable declaration and a sayName function declaration; the

code inside sayName’s curly braces can see things outside those curly

braces at a higher containing level, and can therefore see

the name variable. Similarly, the code inside the body of

the changeOne function can see the one variable declared at the top level of

the file; indeed, everything throughout this file can see the one variable

declared at the top level of the file.

Scope is thus a very important way of sharing information. Two

different functions declared inside Manny would both be able to see

the name declared at Manny’s top level. Code inside Jack and code inside

Moe can both see the one declared at the file’s top level.

Things also have a lifetime, which is effectively equivalent to their

scope. A thing lives as long as its surrounding scope lives.

In Example 1-1, the variable one lives as long as the file lives — namely,

as long the program runs. It is global and persistent. But the

variable name declared at the top level of Manny exists only so long as a

Manny instance exists (I’ll talk in a moment about what that means).

Things declared at a deeper level live even shorter lifetimes. Consider

this code:

func silly() {

 if true {

 class Cat {}

 var one = 1

 one = one + 1

 }

}

That code is silly, but it’s legal: remember, I said that variable

declarations, function declarations, and object type declarations can

https://learning.oreilly.com/library/view/ios-13-programming/9781492074526/part01ch01.html#EXswiftfilestructure
https://learning.oreilly.com/library/view/ios-13-programming/9781492074526/part01ch01.html#EXswiftfilestructure

appear in any structural curly braces. In that code, the class Cat and the

variable one will not even come into existence until someone calls

the silly function, and even then they will exist only during the brief

instant that the path of code execution passes through the if construct.

Suppose the function silly is called; the path of execution then enters the

if construct. Here, Cat is declared and comes into existence; then one is

declared and comes into existence; then the executable line one = one +

1 is executed; and then the scope ends — and both Cat and one vanish in

a puff of smoke. And throughout their brief lives, Cat and one were

completely invisible to the rest of the program. (Do you see why?)

Object Members

Inside the three object types (class, struct, and enum), things declared at

the top level have special names, mostly for historical reasons. Let’s use

the Manny class as an example:

class Manny {

 let name = "manny"

 func sayName() {

 print(name)

 }

}

In that code:

 name is a variable declared at the top level of an object declaration,

so it is called a property of that object.

 sayName is a function declared at the top level of an object

declaration, so it is called a method of that object.

Things declared at the top level of an object declaration — properties,

methods, and any objects declared at that level — are collectively

the members of that object. Members have a special significance,

because they define the messages you are allowed to send to that object!

Namespaces

A namespace is a named region of a program. The names of things

inside a namespace cannot be reached by things outside it without

somehow first passing through the barrier of saying that region’s name.

This is a good thing because it allows the same name to be used in

different places without a conflict. Clearly, namespaces and scopes are

closely related notions.

Namespaces help to explain the significance of declaring an object at the

top level of an object, like this:

class Manny {

 class Klass {}

}

This way of declaring Klass makes Klass a nested type. It effectively

“hides” Klass inside Manny. Manny is a namespace! Code inside Manny

can see (and say) Klass directly. But code outside Manny can’t do that.

It has to specify the namespace explicitly in order to pass through the

barrier that the namespace represents. To do so, it must say Manny’s

name first, followed by a dot, followed by the term Klass. In short, it has

to say Manny.Klass.

The namespace does not, of itself, provide secrecy or privacy; it’s a

convenience. In Example 1-1, I gave Manny a Klass class, and I also

gave Moe a Klass class. But they don’t conflict, because they are in

different namespaces, and I can differentiate them, if necessary,

as Manny.Klass and Moe.Klass.

It will not have escaped your attention that the syntax for diving

explicitly into a namespace is the message-sending dot-notation syntax.

They are, in fact, the same thing.

https://learning.oreilly.com/library/view/ios-13-programming/9781492074526/part01ch01.html#EXswiftfilestructure

In effect, message-sending allows you to see into scopes you can’t see

into otherwise. Code inside Moe can’t automatically see the Klass

declared inside Manny, but it can see it by taking one easy extra step,

namely by speaking of Manny.Klass. It can do that because it can see

Manny (because Manny is declared at a level that code inside Moe can

see).

Modules

The top-level namespaces are modules. Your app is a module and hence

a namespace; that namespace’s name is, by default, the name of the app.

If my app is called MyApp, then if I declare a class Manny at the top level

of a file, that class’s real name is MyApp.Manny. But I don’t usually need to

use that real name, because my code is already inside the same

namespace, and can see the name Manny directly.

When you import a module, all the top-level declarations of that module

become visible to your code as well, without your having to use the

module’s namespace explicitly to refer to them. For example, Cocoa’s

Foundation framework, where NSString lives, is a module. When you

program iOS, you will say import Foundation (or, more likely, you’ll

say import UIKit, which itself imports Foundation), allowing you to speak

of NSString without saying Foundation.NSString. But

you could say Foundation.NSString, and if you were so silly as to declare a

different NSString in your own module, you would have to

say Foundation.NSString, in order to differentiate them.

Swift itself is defined in a module — the Swift module. But you don’t

have to import it, because your code always implicitly imports the Swift

module. You could make this explicit by starting a file with the

line import Swift; there is no need to do this, but it does no harm either.

That fact is important, because it solves a major mystery: where do

things like print come from, and why is it possible to use them outside of

any message to any object? print is in fact a function declared at the top

level of the Swift module, and your code can see the Swift module’s top-

level declarations because it imports Swift. The print function becomes,

as far as your code is concerned, an ordinary top-level function like any

other; it is global to your code, and your code can speak of it without

specifying its namespace. You can specify its namespace — it is

perfectly legal to say things like Swift.print("hello") — but you probably

never will, because there’s no name conflict to resolve, unless you create

such a conflict by declaring a competing print function of your own.

TIP

You can actually see the Swift top-level declarations and read and study

them, and this can be a useful thing to do. For example, to see the

declaration of print, Command-Control-click the term print in your code.

Behold, there are some Swift top-level declarations! You won’t see any

executable Swift code here, but you will see the declarations for various

available Swift terms, including print.

Instances

Object types — class, struct, and enum — have an important feature in

common: they can be instantiated. In effect, when you declare an object

type, you are only defining a type. To instantiate a type is to make a

thing — an instance — of that type.

For example, I can declare a Dog class, and I can give my class a

method:

class Dog {

 func bark() {

 print("woof")

 }

}

But I don’t actually have any Dog objects in my program yet. I have

merely described the type of thing a Dog would be if I had one. To get

an actual Dog, I have to make one. The process of making an actual Dog

object whose type is the Dog class is the process of instantiating Dog.

The result is a new object — a Dog instance.

In Swift, instances can be created by using the object type’s name as a

function name and calling the function. This involves using parentheses.

When you append parentheses to the name of an object type, you are

sending a very special kind of message to that object type: Instantiate

yourself!

So now I’m going to make a Dog instance:

let fido = Dog()

There’s a lot going on in that code! I did two things. I instantiated Dog,

causing me to end up with a Dog instance. I also put that Dog instance

into a shoebox called fido — I declared a variable and initialized the

variable by assigning my new Dog instance to it. Now fido is a Dog

instance. (Moreover, because I used let, fido will always be this same

Dog instance. I could have used var instead, but even

then, initializing fido as a Dog instance would mean fido could only be

some Dog instance after that.)

Now that I have a Dog instance, I can send instance messages to it. And

what do you suppose they are? They are Dog’s properties and methods!

For example:

let fido = Dog()

fido.bark()

That code is legal. Not only that, it is effective: it actually does

cause "woof" to appear in the console. I made a Dog and I made it bark!

(See Figure 1-1.)

https://learning.oreilly.com/library/view/ios-13-programming/9781492074526/part01ch01.html#FIGinstancemethod

Figure 1-1. Making an instance and calling an instance method

There’s an important lesson here, so let me pause to emphasize it. By

default, properties and methods are instance properties and methods.

You can’t use them as messages to the object type itself; you have to

have an instance to send those messages to. As things stand, this is

illegal and won’t compile:

Dog.bark() // compile error

It is possible to declare a function bark in such a way that

saying Dog.bark() is legal, but that would be a different kind of function

— a class function or a static function — and you would need to say so

when you declare it.

The same thing is true of properties. To illustrate, let’s give Dog

a name property:

class Dog {

 var name = ""

}

That allows me to set a Dog’s name, but it needs to be an instance of Dog:

let fido = Dog()

fido.name = "Fido"

It is possible to declare a property name in such a way that

saying Dog.name is legal, but that would be a different kind of property —

a class property or a static property — and you would need to say so

when you declare it.

Why Instances?

Even if there were no such thing as an instance, an object type is itself

an object. We know this because it is possible to send a message to an

object type (the phrase Manny.Klass is a case in point). Why, then, do

instances exist at all?

The answer has mostly to do with the nature of instance properties.

The value of an instance property is defined with respect to a particular

instance. This is where instances get their real usefulness and power.

Consider again our Dog class. I’ll give it a name property and

a bark method; remember, these are an instance property and an instance

method:

class Dog {

 var name = ""

 func bark() {

 print("woof")

 }

}

A Dog instance comes into existence with a blank name (an empty string).

But its name property is a var, so once we have any Dog instance, we can

assign to its name a new String value:

let dog1 = Dog()

dog1.name = "Fido"

We can also ask for a Dog instance’s name:

let dog1 = Dog()

dog1.name = "Fido"

print(dog1.name) // "Fido"

The important thing is that we can make more than one Dog instance,

and that two different Dog instances can have two different name property

values (Figure 1-2):

let dog1 = Dog()

dog1.name = "Fido"

let dog2 = Dog()

dog2.name = "Rover"

print(dog1.name) // "Fido"

print(dog2.name) // "Rover"

https://learning.oreilly.com/library/view/ios-13-programming/9781492074526/part01ch01.html#FIGinstanceproperty

Figure 1-2. Two dogs with different property values

Note that a Dog instance’s name property has nothing to do with the name

of the variable to which a Dog instance is assigned. The variable is just a

shoebox. You can pass an instance from one shoebox to another. But the

instance itself maintains its own internal integrity:

let dog1 = Dog()

dog1.name = "Fido"

var dog2 = Dog()

dog2.name = "Rover"

print(dog1.name) // "Fido"

print(dog2.name) // "Rover"

dog2 = dog1

print(dog2.name) // "Fido"

That code didn’t change Rover’s name; it changed which dog was inside

the dog2 shoebox, replacing Rover with Fido.

The full power of object-based programming has now emerged. There is

a Dog object type which defines what it is to be a Dog. Our declaration

of Dog says that any and every Dog instance has a name property and

a bark method. But each Dog instance can have its

own name property value. So multiple instances of the same object type

behave alike — both Fido and Rover can bark, and will do so when they

are sent the bark message — but they are different instances and can

have different property values: Fido’s name is "Fido" while

Rover’s name is "Rover".

An instance is responsible not only for the values but also for

the lifetimes of its properties. Suppose we bring a Dog instance into

existence and assign to its name property the value "Fido". Then this Dog

instance is keeping the string "Fido" alive just so long as we do not

replace the value of its name with some other value — and just so long as

this instance lives.

In short, an instance is both code and data. The code it gets from its type

and in a sense is shared with all other instances of that type, but the data

belong to it alone. The data can persist as long as the instance persists.

The instance has, at every moment, a state — the complete collection of

its own personal property values. An instance is a device for maintaining

state. It’s a box for storage of data.

The Keyword self

An instance is an object, and an object is the recipient of messages.

Thus, an instance needs a way of sending a message to itself. This is

made possible by the keyword self. This word can be used wherever an

instance of the appropriate type is expected.

Let’s say I want to keep the thing that a Dog says when it barks, such

as "woof", in a property. Then in my implementation of bark I need to

refer to that property. I can do it like this:

class Dog {

 var name = ""

 var whatADogSays = "woof"

 func bark() {

 print(self.whatADogSays)

 }

}

Similarly, let’s say I want to write an instance method speak which is

merely a synonym for bark. My speak implementation can consist of

simply calling my own bark method. I can do it like this:

class Dog {

 var name = ""

 var whatADogSays = "woof"

 func bark() {

 print(self.whatADogSays)

 }

 func speak() {

 self.bark()

 }

}

Observe that the term self in that example appears only in instance

methods. When an instance’s code says self, it is referring

to this instance. If the expression self.name appears in a Dog instance

method’s code, it means the name of this Dog instance, the one whose

code is running at that moment.

It turns out that every use of the word self I’ve just illustrated is

optional. You can omit it and all the same things will happen:

class Dog {

 var name = ""

 var whatADogSays = "woof"

 func bark() {

 print(whatADogSays)

 }

 func speak() {

 bark()

 }

}

The reason is that if you omit the message recipient and the message

you’re sending can be sent to self, the compiler supplies self as the

message’s recipient under the hood. However, I never do that (except by

mistake). As a matter of style, I like to be explicit in my use of self. I

find code that omits self harder to read and understand. And there are

situations where you must say self, so I prefer to use it whenever I’m

allowed to.

