
Chapter 1. Big Data Technology Primer 

Apache Hadoop is a tightly integrated ecosystem of different software 

products built to provide scalable and reliable distributed storage and 

distributed processing. The inspiration for much of the Hadoop 

ecosystem was a sequence of papers published by Google in the 2000s, 

describing innovations in systems to produce reliable storage (the 

Google File System), processing (MapReduce, Pregel), and low-latency 

random-access queries (Bigtable) on hundreds to thousands of 

potentially unreliable servers. For Google, the primary driver for 

developing these systems was pure expediency: there simply were no 

technologies at the time capable of storing and processing the vast 

datasets it was dealing with. The traditional approach to performing 

computations on datasets was to invest in a few extremely powerful 

servers with lots of processors and lots of RAM, slurp the data in from a 

storage layer (e.g., NAS or SAN), crunch through a computation, and 

write the results back to storage. As the scale of the data increased, this 

approach proved both impractical and expensive. 

The key innovation, and one which still stands the test of time, was to 

distribute the datasets across many machines and to split up any 

computations on that data into many independent, “shared-nothing” 

chunks, each of which could be run on the same machines storing the 

data. Although existing technologies could be run on multiple servers, 

they typically relied heavily on communication between the distributed 

components, which leads to diminishing returns as the parallelism 

increases (see Amdahl’s law). By contrast, in the distributed-by-design 

approach, the problem of scale is naturally handled because each 

independent piece of the computation is responsible for just a small 

chunk of the dataset. Increased storage and compute power can be 

obtained by simply adding more servers—a so-called horizontally 

scalable architecture. A key design point when computing at such scales 

is to design with the assumption of component failure in order to build a 

reliable system from unreliable components. Such designs solve the 

problem of cost-effective scaling because the storage and computation 

can be realized on standard commodity servers. 

http://bit.ly/2QbCBxJ


NOTE 

With advances in commodity networking and the general move to cloud 

computing and storage, the requirement to run computations locally to 

the data is becoming less critical. If your network infrastructure is good 

enough, it is no longer essential to use the same underlying hardware for 

compute and storage. However, the distributed nature and horizontally 

scalable approach are still fundamental to the efficient operation of these 

systems. 

Hadoop is an open source implementation of these techniques. At its 

core, it offers a distributed filesystem (HDFS) and a means of running 

processes across a cluster of servers (YARN). The original distributed 

processing application built on Hadoop was MapReduce, but since its 

inception, a wide range of additional software frameworks and libraries 

have grown up around Hadoop, each one addressing a different use case. 

In the following section, we go on a whirlwind tour of the core 

technologies in the Hadoop project, as well as some of the more popular 

open source frameworks in the ecosystem that run on Hadoop clusters. 

WHAT IS A CLUSTER? 

In the simplest sense, a cluster is just a bunch of servers grouped together to 

provide one or more functions, such as storage or computation. To users of a 

cluster, it is generally unimportant which individual machine or set of machines 

within the cluster performs a computation, stores the data, or performs some other 

service. By contrast, architects and administrators need to understand the cluster in 

detail. Figure 1-1 illustrates a cluster layout at a high level. 

 

Figure 1-1. Machine roles in a cluster 

Usually we divide a cluster up into two classes of 

machine: master and worker.1 Worker machines are where the real work 

happens—these machines store data, perform computations, offer services like 

lookups and searches, and more. Master machines are responsible for coordination, 

maintaining metadata about the data and services running on the worker machines, 

and ensuring the services keep running in the event of worker failures. Typically, 

there are two or three master machines for redundancy and a much larger number 

of workers. A cluster is scaled up by adding more workers and, when the cluster 

gets large enough, extra masters. 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_cluster
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#idm139745363609232


Often, we want to allow access to the cluster by users and other applications, so we 

provide some machines to act as gateway or edge servers. These servers often do 

not run any services at all but just have the correct client configuration files to 

access cluster services. 

We discuss the various machine types and their purpose in more detail 

in Chapter 3 and introduce the different types of cluster you might need 

in Chapter 2. 

A Tour of the Landscape 

When we say “Hadoop,” we usually really mean Hadoop and all the 

data engineering projects and frameworks that have been built around 

it. In this section, we briefly review a few key technologies, categorized 

by use case. We are not able to cover every framework in detail—in 

many cases these have their own full book-level treatments—but we try 

to give a sense of what they do. This section can be safely skipped if you 

are already familiar with these technologies, or you can use it as a handy 

quick reference to remind you of the fundamentals. 

The zoo of frameworks, and how they relate to and depend on each 

other, can appear daunting at first, but with some familiarization, the 

relationships become clearer. You may have seen representations similar 

to Figure 1-2, which attempt to show how different components build on 

each other. These diagrams can be a useful aid to understanding, but 

they don’t always make all the dependencies among projects 

clear. Projects depend on each other in different ways, but we can think 

about two main types of dependency: data and control. In the data plane, 

a component depends on another component when reading and writing 

data, while in the control plane, a component depends on another 

component for metadata or coordination. For the graphically inclined, 

some of these relationships are shown in Figure 1-3. Don’t panic; this 

isn’t meant to be scary, and it’s not critical at this stage that you 

understand exactly how the dependencies work between the 

components. But the graphs demonstrate the importance of developing a 

basic understanding of the purpose of each element in the stack. The aim 

of this section is to give you that context. 

 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch03.html#cs
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch02.html#clusters
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_stack
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_deps


Figure 1-2. Standard representation of technologies and dependencies in the Hadoop stack 

 

Figure 1-3. Graphical representation of some dependencies between components in the data and 

control planes 

NOTE 

Where there are multiple technologies with a similar design, 

architecture, and use case, we cover just one but strive to point out the 

alternatives as much as possible, either, in the text or in “Also consider” 

sections. 

Core Components 

The first set of projects are those that form the core of the Hadoop 

project itself or are key enabling technologies for the rest of the stack: 

HDFS, YARN, Apache ZooKeeper, and the Apache Hive Metastore. 

Together, these projects form the foundation on which most other 

frameworks, projects, and applications running on the cluster depend. 

HDFS 

The Hadoop Distributed File System (HDFS) is the scalable, fault-

tolerant, and distributed filesystem for Hadoop. Based on the original 

use case of analytics over large-scale datasets, HDFS is optimized to 

store very large amounts of immutable data with files being typically 

accessed in long sequential scans. HDFS is the critical supporting 

technology for many of the other components in the stack. 

When storing data, HDFS breaks up a file into blocks of configurable 

size, usually something like 128 MiB, and stores a replica of each block 

on multiple servers for resilience and data parallelism. Each worker 

node in the cluster runs a daemon called a DataNode which accepts new 

blocks and persists them to its local disks. The DataNode is also 

responsible for serving up data to clients. The DataNode is only aware 

of blocks and their IDs; it does not have knowledge about the file to 

which a particular replica belongs. This information is curated by a 

coordinating process, the NameNode, which runs on the master servers 

and is responsible for maintaining a mapping of files to the blocks, as 



well as metadata about the files themselves (things like names, 

permissions, attributes, and replication factor). 

Clients wishing to store blocks must first communicate with the 

NameNode to be given a list of DataNodes on which to write each 

block. The client writes to the first DataNode, which in turn streams the 

data to the next DataNode, and so on in a pipeline. When providing a list 

of DataNodes for the pipeline, the NameNode takes into account a 

number of things, including available space on the DataNode and the 

location of the node—its rack locality. The NameNode insures against 

node and rack failures by ensuring that each block is on at least two 

different racks. In Figure 1-4, a client writes a file consisting of three 

blocks to HDFS, and the process distributes and replicates the data 

across DataNodes. 

 

Figure 1-4. The HDFS write process and how blocks are distributed across DataNodes 

Likewise, when reading data, the client asks the NameNode for a list 

of DataNodes containing the blocks for the files it needs. The client then 

reads the data directly from the DataNodes, preferring replicas that are 

local or close, in network terms. 

The design of HDFS means that it does not allow in-place updates to the 

files it stores. This can initially seem quite restrictive until you realize 

that this immutability allows it to achieve the required horizontal 

scalability and resilience in a relatively simple way. 

HDFS is fault-tolerant because the failure of an individual disk, 

DataNode, or even rack does not imperil the safety of the data. In these 

situations, the NameNode simply directs one of the DataNodes that is 

maintaining a surviving replica to copy the block to another DataNode 

until the required replication factor is reasserted. Clients reading data are 

directed to one of the remaining replicas. As such, the whole system is 

self-healing, provided we allow sufficient capacity and redundancy in 

the cluster itself. 

HDFS is scalable, given that we can simply increase the capacity of the 

filesystem by adding more DataNodes with local storage. This also has 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_hdfs


the nice side effect of increasing the available read and write throughput 

available to HDFS as a whole. 

It is important to note, however, that HDFS does not achieve this 

resilience and scaling all on its own. We have to use the right servers 

and design the layout of our clusters to take advantage of the resilience 

and scalability features that HDFS offers—and in large part, that is what 

this book is all about. In Chapter 3, we discuss in detail how HDFS 

interacts with the servers on which its daemons run and how it uses the 

locally attached disks in these servers. In Chapter 4, we examine the 

options when putting a network plan together, and in Chapter 12, we 

cover how to make HDFS as highly available and fault-tolerant as 

possible. 

One final note before we move on. In this short description of HDFS, we 

glossed over the fact that Hadoop abstracts much of this detail from the 

client. The API that a client uses is actually a Hadoop-compatible 

filesystem, of which HDFS is just one implementation. We will come 

across other commonly used implementations in this book, such as 

cloud-based object storage offerings like Amazon S3. 

YARN 

Although it’s useful to be able to store data in a scalable and resilient 

way, what we really want is to be able to derive insights from that 

data. To do so, we need to be able to compute things from the data, in a 

way that can scale to the volumes we expect to store in our Hadoop 

filesystem. What’s more, we need to be able to run lots of different 

computations at the same time, making efficient use of the available 

resources across the cluster and minimizing the required effort to access 

the data. Each computation processes different volumes of data and 

requires different amounts of compute power and memory. To manage 

these competing demands, we need a centralized cluster manager, which 

is aware of all the available compute resources and the current 

competing workload demands. 

This is exactly what YARN (Yet Another Resource Negotiator) is 

designed to be. YARN runs a daemon on each worker node, called 

a NodeManager, which reports in to a master process, called 

the ResourceManager. Each NodeManager tells the ResourceManager 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch03.html#cs
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch04.html#network
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch12.html#ha


how much compute resource (in the form of virtual cores, or vcores) and 

how much memory is available on its node. Resources are parceled out 

to applications running on the cluster in the form of containers, each of 

which has a defined resource demand—say, 10 containers each with 4 

vcores and 8 GB of RAM. The NodeManagers are responsible for 

starting and monitoring containers on their local nodes and for killing 

them if they exceed their stated resource allocations. 

An application that needs to run computations on the cluster must first 

ask the ResourceManager for a single container in which to run its own 

coordination process, called the ApplicationMaster (AM). Despite its 

name, the AM actually runs on one of the worker machines. 

ApplicationMasters of different applications will run on different worker 

machines, thereby ensuring that a failure of a single worker machine will 

affect only a subset of the applications running on the cluster. Once the 

AM is running, it requests additional containers from the 

ResourceManager to run its actual computation. This process is sketched 

in Figure 1-5: three clients run applications with different resource 

demands, which are translated into different-sized containers and spread 

across the NodeManagers for execution. 

 

Figure 1-5. YARN application execution. 

The ResourceManager runs a special thread, which is responsible for 

scheduling application requests and ensuring that containers are 

allocated equitably between applications and users running applications 

on the cluster. This scheduler strives to allocate cores and memory fairly 

between tenants. Tenants and workloads are divided into 

hierarchical pools, each of which has a configurable share of the overall 

cluster resources. 

It should be clear from the description that YARN itself does not 

perform any computation but rather is a framework for launching such 

applications distributed across a cluster. YARN provides a suite of APIs 

for creating these applications; we cover two such implementations, 

MapReduce and Apache Spark, in “Computational Frameworks”. 

You’ll learn more about making YARN highly available in Chapter 12. 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_yarn
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#computational_frameworks
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch12.html#ha


APACHE ZOOKEEPER 

The problem of consensus is an important topic in computer 

science. When an application is distributed across many nodes, a key 

concern is getting these disparate components to agree on the values of 

some shared parameters. For example, for frameworks with multiple 

master processes, agreeing on which process should be the active master 

and which should be in standby is critical to their correct operation. 

Apache ZooKeeper is the resilient, distributed configuration service for 

the Hadoop ecosystem. Within ZooKeeper, configuration data is stored 

and accessed in a filesystem-like tree of nodes, called znodes, each of 

which can hold data and be the parent of zero or more child nodes. 

Clients open a connection to a single ZooKeeper server to create, read, 

update and delete the znodes. 

For resilience, ZooKeeper instances should be deployed on different 

servers as an ensemble. Since ZooKeeper operates on majority 

consensus, an odd number of servers is required to form 

a quorum. Although even numbers can be deployed, the extra server 

provides no extra resilience to the ensemble. Each server is identical in 

functionality, but one of the ensemble is elected as the leader node—all 

other servers are designated followers. ZooKeeper guarantees that data 

updates are applied by a majority of ZooKeeper servers. As long as a 

majority of servers are up and running, the ensemble is operational. 

Clients can open connections to any of the servers to perform reads and 

writes, but writes are forwarded from follower servers to the leader to 

ensure consistency. ZooKeeper ensures that all state is consistent by 

guaranteeing that updates are always applied in the same order. 

TIP 

In general, a quorum with n members can survive up to floor((n–1)/2) 

failures and still be operational. Thus, a four-member ensemble has the 

same resiliency properties as an ensemble of three members. 

As outlined in Table 1-1, many frameworks in the ecosystem rely on 

ZooKeeper for maintaining highly available master processes, 

coordinating tasks, tracking state, and setting general configuration 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#tab_primer_zk_deps


parameters. You’ll learn more about how ZooKeeper is used by other 

components for high availability in Chapter 12. 

Project Usage of ZooKeeper 

HDFS Coordinating high availability 

HBase Metadata and coordination 

Solr Metadata and coordination 

Kafka Metadata and coordination 

YARN Coordinating high availability 

Hive Table and partition locking and high availability 

Table 1-1. ZooKeeper dependencies 

APACHE HIVE METASTORE 

We’ll cover the querying functionality of Apache Hive in a subsequent 

section when we talk about analytical SQL engines, but one component 

of the project—the Hive Metastore—is such a key supporting 

technology for other components of the stack that we need to introduce 

it early on in this survey. 

The Hive Metastore curates information about the structured datasets (as 

opposed to unstructured binary data) that reside in Hadoop and 

organizes them into a logical hierarchy of databases, tables, and views. 

Hive tables have defined schemas, which are specified during table 

creation. These tables support most of the common data types that you 

know from the relational database world. The underlying data in the 

storage engine is expected to match this schema, but for HDFS this is 

checked only at runtime, a concept commonly referred to as schema on 

read. Hive tables can be defined for data in a number of storage engines, 

including Apache HBase and Apache Kudu, but by far the most 

common location is HDFS. 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch12.html#ha


In HDFS, Hive tables are nothing more than directories containing 

files. For large tables, Hive supports partitioning via subdirectories 

within the table directory, which can in turn contain nested partitions, if 

necessary. Within a single partition, or in an unpartitioned table, all files 

should be stored in the same format; for example, comma-delimited text 

files or a binary format like Parquet or ORC. The metastore allows 

tables to be defined as either managed or external. For managed tables, 

Hive actively controls the data in the storage engine: if a table is created, 

Hive builds the structures in the storage engine, for example by making 

directories on HDFS. If a table is dropped, Hive deletes the data from 

the storage engine. For external tables, Hive makes no modifications to 

the underlying storage engine in response to metadata changes, but 

merely maintains the metadata for the table in its database. 

Other projects, such as Apache Impala and Apache Spark, rely on the 

Hive Metastore as the single source of truth for metadata about 

structured datasets within the cluster. As such it is a critical component 

in any deployment. 

GOING DEEPER 

There are some very good books on the core Hadoop ecosystem, which 

are well worth reading for a thorough understanding. In particular, see: 

 Hadoop: The Definitive Guide, 4th Edition, by Tom White 

(O’Reilly) 

 ZooKeeper, by Benjamin Reed and Flavio Junqueira (O’Reilly) 

 Programming Hive, by Dean Wampler, Jason Rutherglen, and 

Edward Capriolo (O’Reilly) 

Computational Frameworks 

With the core Hadoop components, we have data stored in HDFS and a 

means of running distributed applications via YARN. Many frameworks 

have emerged to allow users to define and compose arbitrary 

computations and to allow these computations to be broken up into 

smaller chunks and run in a distributed fashion. Let’s look at two of the 

principal frameworks. 

http://shop.oreilly.com/product/0636920033448.do
http://shop.oreilly.com/product/0636920028901.do
http://shop.oreilly.com/product/0636920023555.do


HADOOP MAPREDUCE 

MapReduce is the original application for which Hadoop was built and 

is a Java-based implementation of the blueprint laid out in Google’s 

MapReduce paper. Originally, it was a standalone framework running 

on the cluster, but it was subsequently ported to YARN as the Hadoop 

project evolved to support more applications and use cases. Although 

superseded by newer engines, such as Apache Spark and Apache Flink, 

it is still worth understanding, given that many higher-level frameworks 

compile their inputs into MapReduce jobs for execution. These include: 

 Apache Hive 

 Apache Sqoop 

 Apache Oozie 

 Apache Pig 

NOTE 

The terms map and reduce are borrowed from functional programming, 

where a map applies a transform function to every element in a 

collection, and a reduce applies an aggregation function to each element 

of a list, combining them into fewer summary values. 

Essentially, MapReduce divides a computation into three sequential 

stages: map, shuffle, and reduce. In the map phase, the relevant data is 

read from HDFS and processed in parallel by multiple independent 

map tasks. These tasks should ideally run wherever the data is located—

usually we aim for one map task per HDFS block. The user defines 

a map() function (in code) that processes each record in the file and 

produces key-value outputs ready for the next phase. In the shuffle 

phase, the map outputs are fetched by MapReduce and shipped across 

the network to form input to the reduce tasks. A user-

defined reduce() function receives all the values for a key in turn and 

aggregates or combines them into fewer values which summarize the 

inputs. The essentials of the process are shown in Figure 1-6. In the 

example, files are read from HDFS by mappers and shuffled by key 

according to an ID column. The reducers aggregate the remaining 

columns and write the results back to HDFS. 

http://bit.ly/2QbTN6d
http://bit.ly/2QbTN6d
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_mr


 

Figure 1-6. Simple aggregation performed in MapReduce 

Sequences of these three simple linear stages can be composed and 

combined into essentially any computation of arbitrary complexity; for 

example, advanced transformations, joins, aggregations, and more. 

Sometimes, for simple transforms that do not require aggregations, the 

reduce phase is not required at all. Usually, the outputs from a 

MapReduce job are stored back into HDFS, where they may form the 

inputs to other jobs. 

Despite its simplicity, MapReduce is incredibly powerful and extremely 

robust and scalable. It does have a couple of drawbacks, though. First, it 

is quite involved from the point of view of a user, who needs to code and 

compile map() and reduce() functions in Java, which is too high a bar for 

many analysts—composing complex processing pipelines in 

MapReduce can be a daunting task. Second, MapReduce itself is not 

particularly efficient. It does a lot of disk-based I/O, which can be 

expensive when combining processing stages together or doing iterative 

operations. Multistage pipelines are composed from individual 

MapReduce jobs with an HDFS I/O barrier in between, with no 

recognition of potential optimizations in the whole processing graph. 

Because of these drawbacks, a number of successors to MapReduce 

have been developed that aim both to simplify development and to make 

processing pipelines more efficient. Despite this, the conceptual 

underpinnings of MapReduce—that data processing should be split up 

into multiple independent tasks running on different machines (maps), 

the results of which are then shuffled to and grouped and collated 

together on another set of machines (reduces)—are fundamental to all 

distributed data processing engines, including SQL-based frameworks. 

Apache Spark, Apache Flink, and Apache Impala, although all quite 

different in their specifics, are all essentially different implementations 

of this concept. 

APACHE SPARK 

Apache Spark is a distributed computation framework, with an emphasis 

on efficiency and usability, which supports both batch and streaming 

computations. Instead of the user having to express the necessary data 



manipulations in terms of pure map() and reduce() functions as in 

MapReduce, Spark exposes a rich API of common operations, such as 

filtering, joining, grouping, and aggregations directly on Datasets, which 

comprise rows all adhering to a particular type or schema. As well as 

using API methods, users can submit operations directly using a SQL-

style dialect (hence the general name of this set of features, Spark SQL), 

removing much of the requirement to compose pipelines 

programmatically. With its API, Spark makes the job of composing 

complex processing pipelines much more tractable to the user. As a 

simple example, in Figure 1-7, three datasets are read in. Two of these 

unioned together and joined with a third, filtered dataset. The result is 

grouped according to a column and aggregated and written to an 

output. The dataset sources and sinks could be batch-driven and use 

HDFS or Kudu, or could be processed in a stream to and from Kafka. 

 

Figure 1-7. A typical simple aggregation performed in Spark 

A key feature of operations on datasets is that the processing graphs are 

run through a standard query optimizer before execution, very similar to 

those found in relational databases or in massively parallel processing 

query engines. This optimizer can rearrange, combine, and prune the 

processing graph to obtain the most efficient execution pipeline. In this 

way, the execution engine can operate on datasets in a much more 

efficient way, avoiding much of the intermediate I/O from which 

MapReduce suffers. 

One of the principal design goals for Spark was to take full advantage of 

the memory on worker nodes, which is available in increasing quantities 

on commodity servers. The ability to store and retrieve data from main 

memory at speeds which are orders of magnitude faster than those of 

spinning disks makes certain workloads radically more efficient. 

Distributed machine learning workloads in particular, which often 

operate on the same datasets in an iterative fashion, can see huge 

benefits in runtimes over the equivalent MapReduce execution. Spark 

allows datasets to be cached in memory on the executors; if the data 

does not fit entirely into memory, the partitions that cannot be cached 

are spilled to disk or transparently recomputed at runtime. 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_spark


Spark implements stream processing as a series of periodic microbatches 

of datasets. This approach requires only minor code differences in the 

transformations and actions applied to the data—essentially, the same or 

very similar code can be used in both batch and streaming modes. One 

drawback of the micro-batching approach is that it takes at least the 

interval between batches for an event to be processed, so it is not 

suitable for use cases requiring millisecond latencies. However, this 

potential weakness is also a strength because microbatching allows 

much greater data throughput than can be achieved when processing 

events one by one. In general, there are relatively few streaming use 

cases that genuinely require subsecond response times. However, 

Spark’s structured streaming functionality promises to bring many of 

the advantages of an optimized Spark batch computation graph to a 

streaming context, as well as a low-latency continuous streaming mode. 

Spark ships a number of built-in libraries and APIs for machine 

learning. Spark MLlib allows the process of creating a machine learning 

model (data preparation, cleansing, feature extraction, and algorithm 

execution) to be composed into a distributed pipeline. Not all machine 

learning algorithms can automatically be run in a distributed way, so 

Spark ships with a few implementations of common classes of problems, 

such as clustering, classification and regression, and collaborative 

filtering. 

Spark is an extraordinarily powerful framework for data processing and 

is often (rightly) the de facto choice when creating new batch 

processing, machine learning, and streaming use cases. It is not the only 

game in town, though; application architects should also consider 

options like Apache Flink for batch and stream processing, and Apache 

Impala (see “Apache Impala”) for interactive SQL. 

Going deeper 

Once again, Hadoop: The Definitive Guide, by Tom White, is the best 

resource to learn more about Hadoop MapReduce. For Spark, there are a 

few good references: 

 The Spark project documentation 

 Spark: The Definitive Guide, by Bill Chambers and Matei Zaharia 

(O’Reilly) 

http://flink.apache.org/
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#apache_impala
https://spark.apache.org/docs/latest/
http://shop.oreilly.com/product/0636920034957.do


 High Performance Spark, by Holden Karau and Rachel Warren 

(O’Reilly) 

Analytical SQL Engines 

Although MapReduce and Spark are extremely flexible and powerful 

frameworks, to use them you do need to be comfortable programming in 

a language like Java, Scala, or Python and should be happy deploying 

and running code from the command line. The reality is that, in most 

enterprises, SQL remains the lingua franca of analytics, and the largest, 

most accessible skill base lies there. Sometimes you need to get things 

done without the rigmarole of coding, compiling, deploying, and 

running a full application. What’s more, a large body of decision support 

and business intelligence tools interact with data stores exclusively over 

SQL. For these reasons, a lot of time and effort has been spent 

developing SQL-like interfaces to structured data stored in Hadoop. 

Many of these use MapReduce or Spark as their underlying computation 

mechanism, but some are computation engines in their own right. Each 

engine is focused on querying data that already exists in the storage 

engine or on inserting new data in bulk into those engines. They are 

designed for large-scale analytics and not for small-scale transactional 

processing. Let’s look at the principal players. 

APACHE HIVE 

Apache Hive is the original data warehousing technology for Hadoop. It 

was developed at Facebook and was the first to offer a SQL-like 

language, called HiveQL, to allow analysts to query structured data 

stored in HDFS without having to first compile and deploy code. Hive 

supports common SQL query concepts, like table joins, unions, 

subqueries, and views. At a high level, Hive parses a user query, 

optimizes it, and compiles it into one or more chained batch 

computations, which it runs on the cluster. Typically these computations 

are executed as MapReduce jobs, but Hive can also use Apache Tez and 

Spark as its backing execution engine. Hive has two main components: a 

metadata server and a query server. We covered the Hive Metastore 

earlier, so we focus on the querying functionality in this section. 

Users who want to run SQL queries do so via the query server, called 

HiveServer2 (HS2). Users open sessions with the query server and 

http://shop.oreilly.com/product/0636920046967.do


submit queries in the HQL dialect. Hive parses these queries, optimizes 

them as much as possible, and compiles them into one or more batch 

jobs. Queries containing subqueries get compiled into multistage jobs, 

with intermediate data from each stage stored in a temporary location on 

HDFS. HS2 supports multiple concurrent user sessions and ensures 

consistency via shared or exclusive locks in ZooKeeper. The query 

parser and compiler uses a cost-based optimizer to build a query plan 

and can use table and column statistics (which are also stored in the 

metastore) to choose the right strategy when joining tables. Hive can 

read a multitude of file formats through its built-in serialization and 

deserialization libraries (called SerDes) and can also be extended with 

custom formats. 

Figure 1-8 shows a high-level view of Hive operation. A client submits 

queries to a HiveServer2 instance as part of a user session. HiveServer2 

retrieves information for the databases and tables in the queries from the 

Hive Metastore. The queries are then optimized and compiled into 

sequences of jobs (J) in MapReduce, Tez, or Spark. After the jobs are 

complete, the results are returned to the remote client via HiveServer2. 

 

Figure 1-8. High-level overview of Hive operation 

Hive is not generally considered to be an interactive query engine 

(although recently speed improvements have been made via long-lived 

processes which begin to move it into this realm). Many queries result in 

chains of MapReduce jobs that can take many minutes (or even hours) to 

complete. Hive is thus ideally suited to offline batch jobs for extract, 

transform, load (ETL) operations; reporting; or other bulk data 

manipulations. Hive-based workflows are a trusted staple of big data 

clusters and are generally extremely robust. Although Spark SQL is 

increasingly coming into favor, Hive remains—and will continue to 

be—an essential tool in the big data toolkit. 

We will encounter Hive again when discussing how to deploy it for high 

availability in Chapter 12. 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_hive
http://bit.ly/2S4Dh5c
http://bit.ly/2S4Dh5c
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch12.html#ha


Going deeper 

Much information about Hive is contained in blog posts and other 

articles spread around the web, but there are some good references: 

 The Apache Hive wiki (contains a lot of useful information, 

including the HQL language reference) 

 Programming Hive, by Dean Wampler, Jason Rutherglen, and 

Edward Capriolo (O’Reilly) 

NOTE 

Although we covered it in “Computational Frameworks”, Spark is also a 

key player in the analytical SQL space. The Spark SQL functionality 

supports a wide range of workloads for both ETL and reporting and can 

also play a role in interactive query use cases. For new implementations 

of batch SQL workloads, Spark should probably be considered as the 

default starting point. 

APACHE IMPALA 

Apache Impala is a massively parallel processing (MPP) engine 

designed to support fast, interactive SQL queries on massive datasets in 

Hadoop or cloud storage. Its key design goal is to enable multiple 

concurrent, ad hoc, reporting-style queries covering terabytes of data to 

complete within a few seconds. It is squarely aimed at supporting 

analysts who wish to execute their own SQL queries, directly or via UI-

driven business intelligence (BI) tools. 

In contrast to Hive or Spark SQL, Impala does not convert queries into 

batch jobs to run under YARN. Instead it is a standalone service, 

implemented in C++, with its own worker processes which run queries, 

the Impala daemons. Unlike with Hive, there is no centralized query 

server; each Impala daemon can accept user queries and acts as 

the coordinator node for the query. Users can submit queries via JDBC 

or ODBC, via a UI such as Hue, or via the supplied command-line shell. 

Submitted queries are compiled into a distributed query plan. This plan 

is an operator tree divided into fragments. Each fragment is a group of 

plan nodes in the tree which can run together. The daemon sends 

different instances of the plan fragments to daemons in the cluster to 

http://bit.ly/1ACj9rX
http://shop.oreilly.com/product/0636920023555.do
https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#computational_frameworks


execute against their local data, where they are run in one or more 

threads within the daemon process. 

Because of its focus on speed and efficiency, Impala uses a different 

execution model, in which data is streamed from its source through a 

tree of distributed operators. Rows read by scan nodes are processed by 

fragment instances and streamed to other instances, which may be 

responsible for joining, grouping, or aggregation via exchange operators. 

The final results from distributed fragment instances are streamed back 

to the coordinator daemon, which executes any final aggregations before 

informing the user there are results to fetch. 

The query process is outlined in Figure 1-9. A client chooses an Impala 

daemon server to which to submit its query. This coordinator node 

compiles and optimizes the query into remote execution fragments 

which are sent to the other daemons in the cluster (query initialization). 

The daemons execute the operators in the fragments and exchange rows 

between each other as required (distributed execution). As they become 

available, they stream the results to the coordinator, which may perform 

final aggregations and computations before streaming them to the client. 

 

https://learning.oreilly.com/library/view/architecting-modern-data/9781491969267/ch01.html#fig_primer_impala

