
Chapter 1. Domain Modelling 

In this chapter we’ll look into how we can model business processes 

with code, in a way that’s highly compatible with TDD. We’ll 

discuss why domain modelling matters, and we’ll look at a few key 

patterns for modelling domains: Entities, Value Objects, and Domain 

Services. 

What is a Domain Model? 

In the ???, we used the term business logic layer to describe the central 

layer of a three-layered architecture. For the rest of the book, we’re 

going to use the term Domain Model instead. This is a term from the 

DDD community that does a better job of capturing our intended 

meaning (see the next sidebar for more on DDD). 

The domain is a fancy way of saying the problem you’re trying to 

solve. We currently work for an online retailer of furniture. Depending 

on which system I’m talking about, the domain might be purchasing and 

procurement, or product design, or logistics and delivery. Most 

programmers spend their days trying to improve or automate business 

processes; the domain is the set of activities that those processes support. 

A model is a map of a process or phenomenon that captures some useful 

property. Humans are exceptionally good at producing models of things 

in their heads. For example, when someone throws a ball toward you, 

you’re able to predict its movement almost unconsciously, because you 

have a model of how objects move in space. Your model isn’t perfect by 

any means. Humans have terrible intuitions about how objects behave at 

near-light speeds or in a vacuum because our model was never designed 

to cover those cases. That doesn’t mean the model is wrong, but it does 

mean that some predictions fall outside of its domain. 

THIS IS NOT A DDD BOOK. YOU SHOULD READ A DDD 

BOOK. 

Domain-driven design, or DDD, is where the concept of domain modelling was 

popularized,1 and it’s been a hugely successful movement in transforming the way 

https://learning.oreilly.com/library/view/enterprise-architecture-patterns/9781492052197/ch01.html#prologue
https://learning.oreilly.com/library/view/enterprise-architecture-patterns/9781492052197/ch01.html#idm45997247402536


people design software by focusing on the core business domain. Many of the 

architecture patterns that we cover in this book, like Entity, Aggregate and Value 

Objects (see Chapter 5), and Repository pattern (in the next chapter) all come from 

the DDD tradition. 

In a nutshell, DDD says that the most important thing about software is that it 

provides a useful model of some problem. If we get that model right, then our 

software delivers value and makes new things possible. 

If we get it wrong, it becomes an obstacle to be worked around. In this book we 

can show the basics of building a domain model, and building an architecture 

around it that leaves the model as free as possible from external constraints, so that 

it’s easy to evolve and change. 

But there’s a lot more to DDD, and the processes, tools and techniques for 

developing a domain model. We hope to give you a taste for it though, and cannot 

encourage you enough to go on and read a proper DDD book. 

 The original “blue book”, Domain-Driven Design by Eric Evans (Addison-

Wesley, 2003) 

 Or, some people prefer the “red book”, Implementing Domain-Driven 

Design, by Vaughn Vernon (Addison-Wesley, 2013). 

The Domain Model is the mental map that business owners have of their 

businesses. All business people have these mental maps, they’re how 

humans think about complex processes. 

You can tell when they’re navigating these maps because they use 

business speak. Jargon arises naturally between people who are 

collaborating on complex systems. 

Imagine that you, our unfortunate reader, were suddenly transported 

light years away from Earth aboard an alien spaceship with your friends 

and family and had to figure out, from first principles, how to navigate 

home. 

In your first few days, you might just push buttons randomly, but soon 

you’d learn which buttons did what, so that you could give one another 

instructions. “Press the red button near the flashing doo-hickey and then 

throw that big lever over by the radar gizmo,” you might say. 

Within a couple of weeks, you’d become more precise as you adopted 

words to describe the ship’s functions: “increase oxygen levels in cargo 

https://learning.oreilly.com/library/view/enterprise-architecture-patterns/9781492052197/ch05.html#chapter_05_uow
https://learning.oreilly.com/library/view/enterprise-architecture-patterns/9781492052197/ch02.html#chapter_02_repository
https://domainlanguage.com/ddd/


bay three” or “turn on the little thrusters.” After a few months you’d 

have adopted language for entire complex processes: “Start landing 

sequence,” or “prepare for warp.” This process would happen quite 

naturally, without any formal effort to build a shared glossary. 

So it is in the mundane world of business. The terminology used by 

business stakeholders represents a distilled understanding of the domain 

model, where complex ideas and processes are boiled down to a single 

word or phrase. 

When we hear our business stakeholders using unfamiliar words, or 

using terms in a specific way, we should listen to understand the deeper 

meaning and encode their hard-won experience into our software. 

We’re going to use a real-world domain model throughout this book, 

specifically a model from our current employment. Made.com is a 

successful furniture retailer. We source our furniture from manufacturers 

all over the world and sell it across Europe. 

When you buy a sofa or a coffee table, we have to figure out how best to 

get your goods from Poland or China or Vietnam, and into your living 

room. 

At a high level, we have separate systems that are responsible for buying 

stock, selling stock to customers, and shipping goods to customers. 

There’s a system in the middle that needs to coordinate the process by 

allocating stock to a customer’s orders; see Figure 1-1. 

 

Figure 1-1. Context diagram for the allocation service 

For the purposes of this book, we’re imagining a situation where the 

business decides to implement an exciting new way of allocating stock. 

Until now, the business has been presenting stock and lead times based 

on what is physically available in the warehouse. If and when the 

warehouse runs out, a product is listed as “out of stock” until the next 

shipment arrives from the manufacturer. 

The innovation is: if we have a system that can keep track of all our 

shipments and when they’re due to arrive, then we can treat the goods on 

those ships as real stock, and part of our inventory, just with slightly 

https://learning.oreilly.com/library/view/enterprise-architecture-patterns/9781492052197/ch01.html#allocation_context_diagram


longer lead times. Fewer goods will appear to be out of stock, we’ll sell 

more, and the business can save money by keeping lower inventory in 

the domestic warehouse. 

But allocating orders is no longer a trivial matter of decrementing a 

single quantity in the warehouse system. We need a more complex 

allocation mechanism. Time for some domain modelling. 

 


