
Chapter 1. Computer Programming

The goal of this book is to teach you to think like a computer scientist.

This way of thinking combines some of the best features of

mathematics, engineering, and natural science. Like mathematicians,

computer scientists use formal languages to denote ideas, specifically

computations. Like engineers, they design things, assembling

components into systems and evaluating trade-offs among alternatives.

And like scientists, they observe the behavior of complex systems, form

hypotheses, and test predictions.

An important skill for a computer scientist is problem solving. It

involves the ability to formulate problems, think creatively about

solutions, and express solutions clearly and accurately. As it turns out,

the process of learning to program computers is an excellent opportunity

to develop problem-solving skills. On one level you will be learning to

write Java programs, a useful skill by itself. But on another level you

will use programming as a means to an end. As we go along, that end

will become clearer.

What Is a Computer?

When people hear the word computer, they often think of a desktop or

laptop. Not surprisingly, searching for “computer”

on https://images.google.com/ displays rows and rows of these types of

machines. However, in a more general sense, a computer can be any

type of device that stores and processes data.

Dictionary.com defines a computer as “a programmable electronic

device designed to accept data, perform prescribed mathematical and

logical operations at high speed, and display the results of these

operations. Mainframes, desktop and laptop computers, tablets, and

smartphones are some of the different types of computers.”

Each type of computer has its own unique design, but internally they all

share the same type of hardware. The two most important hardware

components are processors (or CPUs) that perform simple calculations

https://images.google.com/

and memory (or RAM) that temporarily stores information. Figure 1-

1 shows what these components look like.

Figure 1-1. Example processor and memory hardware.

Figure 1-2. Example processor and memory hardware.

Users generally see and interact with touchscreens, keyboards, and

monitors, but it’s the processors and memory that perform the actual

computation. Nowadays it’s fairly standard, even for a smartphone, to

have at least eight processors and four gigabytes (four billion cells) of

memory.

What Is Programming?

A program is a sequence of instructions that specifies how to perform a

computation on computer hardware. The computation might be

something mathematical, like solving a system of equations or finding

the roots of a polynomial. It could also be a symbolic computation, like

searching and replacing text in a document or (strangely enough)

compiling a program.

The details look different in different languages, but a few basic

instructions appear in just about every language:

input:

Get data from the keyboard, a file, a sensor, or some other device.

output:

Display data on the screen, or send data to a file or other device.

math:

Perform basic mathematical operations like addition and division.

decision:

Check for certain conditions and execute the appropriate code.

repetition:

https://learning.oreilly.com/library/view/think-java-2nd/9781492072492/ch01.html#fig.cpuram
https://learning.oreilly.com/library/view/think-java-2nd/9781492072492/ch01.html#fig.cpuram

Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program

you’ve ever used, no matter how complicated, is made up of small

instructions that look much like these. So you can think

of programming as the process of breaking down a large, complex task

into smaller and smaller subtasks. The process continues until the

subtasks are simple enough to be performed with the electronic circuits

provided by the hardware.

The Hello World Program

Traditionally, the first program you write when learning a new

programming language is called the hello world program. All it does is

output the words “Hello, World!” to the screen. In Java, it looks like

this:

public class Hello {

 public static void main(String[] args) {
 // generate some simple output
 System.out.println("Hello, World!");
 }
}

When this program runs it displays:

Hello, World!

Notice that the output does not include the quotation marks.

Java programs are made up of class and method definitions, and

methods are made up of statements. A statement is a line of code that

performs a basic action. In the hello world program, this line is a print

statement that displays a message to the user:

System.out.println("Hello, World!");

System.out.println displays results on the screen; the name println stands

for “print line”. Confusingly, print can mean both “display on the

screen” and “send to the printer”. In this book, we’ll try to say “display”

when we mean output to the screen. Like most statements, the print

statement ends with a semicolon (;).

Java is “case-sensitive”, which means that uppercase and lowercase are

not the same. In the hello world program, System has to begin with an

uppercase letter; system and SYSTEM won’t work.

A method is a named sequence of statements. This program defines one

method named main:

public static void main(String[] args)

The name and format of main is special: when the program runs, it starts

at the first statement in main and ends when it finishes the last statement.

Later, we will see programs that define more than one method.

This program defines a class named Hello. For now, a class is a

collection of methods; we’ll have more to say about this later. You can

give a class any name you like, but it is conventional to start with a

capital letter. The name of the class has to match the name of the file it

is in, so this class has to be in a file named Hello.java.

Java uses curly braces ({ and }) to group things together. In Hello.java,

the outermost braces contain the class definition, and the inner braces

contain the method definition.

The line that begins with two slashes (//) is a comment, which is a bit of

English text that explains the code. When Java sees //, it ignores

everything from there until the end of the line. Comments have no effect

on the execution of the program, but they make it easier for other

programmers (and your future self) to understand what you meant to do.

Compiling Java Programs

The programming language you will learn in this book is Java, which is

a high-level language. Other high-level languages you may have heard

of include Python, C and C++, PHP, Ruby, and JavaScript.

Before they can run, programs in high-level languages have to be

translated into a low-level language, also called “machine language”.

This translation takes some time, which is a small disadvantage of high-

level languages. But high-level languages have two major advantages:

 It is much easier to program in a high-level language. Programs

take less time to write, they are shorter and easier to read, and they

are more likely to be correct.

 High-level languages are portable, meaning they can run on

different kinds of computers with few or no modifications. Low-

level programs can only run on one kind of computer.

Two kinds of programs translate high-level languages into low-level

languages: interpreters and compilers. An interpreter reads a high-level

program and executes it, meaning that it does what the program says. It

processes the program a little at a time, alternately reading lines and

performing computations. Figure 1-3 shows the structure of an

interpreter.

Figure 1-3. How interpreted languages are executed.

In contrast, a compiler reads the entire program and translates it

completely before the program starts running. In this context, the high-

level program is called the source code. The translated program is called

the object code or the executable. Once a program is compiled, you can

execute it repeatedly without further translation. As a result, compiled

programs often run faster than interpreted programs.

Note that object code, as a low-level language, is not portable. You

cannot run an executable compiled for a Windows laptop on an Android

phone, for example. In order to run a program on different types of

machines, it must be compiled multiple times. It can be difficult to write

source code that compiles and runs correctly on different types of

machines.

To address this issue, Java is both compiled and interpreted. Instead of

translating source code directly into an executable, the Java compiler

generates code for a virtual machine. This “imaginary” machine has the

functionality common to desktops, laptops, tablets, phones, etc. Its

language, called Java byte code, looks like object code and is easy and

fast to interpret.

As a result, it’s possible to compile a Java program on one machine,

transfer the byte code to another machine, and run the byte code on the

https://learning.oreilly.com/library/view/think-java-2nd/9781492072492/ch01.html#fig.interpreter

other machine. Figure 1-4 shows the steps of the development process.

The Java compiler is a program named javac. It translates .java files

into .class files that store the resulting byte code. The Java interpreter is

another program, named java, which is short for “Java Virtual Machine”

(JVM).

Figure 1-4. The process of compiling and running a Java program.

The programmer writes source code in the file Hello.java and

uses javac to compile it. If there are no errors, the compiler saves the

byte code in the file Hello.class. To run the program, the programmer

uses java to interpret the byte code. The result of the program is then

displayed on the screen.

Although it might seem complicated, these steps are automated for you

in most development environments. Usually you only have to press a

button or type a single command to compile and interpret your program.

On the other hand, it is important to know what steps are happening in

the background, so if something goes wrong you can figure out what it

is.

https://learning.oreilly.com/library/view/think-java-2nd/9781492072492/ch01.html#fig.compiler

