Chapter 1. The Machine Learning Landscape

When most people hear "Machine Learning," they picture a robot: a dependable butler or a deadly Terminator, depending on who you ask. But Machine Learning is not just a futuristic fantasy; it's already here. In fact, it has been around for decades in some specialized applications, such as Optical Character Recognition (OCR). But the first ML application that really became mainstream, improving the lives of hundreds of millions of people, took over the world back in the 1990s: the *spam filter*. It's not exactly a self-aware Skynet, but it does technically qualify as Machine Learning (it has actually learned so well that you seldom need to flag an email as spam anymore). It was followed by hundreds of ML applications that now quietly power hundreds of products and features that you use regularly, from better recommendations to voice search.

Where does Machine Learning start and where does it end? What exactly does it mean for a machine to *learn* something? If I download a copy of Wikipedia, has my computer really learned something? Is it suddenly smarter? In this chapter we will start by clarifying what Machine Learning is and why you may want to use it.

Then, before we set out to explore the Machine Learning continent, we will take a look at the map and learn about the main regions and the most notable landmarks: supervised versus unsupervised learning, online versus batch learning, instance-based versus model-based learning. Then we will look at the workflow of a typical ML project, discuss the main challenges you may face, and cover how to evaluate and fine-tune a Machine Learning system.

This chapter introduces a lot of fundamental concepts (and jargon) that every data scientist should know by heart. It will be a high-level overview (it's the only chapter without much code), all rather simple, but you should make sure everything is crystal clear to you before continuing on to the rest of the book. So grab a coffee and let's get started!

TIP

If you already know all the Machine Learning basics, you may want to skip directly to Chapter 2. If you are not sure, try to answer all the questions listed at the end of the chapter before moving on.

What Is Machine Learning?

Machine Learning is the science (and art) of programming computers so they can *learn from data*.

Here is a slightly more general definition:

[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed.

Arthur Samuel, 1959

And a more engineering-oriented one:

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

Tom Mitchell, 1997

Your spam filter is a Machine Learning program that, given examples of spam emails (e.g., flagged by users) and examples of regular (nonspam, also called "ham") emails, can learn to flag spam. The examples that the system uses to learn are called the *training set*. Each training example is called a *training instance* (or *sample*). In this case, the task *T* is to flag spam for new emails, the experience *E* is the *training data*, and the performance measure *P* needs to be defined; for example, you can use the ratio of correctly classified emails. This particular performance measure is called *accuracy*, and it is often used in classification tasks.

If you just download a copy of Wikipedia, your computer has a lot more data, but it is not suddenly better at any task. Thus, downloading a copy of Wikipedia is not Machine Learning.

Why Use Machine Learning?

Consider how you would write a spam filter using traditional programming techniques (Figure 1-1):

- 1. First you would consider what spam typically looks like. You might notice that some words or phrases (such as "4U," "credit card," "free," and "amazing") tend to come up a lot in the subject line. Perhaps you would also notice a few other patterns in the sender's name, the email's body, and other parts of the email.
- 2. You would write a detection algorithm for each of the patterns that you noticed, and your program would flag emails as spam if a number of these patterns were detected.
- 3. You would test your program and repeat steps 1 and 2 until it was good enough to launch.

Figure 1-1. The traditional approach

Since the problem is difficult, your program will likely become a long list of complex rules—pretty hard to maintain.

In contrast, a spam filter based on Machine Learning techniques automatically learns which words and phrases are good predictors of spam by detecting unusually frequent patterns of words in the spam examples compared to the ham examples (Figure 1-2). The program is much shorter, easier to maintain, and most likely more accurate.

What if spammers notice that all their emails containing "4U" are blocked? They might start writing "For U" instead. A spam filter using traditional programming techniques would need to be updated to flag "For U" emails. If spammers keep working around your spam filter, you will need to keep writing new rules forever.

In contrast, a spam filter based on Machine Learning techniques automatically notices that "For U" has become unusually frequent in spam flagged by users, and it starts flagging them without your intervention (Figure 1-3).

Figure 1-3. Automatically adapting to change

Another area where Machine Learning shines is for problems that either are too complex for traditional approaches or have no known algorithm. For example, consider speech recognition. Say you want to start simple and write a program capable of distinguishing the words "one" and "two." You might notice that the word "two" starts with a high-pitch sound ("T"), so you could hardcode an algorithm that measures high-pitch sound intensity and use that to distinguish ones and twos —but obviously this technique will not scale to thousands of words spoken by millions of very different people in noisy environments and in dozens of languages. The best solution (at least today) is to write an algorithm that learns by itself, given many example recordings for each word.

Finally, Machine Learning can help humans learn (Figure 1-4). ML algorithms can be inspected to see what they have learned (although for some algorithms this can be tricky). For instance, once a spam filter has been trained on enough spam, it can easily be inspected to reveal the list of words and combinations of words that it believes are the best predictors of spam. Sometimes this will reveal unsuspected correlations or new trends, and thereby lead to a better understanding of the problem. Applying ML techniques to dig into large amounts of data can help discover patterns that were not immediately apparent. This is called *data mining*.

Figure 1-4. Machine Learning can help humans learn

To summarize, Machine Learning is great for:

- Problems for which existing solutions require a lot of fine-tuning or long lists of rules: one Machine Learning algorithm can often simplify code and perform better than the traditional approach.
- Complex problems for which using a traditional approach yields no good solution: the best Machine Learning techniques can perhaps find a solution.

- Fluctuating environments: a Machine Learning system can adapt to new data.
- Getting insights about complex problems and large amounts of data.

Examples of Applications

Let's look at some concrete examples of Machine Learning tasks, along with the techniques that can tackle them:

Analyzing images of products on a production line to automatically classify them

This is image classification, typically performed using convolutional neural networks (CNNs; see Chapter 14). *Detecting tumors in brain scans*

This is semantic segmentation, where each pixel in the image is classified (as we want to determine the exact location and shape of tumors), typically using CNNs as well. *Automatically classifying news articles*

This is natural language processing (NLP), and more specifically text classification, which can be tackled using recurrent neural networks (RNNs), CNNs, or Transformers (see Chapter 16). *Automatically flagging offensive comments on discussion forums*

This is also text classification, using the same NLP tools. Summarizing long documents automatically

This is a branch of NLP called text summarization, again using the same tools.

Creating a chatbot or a personal assistant

This involves many NLP components, including natural language understanding (NLU) and question-answering modules.