
Chapter 1. Introduction and Overview

Database management systems can serve different purposes: some are

used primarily for temporary hot data, some serve as a long-

lived cold storage, some allow complex analytical queries, some only

allow accessing values by the key, some are optimized to store time-

series data, and some store large blobs efficiently. To understand

differences and draw distinctions, we start with a short classification and

overview, as this helps us to understand the scope of further discussions.

Terminology can sometimes be ambiguous and hard to understand

without a complete context. For example,

distinctions between column and wide column stores that have little or

nothing to do with each other, or how clustered and nonclustered

indexes relate to index-organized tables. This chapter aims to

disambiguate these terms and find their precise definitions.

We start with an overview of database management system architecture

(see “DBMS Architecture”), and discuss system components and their

responsibilities. After that, we discuss the distinctions among the

database management systems in terms of a storage medium

(see “Memory- Versus Disk-Based DBMS”), and layout (see “Column-

Versus Row-Oriented DBMS”).

These two groups do not present a full taxonomy of database

management systems and there are many other ways they’re classified.

For example, some sources group DBMSs into three major categories:

Online transaction processing (OLTP) databases

These handle a large number of user-facing requests and

transactions. Queries are often predefined and short-lived.

Online analytical processing (OLAP) databases

These handle complex aggregations. OLAP databases are often

used for analytics and data warehousing, and are capable of

handling complex, long-running ad hoc queries.

Hybrid transactional and analytical processing (HTAP)

These databases combine properties of both OLTP and OLAP

stores.

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#dbms_architecture
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#memory_vs_disk_based_stores
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#columnar_vs_row_oriented
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#columnar_vs_row_oriented

There are many other terms and classifications: key-value stores,

relational databases, document-oriented stores, and graph databases.

These concepts are not defined here, since the reader is assumed to have

a high-level knowledge and understanding of their functionality.

Because the concepts we discuss here are widely applicable and are used

in most of the mentioned types of stores in some capacity, complete

taxonomy is not necessary or important for further discussion.

Since Part I of this book focuses on the storage and indexing structures,

we need to understand the high-level data organization approaches, and

the relationship between the data and index files (see “Data Files and

Index Files”).

Finally, in “Buffering, Immutability, and Ordering”, we discuss three

techniques widely used to develop efficient storage structures and how

applying these techniques influences their design and implementation.

DBMS Architecture

There’s no common blueprint for database management system design.

Every database is built slightly differently, and component boundaries

are somewhat hard to see and define. Even if these boundaries exist on

paper (e.g., in project documentation), in code seemingly independent

components may be coupled because of performance optimizations,

handling edge cases, or architectural decisions.

Sources that describe database management system architecture (for

example, [HELLERSTEIN07], [WEIKUM01], [ELMASRI11],

and [MOLINA08]), define components and relationships between them

differently. The architecture presented in Figure 1-1 demonstrates some

of the common themes in these representations.

Database management systems use a client/server model, where

database system instances (nodes) take the role of servers, and

application instances take the role of clients.

Client requests arrive through the transport subsystem. Requests come

in the form of queries, most often expressed in some query language.

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#data_and_index
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#data_and_index
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#in_place_update_vs_immutable
https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#HELLERSTEIN07
https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#WEIKUM01
https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#ELMASRI11
https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#MOLINA08
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#architecutre_of_dmbs_001

The transport subsystem is also responsible for communication with

other nodes in the database cluster.

Figure 1-1. Architecture of a database management system

Upon receipt, the transport subsystem hands the query over to a query

processor, which parses, interprets, and validates it. Later, access control

checks are performed, as they can be done fully only after the query is

interpreted.

The parsed query is passed to the query optimizer, which first eliminates

impossible and redundant parts of the query, and then attempts to find

the most efficient way to execute it based on internal statistics (index

cardinality, approximate intersection size, etc.) and data placement

(which nodes in the cluster hold the data and the costs associated with its

transfer). The optimizer handles both relational operations required for

query resolution, usually presented as a dependency tree, and

optimizations, such as index ordering, cardinality estimation, and

choosing access methods.

The query is usually presented in the form of an execution

plan (or query plan): a sequence of operations that have to be carried out

for its results to be considered complete. Since the same query can be

satisfied using different execution plans that can vary in efficiency, the

optimizer picks the best available plan.

The execution plan is handled by the execution engine, which collects

the results of the execution of local and remote operations. Remote

execution can involve writing and reading data to and from other nodes

in the cluster, and replication.

Local queries (coming directly from clients or from other nodes) are

executed by the storage engine. The storage engine has several

components with dedicated responsibilities:

Transaction manager

This manager schedules transactions and ensures they cannot leave

the database in a logically inconsistent state.

Lock manager

This manager locks on the database objects for the running

transactions, ensuring that concurrent operations do not violate

physical data integrity.

Access methods (storage structures)

These manage access and organizing data on disk. Access methods

include heap files and storage structures such as B-Trees

(see “Ubiquitous B-Trees”) or LSM Trees (see “LSM Trees”).

Buffer manager

This manager caches data pages in memory (see “Buffer

Management”).

Recovery manager

This manager maintains the operation log and restoring the system

state in case of a failure (see “Recovery”).

Together, transaction and lock managers are responsible for concurrency

control (see “Concurrency Control”): they guarantee logical and

physical data integrity while ensuring that concurrent operations are

executed as efficiently as possible.

Memory- Versus Disk-Based DBMS

Database systems store data in memory and on disk. In-memory

database management systems (sometimes called main memory DBMS)

store data primarily in memory and use the disk for recovery and

logging. Disk-based DBMS hold most of the data on disk and use

memory for caching disk contents or as a temporary storage. Both types

of systems use the disk to a certain extent, but main memory databases

store their contents almost exclusively in RAM.

Accessing memory has been and remains several orders of magnitude

faster than accessing disk,1 so it is compelling to use memory as the

primary storage, and it becomes more economically feasible to do so as

memory prices go down. However, RAM prices still remain high

compared to persistent storage devices such as SSDs and HDDs.

Main memory database systems are different from their disk-based

counterparts not only in terms of a primary storage medium, but also in

which data structures, organization, and optimization techniques they

use.

Databases using memory as a primary data store do this mainly because

of performance, comparatively low access costs, and access granularity.

Programming for main memory is also significantly simpler than doing

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch02.html#b_trees
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch07.html#lsm_trees
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch05.html#buffer_pool
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch05.html#buffer_pool
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch05.html#write_ahead_log
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch05.html#b_tree_concurrency
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#idm46104533895800

so for the disk. Operating systems abstract memory management and

allow us to think in terms of allocating and freeing arbitrarily sized

memory chunks. On disk, we have to manage data references,

serialization formats, freed memory, and fragmentation manually.

The main limiting factors on the growth of in-memory databases are

RAM volatility (in other words, lack of durability) and costs. Since

RAM contents are not persistent, software errors, crashes, hardware

failures, and power outages can result in data loss. There are ways to

ensure durability, such as uninterrupted power supplies and battery-

backed RAM, but they require additional hardware resources and

operational expertise. In practice, it all comes down to the fact that disks

are easier to maintain and have significantly lower prices.

The situation is likely to change as the availability and popularity of

Non-Volatile Memory (NVM) [ARULRAJ17] technologies grow. NVM

storage reduces or completely eliminates (depending on the exact

technology) asymmetry between read and write latencies, further

improves read and write performance, and allows byte-addressable

access.

Durability in Memory-Based Stores

In-memory database systems maintain backups on disk to provide

durability and prevent loss of the volatile data. Some databases store

data exclusively in memory, without any durability guarantees, but we

do not discuss them in the scope of this book.

Before the operation can be considered complete, its results have to be

written to a sequential log file. We discuss write-ahead logs in more

detail in “Recovery”. To avoid replaying complete log contents during

startup or after a crash, in-memory stores maintain a backup copy. The

backup copy is maintained as a sorted disk-based structure, and

modifications to this structure are often asynchronous (decoupled from

client requests) and applied in batches to reduce the number of I/O

operations. During recovery, database contents can be restored from the

backup and logs.

Log records are usually applied to backup in batches. After the batch of

log records is processed, backup holds a database snapshot for a specific

https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#ARULRAJ17
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch05.html#write_ahead_log

point in time, and log contents up to this point can be discarded. This

process is called checkpointing. It reduces recovery times by keeping the

disk-resident database most up-to-date with log entries without requiring

clients to block until the backup is updated.

NOTE

It is unfair to say that the in-memory database is the equivalent of an on-

disk database with a huge page cache (see “Buffer Management”). Even

though pages are cached in memory, serialization format and data layout

incur additional overhead and do not permit the same degree of

optimization that in-memory stores can achieve.

Disk-based databases use specialized storage structures, optimized for

disk access. In memory, pointers can be followed comparatively quickly,

and random memory access is significantly faster than the random disk

access. Disk-based storage structures often have a form of wide and

short trees (see “Trees for Disk-Based Storage”), while memory-based

implementations can choose from a larger pool of data structures and

perform optimizations that would otherwise be impossible or difficult to

implement on disk [MOLINA92]. Similarly, handling variable-size data

on disk requires special attention, while in memory it’s often a matter of

referencing the value with a pointer.

For some use cases, it is reasonable to assume that an entire dataset is

going to fit in memory. Some datasets are bounded by their real-world

representations, such as student records for schools, customer records

for corporations, or inventory in an online store. Each record takes up

not more than a few Kb, and their number is limited.

Column- Versus Row-Oriented DBMS

Most database systems store a set of data records, consisting

of columns and rows in tables. Field is an intersection of a column and a

row: a single value of some type. Fields belonging to the same column

usually have the same data type. For example, if we define a table

holding user records, all names would be of the same type and belong to

the same column. A collection of values that belong logically to the

same record (usually identified by the key) constitutes a row.

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch05.html#buffer_pool
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch02.html#trees_for_disk_based_storage
https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#MOLINA92

One of the ways to classify databases is by how the data is stored on

disk: row- or column-wise. Tables can be partitioned either horizontally

(storing values belonging to the same row together), or vertically

(storing values belonging to the same column together). Figure 1-

2 depicts this distinction: (a) shows the values partitioned column-wise,

and (b) shows the values partitioned row-wise.

Figure 1-2. Data layout in column- and row-oriented stores

Examples of row-oriented database management systems are

abundant: MySQL, PostgreSQL, and most of the traditional relational

databases. The two pioneer open source column-oriented stores

are MonetDB and C-Store (C-Store is an open source predecessor

to Vertica).

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#column_vs_row_store
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#column_vs_row_store
https://dev.mysql.com/
https://www.postgresql.org/
https://databass.dev/links/109
https://databass.dev/links/110
https://databass.dev/links/111

Row-Oriented Data Layout

Row-oriented database management systems store data in records

or rows. Their layout is quite close to the tabular data representation,

where every row has the same set of fields. For example, a row-oriented

database can efficiently store user entries, holding names, birth dates,

and phone numbers:

| ID | Name | Birth Date | Phone Number |

| 10 | John | 01 Aug 1981 | +1 111 222 333 |

| 20 | Sam | 14 Sep 1988 | +1 555 888 999 |

| 30 | Keith | 07 Jan 1984 | +1 333 444 555 |

This approach works well for cases where several fields constitute the

record (name, birth date, and a phone number) uniquely identified by the

key (in this example, a monotonically incremented number). All fields

representing a single user record are often read together. When creating

records (for example, when the user fills out a registration form), we

write them together as well. At the same time, each field can be

modified individually.

Since row-oriented stores are most useful in scenarios when we have to

access data by row, storing entire rows together improves spatial

locality2 [DENNING68].

Because data on a persistent medium such as a disk is typically accessed

block-wise (in other words, a minimal unit of disk access is a block), a

single block will contain data for all columns. This is great for cases

when we’d like to access an entire user record, but makes queries

accessing individual fields of multiple user records (for example, queries

fetching only the phone numbers) more expensive, since data for the

other fields will be paged in as well.

Column-Oriented Data Layout

Column-oriented database management systems partition

data vertically (i.e., by column) instead of storing it in rows. Here,

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#idm46104533842040
https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#DENNING68

values for the same column are stored contiguously on disk (as opposed

to storing rows contiguously as in the previous example). For example,

if we store historical stock market prices, price quotes are stored

together. Storing values for different columns in separate files or file

segments allows efficient queries by column, since they can be read in

one pass rather than consuming entire rows and discarding data for

columns that weren’t queried.

Column-oriented stores are a good fit for analytical workloads that

compute aggregates, such as finding trends, computing average values,

etc. Processing complex aggregates can be used in cases when logical

records have multiple fields, but some of them (in this case, price

quotes) have different importance and are often consumed together.

From a logical perspective, the data representing stock market price

quotes can still be expressed as a table:

| ID | Symbol | Date | Price |

| 1 | DOW | 08 Aug 2018 | 24,314.65 |

| 2 | DOW | 09 Aug 2018 | 24,136.16 |

| 3 | S&P | 08 Aug 2018 | 2,414.45 |

| 4 | S&P | 09 Aug 2018 | 2,232.32 |

However, the physical column-based database layout looks entirely

different. Values belonging to the same row are stored closely together:

Symbol: 1:DOW; 2:DOW; 3:S&P; 4:S&P

Date: 1:08 Aug 2018; 2:09 Aug 2018; 3:08 Aug 2018; 4:09

Aug 2018

Price: 1:24,314.65; 2:24,136.16; 3:2,414.45; 4:2,232.32

To reconstruct data tuples, which might be useful for joins, filtering, and

multirow aggregates, we need to preserve some metadata on the column

level to identify which data points from other columns it is associated

with. If you do this explicitly, each value will have to hold a key, which

introduces duplication and increases the amount of stored data. Some

column stores use implicit identifiers (virtual IDs) instead and use the

position of the value (in other words, its offset) to map it back to the

related values [ABADI13].

During the last several years, likely due to a rising demand to run

complex analytical queries over growing datasets, we’ve seen many new

column-oriented file formats such as Apache Parquet, Apache

ORC, RCFile, as well as column-oriented stores, such as Apache

Kudu, ClickHouse, and many others [ROY12].

Distinctions and Optimizations

It is not sufficient to say that distinctions between row and column stores

are only in the way the data is stored. Choosing the data layout is just

one of the steps in a series of possible optimizations that columnar stores

are targeting.

Reading multiple values for the same column in one run significantly

improves cache utilization and computational efficiency. On modern

CPUs, vectorized instructions can be used to process multiple data

points with a single CPU instruction3 [DREPPER07].

Storing values that have the same data type together (e.g., numbers with

other numbers, strings with other strings) offers a better compression

ratio. We can use different compression algorithms depending on the

data type and pick the most effective compression method for each case.

To decide whether to use a column- or a row-oriented store, you need to

understand your access patterns. If the read data is consumed in records

(i.e., most or all of the columns are requested) and the workload consists

mostly of point queries and range scans, the row-oriented approach is

likely to yield better results. If scans span many rows, or compute

aggregate over a subset of columns, it is worth considering a column-

oriented approach.

Wide Column Stores

Column-oriented databases should not be mixed up with wide column

stores, such as BigTable or HBase, where data is represented as a

https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#ABADI13
https://databass.dev/links/112
https://databass.dev/links/113
https://databass.dev/links/113
https://databass.dev/links/114
https://databass.dev/links/115
https://databass.dev/links/115
https://databass.dev/links/116
https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#ROY12
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#idm46104533816904
https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#DREPPER07
https://databass.dev/links/117
https://databass.dev/links/118

multidimensional map, columns are grouped

into column families (usually storing data of the same type), and inside

each column family, data is stored row-wise. This layout is best for

storing data retrieved by a key or a sequence of keys.

A canonical example from the Bigtable paper [CHANG06] is a

Webtable. A Webtable stores snapshots of web page contents, their

attributes, and the relations among them at a specific timestamp. Pages

are identified by the reversed URL, and all attributes (such as

page content and anchors, representing links between pages) are

identified by the timestamps at which these snapshots were taken. In a

simplified way, it can be represented as a nested map, as Figure 1-

3 shows.

https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#CHANG06
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#webtable_1
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#webtable_1

Figure 1-3. Conceptual structure of a Webtable

Data is stored in a multidimensional sorted map with hierarchical

indexes: we can locate the data related to a specific web page by its

reversed URL and its contents or anchors by the timestamp. Each row is

indexed by its row key. Related columns are grouped together in column

families—contents and anchor in this example—which are stored on disk

separately. Each column inside a column family is identified by

the column key, which is a combination of the column family name and

a qualifier (html, cnnsi.com, my.look.ca in this example). Column families

store multiple versions of data by timestamp. This layout allows us to

quickly locate the higher-level entries (web pages, in this case) and their

parameters (versions of content and links to the other pages).

While it is useful to understand the conceptual representation of wide

column stores, their physical layout is somewhat different. A schematic

representation of the data layout in column families is shown

in Figure 1-4: column families are stored separately, but in each column

family, the data belonging to the same key is stored together.

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#bigtable_1

Figure 1-4. Physical structure of a Webtable

Data Files and Index Files

The primary goal of a database system is to store data and to allow quick

access to it. But how is the data organized? Why do we need a database

management system and not just a bunch of files? How does file

organization improve efficiency?

Database systems do use files for storing the data, but instead of relying

on filesystem hierarchies of directories and files for locating records,

they compose files using implementation-specific formats. The main

reasons to use specialized file organization over flat files are:

Storage efficiency

Files are organized in a way that minimizes storage overhead per

stored data record.

Access efficiency

Records can be located in the smallest possible number of steps.

Update efficiency

Record updates are performed in a way that minimizes the number

of changes on disk.

Database systems store data records, consisting of multiple fields, in

tables, where each table is usually represented as a separate file. Each

record in the table can be looked up using a search key. To locate a

record, database systems use indexes: auxiliary data structures that allow

it to efficiently locate data records without scanning an entire table on

every access. Indexes are built using a subset of fields identifying the

record.

A database system usually separates data files and index files: data files

store data records, while index files store record metadata and use it to

locate records in data files. Index files are typically smaller than the data

files. Files are partitioned into pages, which typically have the size of a

single or multiple disk blocks. Pages can be organized as sequences of

records or as a slotted pages (see “Slotted Pages”).

New records (insertions) and updates to the existing records are

represented by key/value pairs. Most modern storage systems do

not delete data from pages explicitly. Instead, they use deletion

markers (also called tombstones), which contain deletion metadata, such

as a key and a timestamp. Space occupied by the records shadowed by

their updates or deletion markers is reclaimed during garbage collection,

which reads the pages, writes the live (i.e., nonshadowed) records to the

new place, and discards the shadowed ones.

Data Files

Data files (sometimes called primary files) can be implemented as index-

organized tables (IOT), heap-organized tables (heap files), or hash-

organized tables (hashed files).

Records in heap files are not required to follow any particular order, and

most of the time they are placed in a write order. This way, no additional

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch03.html#slotted_pages

work or file reorganization is required when new pages are appended.

Heap files require additional index structures, pointing to the locations

where data records are stored, to make them searchable.

In hashed files, records are stored in buckets, and the hash value of the

key determines which bucket a record belongs to. Records in the bucket

can be stored in append order or sorted by key to improve lookup speed.

Index-organized tables (IOTs) store data records in the index itself.

Since records are stored in key order, range scans in IOTs can be

implemented by sequentially scanning its contents.

Storing data records in the index allows us to reduce the number of disk

seeks by at least one, since after traversing the index and locating the

searched key, we do not have to address a separate file to find the

associated data record.

When records are stored in a separate file, index files hold data entries,

uniquely identifying data records and containing enough information to

locate them in the data file. For example, we can store

file offsets (sometimes called row locators), locations of data records in

the data file, or bucket IDs in the case of hash files. In index-organized

tables, data entries hold actual data records.

Index Files

An index is a structure that organizes data records on disk in a way that

facilitates efficient retrieval operations. Index files are organized as

specialized structures that map keys to locations in data files where the

records identified by these keys (in the case of heap files) or primary

keys (in the case of index-organized tables) are stored.

An index on a primary (data) file is called the primary index. However,

in most cases we can also assume that the primary index is built over a

primary key or a set of keys identified as primary. All other indexes are

called secondary.

Secondary indexes can point directly to the data record, or simply store

its primary key. A pointer to a data record can hold an offset to a heap

file or an index-organized table. Multiple secondary indexes can point to

the same record, allowing a single data record to be identified by

different fields and located through different indexes. While primary

index files hold a unique entry per search key, secondary indexes may

hold several entries per search key [MOLINA08].

If the order of data records follows the search key order, this index is

called clustered (also known as clustering). Data records in the clustered

case are usually stored in the same file or in a clustered file, where the

key order is preserved. If the data is stored in a separate file, and its

order does not follow the key order, the index is

called nonclustered (sometimes called unclustered).

Figure 1-5 shows the difference between the two approaches:

 a) Two indexes reference data entries directly from secondary

index files.

 b) A secondary index goes through the indirection layer of a

primary index to locate the data entries.

https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#MOLINA08
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#storing_data_separately_1

Figure 1-5. Storing data records in an index file versus storing offsets to the data file (index segments shown in white; segments holding data records

shown in gray)

NOTE

Index-organized tables store information in index order and are clustered

by definition. Primary indexes are most often clustered. Secondary

indexes are nonclustered by definition, since they’re used to facilitate

access by keys other than the primary one. Clustered indexes can be

both index-organized or have separate index and data files.

Many database systems have an inherent and explicit primary key, a set

of columns that uniquely identify the database record. In cases when the

primary key is not specified, the storage engine can create

an implicit primary key (for example, MySQL InnoDB adds a new auto-

increment column and fills in its values automatically).

This terminology is used in different kinds of database systems:

relational database systems (such as MySQL and PostgreSQL),

Dynamo-based NoSQL stores (such as Apache Cassandra and in Riak),

and document stores (such as MongoDB). There can be some project-

specific naming, but most often there’s a clear mapping to this

terminology.

Primary Index as an Indirection

There are different opinions in the database community on whether data

records should be referenced directly (through file offset) or via the

primary key index.4

Both approaches have their pros and cons and are better discussed in the

scope of a complete implementation. By referencing data directly, we

can reduce the number of disk seeks, but have to pay a cost of updating

the pointers whenever the record is updated or relocated during a

maintenance process. Using indirection in the form of a primary index

allows us to reduce the cost of pointer updates, but has a higher cost on a

read path.

Updating just a couple of indexes might work if the workload mostly

consists of reads, but this approach does not work well for write-heavy

workloads with multiple indexes. To reduce the costs of pointer updates,

instead of payload offsets, some implementations use primary keys for

https://databass.dev/links/119
https://databass.dev/links/120
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#idm46104533710968

indirection. For example, MySQL InnoDB uses a primary index and

performs two lookups: one in the secondary index, and one in a primary

index when performing a query [TARIQ11]. This adds an overhead of a

primary index lookup instead of following the offset directly from the

secondary index.

Figure 1-6 shows how the two approaches are different:

 a) Two indexes reference data entries directly from secondary

index files.

 b) A secondary index goes through the indirection layer of a

primary index to locate the data entries.

Figure 1-6. Referencing data tuples directly (a) versus using a primary index as indirection (b)

It is also possible to use a hybrid approach and store both data file

offsets and primary keys. First, you check if the data offset is still valid

https://learning.oreilly.com/library/view/database-internals/9781492040330/app01.html#TARIQ11
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch01.html#storing_data_separately_2

and pay the extra cost of going through the primary key index if it has

changed, updating the index file after finding a new offset.

Buffering, Immutability, and Ordering

A storage engine is based on some data structure. However, these

structures do not describe the semantics of caching, recovery,

transactionality, and other things that storage engines add on top of

them.

In the next chapters, we will start the discussion with B-Trees

(see “Ubiquitous B-Trees”) and try to understand why there are so many

B-Tree variants, and why new database storage structures keep

emerging.

Storage structures have three common variables: they use buffering (or

avoid using it), use immutable (or mutable) files, and store values in

order (or out of order). Most of the distinctions and optimizations in

storage structures discussed in this book are related to one of these three

concepts.

Buffering

This defines whether or not the storage structure chooses to collect

a certain amount of data in memory before putting it on disk. Of

course, every on-disk structure has to use buffering

to some degree, since the smallest unit of data transfer to and from

the disk is a block, and it is desirable to write full blocks. Here,

we’re talking about avoidable buffering, something storage engine

implementers choose to do. One of the first optimizations we

discuss in this book is adding in-memory buffers to B-Tree nodes

to amortize I/O costs (see “Lazy B-Trees”). However, this is not

the only way we can apply buffering. For example, two-component

LSM Trees (see “Two-component LSM Tree”), despite their

similarities with B-Trees, use buffering in an entirely different

way, and combine buffering with immutability.

Mutability (or immutability)

This defines whether or not the storage structure reads parts of the

file, updates them, and writes the updated results at the same

location in the file. Immutable structures are append-only: once

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch02.html#b_trees
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch06.html#lazy_b_trees
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch07.html#two_component_lsm_tree

written, file contents are not modified. Instead, modifications are

appended to the end of the file. There are other ways to implement

immutability. One of them is copy-on-write (see “Copy-on-

Write”), where the modified page, holding the updated version of

the record, is written to the new location in the file, instead of its

original location. Often the distinction between LSM and B-Trees

is drawn as immutable against in-place update storage, but there

are structures (for example, “Bw-Trees”) that are inspired by B-

Trees but are immutable.

Ordering

This is defined as whether or not the data records are stored in the

key order in the pages on disk. In other words, the keys that sort

closely are stored in contiguous segments on disk. Ordering often

defines whether or not we can efficiently scan the range of

records, not only locate the individual data records. Storing data

out of order (most often, in insertion order) opens up for some

write-time optimizations. For example, Bitcask (see “Bitcask”) and

WiscKey (see “WiscKey”) store data records directly in append-

only files.

Of course, a brief discussion of these three concepts is not enough to

show their power, and we’ll continue this discussion throughout the rest

of the book.

Summary

In this chapter, we’ve discussed the architecture of a database

management system and covered its primary components.

To highlight the importance of disk-based structures and their difference

from in-memory ones, we discussed memory- and disk-based stores. We

came to the conclusion that disk-based structures are important for both

types of stores, but are used for different purposes.

To understand how access patterns influence database system design, we

discussed column- and row-oriented database management systems and

the primary factors that set them apart from each other. To start a

conversation about how the data is stored, we covered data and index

files.

https://learning.oreilly.com/library/view/database-internals/9781492040330/ch06.html#copy_on_write_b_tree
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch06.html#copy_on_write_b_tree
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch06.html#bw_tree
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch07.html#bitcask
https://learning.oreilly.com/library/view/database-internals/9781492040330/ch07.html#wisc_key

Lastly, we introduced three core concepts: buffering, immutability, and

ordering. We will use them throughout this book to highlight properties

of the storage engines that use them.

