
Chapter 1. Introduction to the Java

Environment

Welcome to Java 11.

That version number probably surprises you as much as it does us. It

seems like only yesterday that Java 5 was the new thing, and yet here we

are, 14 years and 6 major versions later.

You may be coming to the Java ecosystem from another language, or

maybe this is your first programming language. Whatever road you may

have traveled to get here, welcome—we’re glad you’ve arrived.

Java is a powerful, general-purpose programming environment. It is one

of the most widely used programming languages in the world, and has

been exceptionally successful in business and enterprise computing.

In this chapter, we’ll set the scene by describing the Java language

(which programmers write their applications in), the Java Virtual

Machine (which executes those applications), and the Java ecosystem

(which provides a lot of the value of the programming environment to

development teams).

We’ll briefly cover the history of the Java language and virtual machine,

before moving on to discuss the lifecycle of a Java program and clear up

some common questions about the differences between Java and other

environments.

At the end of the chapter, we’ll introduce Java security, and discuss

some of the aspects of Java that relate to secure coding.

The Language, the JVM, and the Ecosystem

The Java programming environment has been around since the late

1990s. It comprises the Java language, and the supporting runtime,

otherwise known as the Java Virtual Machine (JVM).

At the time that Java was initially developed, this split was considered

novel, but recent trends in software development have made it more

commonplace. Notably, Microsoft’s .NET environment, announced a

few years after Java, adopted a very similar approach to platform

architecture.

One important difference between Microsoft’s .NET platform and Java

is that Java was always conceived as a relatively open ecosystem of

multiple vendors, albeit led by a steward who owns the technology.

Throughout Java’s history, these vendors have both cooperated and

competed on aspects of Java technology.

One of the main reasons for the success of Java is that this ecosystem is

a standardized environment. This means there are specifications for the

technologies that comprise the environment. These standards give the

developer and consumer confidence that the technology will be

compatible with other components, even if they come from a different

technology vendor.

The current steward of Java is Oracle Corporation (who acquired Sun

Microsystems, the originator of Java). Other corporations, such as Red

Hat, IBM, Amazon, AliBaba, SAP, Azul Systems, and Fujitsu are also

heavily involved in producing implementations of standardized Java

technologies.

TIP

As of Java 11, the primary reference implementation of Java is the open

source OpenJDK, which many of these companies collaborate on and

base their shipping products upon.

Java actually comprises several different but related environments and

specifications, such as Java Mobile Edition (Java ME),1 Java Standard

Edition (Java SE), and Java Enterprise Edition (Java EE).2 In this book,

we’ll only cover Java SE, version 11, with some historical notes related

to when certain features were introduced into the platform.

We will have more to say about standardization later, so let’s move on to

discuss the Java language and JVM as separate but related concepts.

What Is the Java Language?

https://learning.oreilly.com/library/view/java-in-a/9781492037248/ch01.html#idm45941151972264
https://learning.oreilly.com/library/view/java-in-a/9781492037248/ch01.html#idm45941151971384

Java programs are written as source code in the Java language. This is a

human-readable programming language, which is strictly class based

and object oriented. The language syntax is deliberately modeled on that

of C and C++ and it was explicitly intended to be familiar to

programmers coming from those languages.

NOTE

Although the source code is similar to C++, in practice Java includes

features and a managed runtime that has more in common with more

dynamic languages such as Smalltalk.

Java is considered to be relatively easy to read and write (if occasionally

a bit verbose). It has a rigid grammar and simple program structure, and

is intended to be easy to learn and to teach. It builds on industry

experience with languages like C++ and tries to remove complex

features as well as preserving “what works” from previous programming

languages.

Overall, Java is intended to provide a stable, solid base for companies to

develop business-critical applications. As a programming language, it

has a relatively conservative design and a slow rate of change. These

properties are a conscious attempt to serve the goal of protecting the

investment that organizations have made in Java technology.

The language has undergone gradual revision (but no complete rewrites)

since its inception in 1996. This does mean that some of Java’s original

design choices, which were expedient in the late 1990s, are still

affecting the language today—see Chapters 2 and 3 for more details.

Java 8 added the most radical changes seen in the language for almost a

decade (some would say since the birth of Java). Features like lambda

expressions and the overhaul of the core Collections code were

enormously popular and changed forever the way that Java developers

write code. Since then, the platform has produced a release (Java 9) that

adds a major (and long-delayed) feature: the platform modules system

(JPMS).

With that release, the project has transitioned to a new, much faster

release model where new Java versions are released every six months—

bringing us up to Java 11. The Java language is governed by the Java

https://learning.oreilly.com/library/view/java-in-a/9781492037248/ch02.html#javanut7-CHP-2
https://learning.oreilly.com/library/view/java-in-a/9781492037248/ch03.html#javanut7-CHP-3

Language Specification (JLS), which defines how a conforming

implementation must behave.

What Is the JVM?

The JVM is a program that provides the runtime environment necessary

for Java programs to execute. Java programs cannot run unless there is a

JVM available for the appropriate hardware and OS platform we wish to

execute on.

Fortunately, the JVM has been ported to run on a large number of

environments—anything from a set-top box or Blu-ray player to a huge

mainframe will probably have a JVM available for it.

Java programs are typically started from a command line like this:

java <arguments> <program name>

This brings up the JVM as an operating system process that provides the

Java runtime environment, and then executes our program in the context

of the freshly started (and empty) virtual machine.

It is important to understand that when the JVM takes in a Java program

for execution, the program is not provided as Java language source code.

Instead, the Java language source must have been converted (or

compiled) into a form known as Java bytecode. Java bytecode must be

supplied to the JVM in a format called class files (which always have

a .class extension).

The JVM provides an execution environment for the program. It starts an

interpreter for the bytecode form of the program that steps through one

bytecode instruction at a time. However, production JVMs also provide

a runtime compiler that will accelerate the important parts of the

program by replacing them with equivalent compiled machine code.

You should also be aware that both the JVM and the user program are

capable of spawning additional threads of execution, so that a user

program may have many different functions running simultaneously.

The design of the JVM built on many years of experience with earlier

programming environments, notably C and C++, so we can think of it as

having several different goals—which are all intended to make life

easier for the programmer:

 Comprise a container for application code to run inside

 Provide a secure and reliable execution environment as compared

to C/C++

 Take memory management out of the hands of developers

 Provide a cross-platform execution environment

These objectives are often mentioned together in discussions of the

platform.

We’ve already mentioned the first of these goals, when we discussed the

JVM and its bytecode interpreter—it functions as the container for

application code.

We’ll discuss the second and third goals in Chapter 6, when we talk

about how the Java environment deals with memory management.

The fourth goal, sometimes called “write once, run anywhere” (WORA),

is the property that Java class files can be moved from one execution

platform to another, and they will run unaltered provided a JVM is

available.

This means that a Java program can be developed (and converted to

class files) on a machine running macOS, and then the class files can be

moved to Linux or Microsoft Windows (or other platforms) and the Java

program will run without any further work needed.

NOTE

The Java environment has been very widely ported, including to

platforms that are very different from mainstream platforms like Linux,

macOS, and Windows. In this book, we use the phrase “most

implementations” to indicate those platforms that the majority of

developers are likely to encounter; macOS, Windows, Linux, BSD Unix,

and the like are all considered “mainstream platforms” and count within

“most implementations.”

https://learning.oreilly.com/library/view/java-in-a/9781492037248/ch06.html#javanut7-CHP-6

In addition to these four primary goals, there is another aspect of the

JVM’s design that is not always recognized or discussed—it makes use

of runtime information to self-manage.

Software research in the 1970s and 1980s revealed that the runtime

behavior of programs has a large amount of interesting and useful

patterns that cannot be deduced at compile time. The JVM was the first

truly mainstream platform to make use of this research.

It collects runtime information to make better decisions about how to

execute code. That means that the JVM can monitor and optimize a

program running on it in a manner not possible for platforms without

this capability.

A key example is the runtime fact that not all parts of a Java program are

equally likely to be called during the lifetime of the program—some

portions will be called far, far more often than others. The Java platform

takes advantage of this fact with a technology called just-in-time (JIT)

compilation.

In the HotSpot JVM (which was the JVM that Sun first shipped as part

of Java 1.3, and is still in use today), the JVM first identifies which parts

of the program are called most often—the “hot methods.” Then, the

JVM compiles these hot methods directly into machine code, bypassing

the JVM interpreter.

The JVM uses the available runtime information to deliver higher

performance than was possible from purely interpreted execution. In

fact, the optimizations that the JVM uses now in many cases produce

performance that surpasses compiled C and C++ code.

The standard that describes how a properly functioning JVM must

behave is called the JVM Specification.

What Is the Java Ecosystem?

The Java language is easy to learn and contains relatively few

abstractions, compared to other programming languages. The JVM

provides a solid, portable, high-performance base for Java (or other

languages) to execute on. Taken together, these two connected

technologies provide a foundation that businesses can feel confident

about when choosing where to base their development efforts.

The benefits of Java do not end there, however. Since Java’s inception,

an extremely large ecosystem of third-party libraries and components

has grown up. This means that a development team can benefit hugely

from the existence of connectors and drivers for practically every

technology imaginable—both proprietary and open source.

In the modern technology ecosystem it is now rare indeed to find a

technology component that does not offer a Java connector. From

traditional relational databases, to NoSQL, to every type of enterprise

monitoring system, to messaging systems, to Internet of Things (IoT)—

everything integrates with Java.

It is this fact that has been a major driver of adoption of Java

technologies by enterprises and larger companies. Development teams

have been able to unlock their potential by making use of preexisting

libraries and components. This has promoted developer choice and

encouraged open, best-of-breed architectures with Java technology

cores.

NOTE

Google’s Android environment is sometimes thought of as being “based

on Java.” However, the picture is actually more complicated. Android

code is written in Java but originally used a different implementation of

Java’s class libraries along with a cross compiler to convert to a different

file format for a non-Java virtual machine.

The combination of a rich ecosystem and a first-rate virtual machine

with an open standard for program binaries makes the Java platform a

very attractive execution target. In fact, there are a large number of non-

Java languages that target the JVM and also interoperate with Java

(which allows them to piggy-back off the platform’s success). These

languages include Kotlin, Scala, Groovy, and many others. While all of

them are small compared to Java, they have distinct niches within the

Java world, and provide a source of innovation and healthy competition

to Java.

A Brief History of Java and the JVM

Java 1.0 (1996)

This was the first public version of Java. It contained just 212

classes organized in eight packages. The Java platform has always

had an emphasis on backward compatibility, and code written with

Java 1.0 will still run today on Java 11 without modification or

recompilation.

Java 1.1 (1997)

This release of Java more than doubled the size of the Java

platform. This release introduced “inner classes” and the first

version of the Reflection API.

Java 1.2 (1998)

This was a very significant release of Java; it tripled the size of the

Java platform. This release marked the first appearance of the Java

Collections API (with sets, maps, and lists). The many new

features in the 1.2 release led Sun to rebrand the platform as “the

Java 2 Platform.” The term “Java 2” was simply a trademark,

however, and not an actual version number for the release.

Java 1.3 (2000)

This was primarily a maintenance release, focused on bug fixes,

stability, and performance improvements. This release also brought

in the HotSpot Java Virtual Machine, which is still in use today

(although heavily modified and improved since then).

Java 1.4 (2002)

This was another fairly big release, adding important new

functionality such as a higher-performance, low-level I/O API;

regular expressions for text handling; XML and XSLT libraries;

SSL support; a logging API; and cryptography support.

Java 5 (2004)

This large release of Java introduced a number of changes to the

core language itself including generic types, enumerated types

(enums), annotations, varargs methods, autoboxing, and a

new for loop. These changes were considered significant enough to

change the major version number, and to start numbering as major

releases. This release included 3,562 classes and interfaces in 166

packages. Notable additions included utilities for concurrent

programming, a remote management framework, and classes for

the remote management and instrumentation of the Java VM itself.

Java 6 (2006)

This release was also largely a maintenance and performance

release. It introduced the Compiler API, expanded the usage and

scope of annotations, and provided bindings to allow scripting

languages to interoperate with Java. There were also a large

number of internal bug fixes and improvements to the JVM and the

Swing GUI technology.

Java 7 (2011)

The first release of Java under Oracle’s stewardship included a

number of major upgrades to the language and platform. The

introduction of try-with-resources and the NIO.2 API enabled

developers to write much safer and less error-prone code for

handling resources and I/O. The Method Handles API provided a

simpler and safer alternative to reflection; in addition, it opened the

door for invokedynamic (the first new bytecode since version 1.0

of Java).

Java 8 (2014) (LTS)

This was a huge release—potentially the most significant changes

to the language since Java 5 (or possibly ever). The introduction of

lambda expressions provided the ability to significantly enhance

the productivity of developers, the Collections were updated to

make use of lambdas, and the machinery required to achieve this

marked a fundamental change in Java’s approach to object

orientation. Other major updates include a new date and time API,

and major updates to the concurrency libraries.

Java 9 (2017)

Significantly delayed, this release introduced the new platform

modularity feature, which allows Java applications to be packaged

into deployment units and modularize the platform runtime. Other

changes include a new default garbage collection algorithm, a new

API for handling processes, and some changes to the way that

frameworks can access the internals.

Java 10 (March 2018)

This marks the first release under the new release cycle. This

release contained a relatively small amount of new features (due to

its six-month development lifetime). New syntax for type inference

was introduced, along with some internal changes (including GC

tweaks and an experimental new compiler).

Java 11 (September 2018) (LTS)

The current version, also developed over a short six-month

window, this release is the first modular Java to be considered as

a long-term support (LTS) release. It adds relatively few new

features that are directly visible to the developer—primarily Flight

Recorder and the new HTTP/2 API. There are some additional

internal changes, but this release is primarily for stabilization.

As it stands, the only current production versions are Java 8 and 11—the

LTS releases. Due to the highly significant changes that are introduced

by modules, Java 8 has been grandfathered in as an LTS release to

provide extra time for teams and applications to migrate to a supported

modular Java.

The Lifecycle of a Java Program

To better understand how Java code is compiled and executed, and the

difference between Java and other types of programming environments,

consider the pipeline in Figure 1-1.

https://learning.oreilly.com/library/view/java-in-a/9781492037248/ch01.html#javanut7-CHP-1-FIG-1

Figure 1-1. How Java code is compiled and loaded

This starts wth Java source, and passes it through the javac program to

produce class files—which contain the source code compiled to Java

bytecode. The class file is the smallest unit of functionality the platform

will deal with, and the only way to get new code into a running program.

New class files are onboarded via the classloading mechanism

(see Chapter 10 for a lot more detail on how classloading works). This

makes the new type available to the interpreter for execution.

Frequently Asked Questions

In this section, we’ll discuss some of the most frequently asked

questions about Java and the lifecycle of programs written in the Java

environment.

WHAT IS BYTECODE?

https://learning.oreilly.com/library/view/java-in-a/9781492037248/ch10.html#javanut7-CHP-10

When developers are first introduced to the JVM, they sometimes think

of it as “a computer inside a computer.” It’s then easy to imagine

bytecode as “machine code for the CPU of the internal computer” or

“machine code for a made-up processor.”

In fact, bytecode is not actually very similar to machine code that would

run on a real hardware processor. Instead, computer scientists would call

bytecode a type of intermediate representation—a halfway house

between source code and machine code.

The whole aim of bytecode is to be a format that can be executed

efficiently by the JVM’s interpreter.

IS JAVAC A COMPILER?

Compilers usually produce machine code, but javac produces bytecode,

which is not that similar to machine code. However, class files are a bit

like object files (like Windows .dll files, or Unix .so files)—and they are

certainly not human readable.

In theoretical computer science terms, javac is most similar to the front

half of a compiler—it creates the intermediate representation that can

then be used later to produce (emit) machine code.

However, because creation of class files is a separate build-time step that

resembles compilation in C/C++, many developers consider

running javac to be compilation. In this book, we will use the terms

“source code compiler” or "javac compiler” to mean the production of

class files by javac.

We will reserve “compilation” as a standalone term to mean JIT

compilation—as it’s JIT compilation that actually produces machine

code.

WHY IS IT CALLED “BYTECODE”?

The instruction code (opcode) is just a single byte (some operations also

have parameters that follow them in the bytestream), so there are only

256 possible instructions. In practice, some are unused—about 200 are

in use, but some of them aren’t emitted by recent versions of javac.

IS BYTECODE OPTIMIZED?

In the early days of the platform, javac produced heavily optimized

bytecode. This turned out to be a mistake. With the advent of JIT

compilation, the important methods are going to be compiled to very fast

machine code. It’s therefore very important to make the job of the JIT

compiler easier—as there are much bigger gains available from JIT

compilation than there are from optimizing bytecode, which will still

have to be interpreted.

IS BYTECODE REALLY MACHINE INDEPENDENT?
WHAT ABOUT THINGS LIKE ENDIANNESS?

The format of bytecode is always the same, regardless of what type of

machine it was created on. This includes the byte ordering (sometimes

called “endianness”) of the machine. For readers who are interested in

the details, bytecode is always big-endian.

IS JAVA AN INTERPRETED LANGUAGE?

The JVM is basically an interpreter (with JIT compilation to give it a big

performance boost). However, most interpreted languages (such as PHP,

Perl, Ruby, and Python) directly interpret programs from source form

(usually by constructing an abstract syntax tree from the input source

file). The JVM interpreter, on the other hand, requires class files—

which, of course, require a separate source code compilation step

with javac.

CAN OTHER LANGUAGES RUN ON THE JVM?

Yes. The JVM can run any valid class file, so this means that non-Java

languages can run on the JVM in one of two ways. First, they could have

a source code compiler (similar to javac) that produces class files, which

would run on the JVM just like Java code (this is the approach taken by

languages like Scala).

Alternatively, a non-Java language could implement an interpreter and

runtime in Java, and then interpret the source form of their language

directly. This second option is the approach taken by languages like

JRuby (but JRuby has a very sophisticated runtime that is capable

of secondary JIT compilation in some circumstances).

Java Security

Java has been designed from the ground up with security in mind; this

gives it a great advantage over many other existing systems and

platforms. The Java security architecture was designed by security

experts and has been studied and probed by many other security experts

since the inception of the platform. The consensus is that the architecture

itself is strong and robust, without any security holes in the design (at

least none that have been discovered yet).

Fundamental to the design of the security model is that bytecode is

heavily restricted in what it can express—there is no way, for example,

to directly address memory. This cuts out entire classes of security

problems that have plagued languages like C and C++. Furthermore, the

VM goes through a process known as bytecode verification whenever it

loads an untrusted class, which removes a further large class of problems

(see Chapter 10 for more about bytecode verification).

Despite all this, however, no system can guarantee 100% security, and

Java is no exception.

While the design is still theoretically robust, the implementation of the

security architecture is another matter, and there is a long history of

security flaws being found and patched in particular implementations of

Java.

In particular, the release of Java 8 was delayed, at least partly, due to the

discovery of a number of security problems that required considerable

effort to fix.

In all likelihood, security flaws will continue to be discovered (and

patched) in Java VM implementations. For practical server-side coding,

Java remains perhaps the most secure general-purpose platform

currently available, especially when kept patched up to date.

Comparing Java to Other Languages

https://learning.oreilly.com/library/view/java-in-a/9781492037248/ch10.html#javanut7-CHP-10

In this section, we’ll briefly highlight some differences between the Java

platform and other programming environments you may be familiar

with.

Java Compared to C

 Java is object oriented; C is procedural.

 Java is portable as class files; C needs to be recompiled.

 Java provides extensive instrumentation as part of the runtime.

 Java has no pointers and no equivalent of pointer arithmetic.

 Java provides automatic memory management via garbage

collection.

 Java has no ability to lay out memory at a low level (no structs).

 Java has no preprocessor.

Java Compared to C++

 Java has a simplified object model compared to C++.

 Java’s dispatch is virtual by default.

 Java is always pass-by-value (but one of the possibilities for Java’s

values is object references).

 Java does not support full multiple inheritance.

 Java’s generics are less powerful (but also less dangerous) than

C++ templates.

 Java has no operator overloading.

Java Compared to Python

 Java is statically typed; Python is dynamically typed.

 Java is multithreaded; Python only allows one thread to execute

Python at once.

 Java has a JIT; the main implementation of Python does not.

 Java’s bytecode has extensive static checks; Python’s bytecode

does not.

Java Compared to JavaScript

 Java is statically typed; JavaScript is dynamically typed.

 Java uses class-based objects; JavaScript is prototype based.

 Java provides good object encapsulation; JavaScript does not.

 Java has namespaces; JavaScript does not.

 Java is multithreaded; JavaScript is not.

Answering Some Criticisms of Java

Java has had a long history in the public eye and, as a result, has

attracted its fair share of criticism over the years. Some of this negative

press can be attributed to some technical shortcomings combined with

rather overzealous marketing in the first versions of Java.

Some criticisms have, however, entered technical folklore despite no

longer being very accurate. In this section, we’ll look at some common

grumbles and the extent to which they’re true for modern versions of the

platform.

Overly Verbose

The Java core language has sometimes been criticized as overly verbose.

Even simple Java statements such as Object o = new Object(); seem to be

repetitious—the type Object appears on both the left and right side of the

assignment. Critics point out that this is essentially redundant, that other

languages do not need this duplication of type information, and that

many languages support features (e.g., type inference) that remove it.

The counterpoint to this argument is that Java was designed from the

start to be easy to read (code is read more often than written) and that

many programmers, especially novices, find the extra type information

helpful when reading code.

Java is widely used in enterprise environments, which often have

separate dev and ops teams. The extra verbosity can often be a blessing

when you are responding to an outage call, or when you need to

maintain and patch code that was written by developers who have long

since moved on.

In recent versions of Java, the language designers have attempted to

respond to some of these points, by finding places where the syntax can

become less verbose and by making better use of type information. For

example:

// Files helper methods
byte[] contents =
 Files.readAllBytes(Paths.get("/home/ben/myFile.bin"));

// Diamond syntax for repeated type information
List<String> l = new ArrayList<>();

// Local variables can be type inferred
var threadPool = Executors.newScheduledThreadPool(2);
// Lambda expressions simplify Runnables
threadPool.submit(() -> { System.out.println("On Threadpool"); });

However, Java’s overall philosophy is to make changes to the language

only very slowly and carefully, so the pace of these changes may not

satisfy detractors completely.

Slow to Change

The original Java language is now well over 20 years old, and has not

undergone a complete revision in that time. Many other languages (e.g.,

Microsoft’s C#) have released backward-incompatible versions in the

same period, and some developers criticize Java for not doing likewise.

Furthermore, in recent years, the Java language has come under fire for

being slow to adopt language features that are now commonplace in

other languages.

The conservative approach to language design that Sun (and now

Oracle) has taken is an attempt to avoid imposing the costs and

externalities of misfeatures on a very large user base. Many Java shops

have made major investments in the technology, and the language

designers have taken seriously the responsibility of not disrupting the

existing user and install base.

Each new language feature needs to be very carefully thought about—

not only in isolation, but in terms of how it will interact with all the

existing features of the language. New features can sometimes have

impacts beyond their immediate scope—and Java is widely used in very

large codebases, where there are more potential places for an unexpected

interaction to manifest.

It is almost impossible to remove a feature that turns out to be incorrect

after it has shipped. Java has a couple of misfeatures (such as the

finalization mechanism) that it has never been possible to remove safely

without impacting the install base. The language designers have taken

the view that extreme caution is required when evolving the language.

Having said that, the new language features that have arrived in recent

versions are a significant step toward addressing the most common

complaints about missing features, and should cover many of the idioms

that developers have been asking for.

Performance Problems

The Java platform is still sometimes criticized as being slow—but of all

the criticisms that are leveled at the platform, this is probably the one

that is least justified. It is a genuine myth about the platform.

Release 1.3 of Java brought in the HotSpot Virtual Machine and its JIT

compiler. Since then, there has been over 15 years of continual

innovation and improvement in the virtual machine and its performance.

The Java platform is now blazingly fast, regularly winning performance

benchmarks on popular frameworks, and even beating native-compiled

C and C++.

Criticism in this area appears to be largely caused by a folk memory that

Java was slow at some point in the past. Some of the larger and more

sprawling architectures that Java has been used within may also have

contributed to this impression.

The truth is that any large architecture will require benchmarking,

analysis, and performance tuning to get the best out of it—and Java is no

exception.

The core of the platform—language and JVM—was and remains one of

the fastest general-use environments available to the developer.

Insecure

During 2013 there were a number of security vulnerabilities in the Java

platform, which caused the release date of Java 8 to be pushed back.

Even before this, some people had criticized Java’s record of security

vulnerabilities.

Many of these vulnerabilities involved the desktop and GUI components

of the Java system, and wouldn’t affect websites or other server-side

code written in Java.

All programming platforms have security issues at times, and many

other languages have a comparable history of security vulnerabilities

that have been significantly less well publicized.

Too Corporate

Java is a platform that is extensively used by corporate and enterprise

developers. The perception that it is too corporate is therefore an

unsurprising one—Java has often been perceived as lacking the “free-

wheeling” style of languages that are deemed to be more community

oriented.

In truth, Java has always been, and remains, a very widely used

language for community and free or open source software development.

It is one of the most popular languages for projects hosted on GitHub

and other project hosting sites.

Finally, the most widely used implementation of the language itself is

based on OpenJDK—which is itself an open source project with a

vibrant and growing community.

