
Chapter 1. The Architecture of Swift 

It will be useful at the outset for you to have a general sense of how the 

Swift language is constructed and what a Swift-based iOS program 

looks like. This chapter will survey the overall architecture and nature of 

the Swift language. Subsequent chapters will fill in the details. 

Ground of Being 

A complete Swift command is a statement. A Swift text file consists of 

multiple lines of text. Line breaks are meaningful. The typical layout of 

a program is one statement, one line: 

print("hello") 

print("world") 

(The print command provides instant feedback in the Xcode console.) 

You can combine more than one statement on a line, but then you need 

to put a semicolon between them: 

print("hello"); print("world") 

You are free to put a semicolon at the end of a statement that is last or 

alone on its line, but no one ever does (except out of habit, because C 

and Objective-C require the semicolon): 

print("hello"); 

print("world"); 

Conversely, a single statement can be broken into multiple lines, in 

order to prevent long statements from becoming long lines. But you 

should try to do this at sensible places so as not to confuse Swift. For 

example, after an opening parenthesis is a good place: 



print( 

    "world") 

Comments are everything after two slashes in a line (so-called C++-style 

comments): 

print("world") // this is a comment, so Swift ignores it 

You can also enclose comments in /*...*/, as in C. Unlike C, C-style 

comments can be nested. 

Many constructs in Swift use curly braces as delimiters: 

class Dog { 

    func bark() { 

        print("woof") 

    } 

} 

By convention, the contents of curly braces are preceded and followed 

by line breaks and are indented for clarity, as shown in the preceding 

code. Xcode will help impose this convention, but the truth is that Swift 

doesn’t care, and layouts like this are legal (and are sometimes more 

convenient): 

class Dog { func bark() { print("woof") }} 

Swift is a compiled language. This means that your code must build — 

passing through the compiler and being turned from text into some 

lower-level form that a computer can understand — before it 

can run and actually do the things it says to do. The Swift compiler is 

very strict; in the course of writing a program, you will often try to build 

and run, only to discover that you can’t even build in the first place, 

because the compiler will flag some error, which you will have to fix if 

you want the code to run. Less often, the compiler will let you off with 



a warning; the code can run, but in general you should take warnings 

seriously and fix whatever they are telling you about. The strictness of 

the compiler is one of Swift’s greatest strengths, and provides your code 

with a large measure of audited correctness even before it ever runs. 

The Swift compiler’s error and warning messages, however, range from 

the insightful to the obtuse to the downright misleading. You will often 

know that something is wrong with a line of code, but the Swift compiler 

will not be telling you clearly exactly what is wrong or even where in 

the line to focus your attention. My advice in these situations is to pull 

the line apart into several lines of simpler code until you reach a point 

where you can guess what the issue is. Try to love the compiler despite 

the occasional unhelpful nature of its messages. Remember, it knows 

more than you do, even if it is sometimes rather inarticulate about its 

knowledge. 

Everything Is an Object? 

In Swift, “everything is an object.” That’s a boast common to various 

modern object-oriented languages, but what does it mean? Well, that 

depends on what you mean by “object” — and what you mean by 

“everything.” 

Let’s start by stipulating that an object, roughly speaking, is something 

you can send a message to. A message, roughly speaking, is an 

imperative instruction. For example, you can give commands to a dog: 

“Bark!” “Sit!” In this analogy, those phrases are messages, and the dog 

is the object to which you are sending those messages. 

In Swift, the syntax of message-sending is dot-notation. We start with 

the object; then there’s a dot (a period); then there’s the message. (Some 

messages are also followed by parentheses, but ignore them for now; the 

full syntax of message-sending is one of those details we’ll be filling in 

later.) This is valid Swift syntax: 

fido.bark() 

rover.sit() 



The idea of everything being an object is a way of suggesting that even 

“primitive” linguistic entities can be sent messages. Take, for 

example, 1. It appears to be a literal digit and no more. It will not 

surprise you, if you’ve ever used any programming language, that you 

can say things like this in Swift: 

let sum = 1 + 2 

But it is surprising to find that 1 can be followed by a dot and a message. 

This is legal and meaningful in Swift (don’t worry about what it actually 

means): 

let s = 1.description 

But we can go further. Return to that innocent-looking 1 + 2 from our 

earlier code. It turns out that this is actually a kind of syntactic trickery, 

a convenient way of expressing and hiding what’s really going on. Just 

as 1 is actually an object, + is actually a message; but it’s a message with 

special syntax (operator syntax). In Swift, every noun is an object, and 

every verb is a message. 

Perhaps the ultimate acid test for whether something is an object in 

Swift is whether you can modify it. An object type can be extended in 

Swift, meaning that you can define your own messages on that type. For 

example, you can’t normally send the sayHello message to a number. But 

you can change a number type so that you can: 

extension Int { 

    func sayHello() { 

        print("Hello, I'm \(self)") 

    } 

} 

1.sayHello() // outputs: "Hello, I'm 1" 



In Swift, then, 1 is an object. In some languages, such as Objective-C, it 

clearly is not; it is a “primitive” or scalar built-in data type. So the 

distinction being drawn here is between object types on the one hand 

and scalars on the other. In Swift, there are no scalars; all types are 

ultimately object types. That’s what “everything is an object” really 

means. 

Three Flavors of Object Type 

If you know Objective-C or some other object-oriented language, you 

may be surprised by Swift’s notion of what kind of object 1 is. In many 

languages, such as Objective-C, an object is a class or an instance of a 

class (I’ll explain later what an instance is). Swift has classes, but 1 in 

Swift is not a class or an instance of a class: the type of 1, namely Int, is 

a struct, and 1 is an instance of a struct. And Swift has yet another kind 

of thing you can send messages to, called an enum. 

So Swift has three kinds of object type: classes, structs, and enums. I 

like to refer to these as the three flavors of object type. Exactly how they 

differ from one another will emerge in due course. But they are all very 

definitely object types, and their similarities to one another are far 

stronger than their differences. For now, just bear in mind that these 

three flavors exist. 

(The fact that a struct or enum is an object type in Swift will surprise 

you particularly if you know Objective-C. Objective-C has structs and 

enums, but they are not objects. Swift structs, in particular, are much 

more important and pervasive than Objective-C structs. This difference 

between how Swift views structs and enums and how Objective-C views 

them can matter when you are talking to Cocoa.) 

Variables 

A variable is a name for an object. Technically, it refers to an object; it 

is an object reference. Nontechnically, you can think of it as a shoebox 

into which an object is placed. The object may undergo changes, or it 

may be replaced inside the shoebox by another object, but the name has 



an integrity all its own. The object to which the variable refers is the 

variable’s value. 

In Swift, no variable comes implicitly into existence; all variables must 

be declared. If you need a name for something, you must say “I’m 

creating a name.” You do this with one of two keywords: let or var. In 

Swift, declaration is usually accompanied by initialization — you use an 

equal sign to give the variable a value immediately, as part of the 

declaration. These are both variable declarations (and initializations): 

let one = 1 

var two = 2 

Once the name exists, you are free to use it. For example, we can change 

the value of two to be the same as the value of one: 

let one = 1 

var two = 2 

two = one 

The last line of that code uses both the name one and the 

name two declared in the first two lines: the name one, on the right side of 

the equal sign, is used merely to refer to the value inside the 

shoebox one (namely 1); but the name two, on the left side of the equal 

sign, is used to replace the value inside the shoebox two. A statement like 

that, with a variable name on the left side of an equal sign, is called 

an assignment, and the equal sign is the assignment operator. The equal 

sign is not an assertion of equality, as it might be in an algebraic 

formula; it is a command. It means: “Get the value of what’s on the right 

side of me, and use it to replace the value of what’s on the left side of 

me.” 

The two kinds of variable declaration differ in that a name declared 

with let cannot have its value replaced. A variable declared with let is 

a constant; its value is assigned once and stays. This won’t even 

compile: 



let one = 1 

var two = 2 

one = two // compile error 

It is always possible to declare a name with var to give yourself the most 

flexibility, but if you know you’re never going to replace the initial 

value of a variable, it’s better to use let, as this permits Swift to behave 

more efficiently — so much more efficiently, in fact, that the Swift 

compiler will actually call your attention to any case of your 

using var where you could have used let, offering to change it for you. 

Variables also have a type. This type is established when the variable is 

declared and can never change. For example, this won’t compile: 

var two = 2 

two = "hello" // compile error 

Once two is declared and initialized as 2, it is a number (properly 

speaking, an Int) and it must always be so. You can replace its value 

with 1 because that’s also an Int, but you can’t replace its value 

with "hello" because that’s a string (properly speaking, a String) — and a 

String is not an Int. 

Variables literally have a life of their own — more accurately, 

a lifetime of their own. As long as a variable exists, it keeps its value 

alive. Thus, a variable can be not only a way of 

conveniently naming something, but also a way of preserving it. I’ll 

have more to say about that later. 

WARNING 

By convention, type names such as String or Int (or Dog or Cat) start 

with a capital letter; variable names start with a small letter. Do not 

violate this convention. If you do, your code might still compile and run 

just fine, but I will personally send agents to your house to remove your 

kneecaps in the dead of night. 



Functions 

Executable code, like fido.bark() or one = two, cannot go just anywhere in 

your program. (Failure to appreciate this fact is a common beginner 

mistake, and can result in a mysterious compile error message such as 

“Expected declaration.”) In general, executable code must live inside the 

body of a function. A function is a batch of code that can be told, as a 

batch, to run. Typically, a function has a name, and it gets that name 

through a function declaration. Function declaration syntax is another of 

those details that will be filled in later, but here’s an example: 

func go() { 

    let one = 1 

    var two = 2 

    two = one 

} 

That describes a sequence of things to do — declare one, declare two, 

change the value of two to match the value of one — and it gives that 

sequence a name, go; but it doesn’t perform the sequence. The sequence 

is performed when someone calls the function. Thus, we might say, 

elsewhere: 

go() 

That is a command to the go function that it should actually run. But 

again, that command is itself executable code, so it cannot live on its 

own either. It might live in the body of a different function: 

func doGo() { 

    go() 

} 



But wait! This is getting a little nutty. That, too, is just a function 

declaration; to run it, someone must call doGo by saying doGo() — and 

that’s executable code too. This seems like some kind of infinite 

regression; it looks like none of our code will ever run. If all executable 

code has to live in a function, who will tell any function to run? The 

initial impetus must come from somewhere. 

In real life, fortunately, this regression problem doesn’t arise. Remember 

that your goal is ultimately to write an iOS app. Thus, your app will be 

run on an iOS device (or the Simulator) by a runtime that already wants 

to call certain functions. So you start by writing special functions that 

you know the runtime itself will call. That gives your app a way to get 

started and gives you places to put functions that will be called by the 

runtime at key moments — such as when the app launches, or when the 

user taps a button in your app’s interface. 

TIP 

Swift also has a special rule that a file called main.swift, 

exceptionally, can have executable code at its top level, outside any 

function body, and this is the code that actually runs when the program 

runs. You can construct your app with a main.swift file, but in general 

you won’t need to. 

The Structure of a Swift File 

A Swift program can consist of one file or many files. In Swift, a file is a 

meaningful unit, and there are definite rules about the structure of the 

Swift code that can go inside it. (I’m assuming that we are not in 

a main.swift file.) Only certain things can go at the top level of a Swift 

file — chiefly the following: 

Module import statements 

A module is an even higher-level unit than a file. A module can 

consist of multiple files, and these can all see each other 

automatically; but a module can’t see another module without 

an import statement. For example, that is how you are able to talk to 



Cocoa in an iOS program: the first line of your file says import 

UIKit. 

Variable declarations 

A variable declared at the top level of a file is a global variable: all 

code will be able to see and access it, without explicitly sending a 

message to any object, and it lives as long as the program runs. 

Function declarations 

A function declared at the top level of a file is a global function: 

all code will be able to see and call it, without explicitly sending a 

message to any object. 

Object type declarations 

The declaration for a class, a struct, or an enum. 

For example, this is a legal Swift file containing (just to demonstrate that 

it can be done) an import statement, a variable declaration, a function 

declaration, a class declaration, a struct declaration, and an enum 

declaration: 

import UIKit 

var one = 1 

func changeOne() { 

} 

class Manny { 

} 

struct Moe { 

} 

enum Jack { 

} 



That’s a very silly and mostly empty example, but remember, our goal is 

to survey the parts of the language and the structure of a file, and the 

example shows them. 

Furthermore, the curly braces for each of the things in that example can 

all have variable declarations, function declarations, and object type 

declarations within them! Indeed, any structural curly braces can contain 

such declarations. 

You’ll notice that I did not say that executable code can go at the top 

level of a file. That’s because it can’t! Only a function body can contain 

executable code. A statement like one = two or print(name) is executable 

code, and can’t go at the top level of a file. But in our previous 

example, func changeOne() is a function declaration, so executable 

code can go inside its curly braces, because they constitute a function 

body: 

var one = 1 

// executable code can't go here 

func changeOne() { 

    let two = 2 // executable code 

    one = two   // executable code 

} 

Executable code also can’t go directly inside the curly braces that 

accompany the class Manny declaration; that’s the top level of a class 

declaration, not a function body. But a class declaration can contain a 

function declaration, and that function declaration can contain 

executable code: 

class Manny { 

    let name = "manny" 

    // executable code can't go here 



    func sayName() { 

        print(name) // executable code 

    } 

} 

To sum up, Example 1-1 is a legal Swift file, schematically illustrating 

the structural possibilities. (Ignore the hanky-panky with 

the name variable declaration inside the enum declaration for Jack; enum 

top-level variables have some special rules that I’ll explain later.) 

Example 1-1. Schematic structure of a legal Swift file 
import UIKit 

var one = 1 

func changeOne() { 

    let two = 2 

    func sayTwo() { 

        print(two) 

    } 

    class Klass {} 

    struct Struct {} 

    enum Enum {} 

    one = two 

} 

class Manny { 

    let name = "manny" 

    func sayName() { 

        print(name) 

    } 

    class Klass {} 

    struct Struct {} 

    enum Enum {} 

} 

struct Moe { 

    let name = "moe" 

    func sayName() { 

        print(name) 

    } 

    class Klass {} 

    struct Struct {} 

    enum Enum {} 

} 

enum Jack { 

    var name : String { 

        return "jack" 

https://learning.oreilly.com/library/view/ios-12-programming/9781492044543/part01ch01.html#EXswiftfilestructure


    } 

    func sayName() { 

        print(name) 

    } 

    class Klass {} 

    struct Struct {} 

    enum Enum {} 

} 

Obviously, we can recurse down as far we like: we could have a class 

declaration containing a class declaration containing a class declaration, 

and so on. But there’s no point illustrating that. 

Scope and Lifetime 

In a Swift program, things have a scope. This refers to their ability to be 

seen by other things. Things are nested inside of other things, making a 

nested hierarchy of things. The rule is that things can see things at their 

own level and at a higher level containing them. The levels are: 

 A module is a scope. 

 A file is a scope. 

 Curly braces are a scope. 

When something is declared, it is declared at some level within that 

hierarchy. Its place in the hierarchy — its scope — determines whether 

it can be seen by other things. 

Look again at Example 1-1. Inside the declaration of Manny is 

a name variable declaration and a sayName function declaration; the 

code inside sayName’s curly braces can see things outside those curly 

braces at a higher containing level, and can therefore see 

the name variable. Similarly, the code inside the body of 

the changeOne function can see the one variable declared at the top level of 

the file; indeed, everything throughout this file can see the one variable 

declared at the top level of the file. 

Scope is thus a very important way of sharing information. Two 

different functions declared inside Manny would both be able to see 

the name declared at Manny’s top level. Code inside Jack and code inside 

Moe can both see the one declared at the file’s top level. 

https://learning.oreilly.com/library/view/ios-12-programming/9781492044543/part01ch01.html#EXswiftfilestructure


Things also have a lifetime, which is effectively equivalent to their 

scope. A thing lives as long as its surrounding scope lives. Thus, 

in Example 1-1, the variable one lives as long as the file lives — namely, 

as long the program runs. It is global and persistent. But the 

variable name declared at the top level of Manny exists only so long as a 

Manny instance exists (I’ll talk in a moment about what that means). 

Things declared at a deeper level live even shorter lifetimes. Consider 

this code: 

func silly() { 

    if true { 

        class Cat {} 

        var one = 1 

        one = one + 1 

    } 

} 

That code is silly, but it’s legal: remember, I said that variable 

declarations, function declarations, and object type declarations can 

appear in any structural curly braces. In that code, the class Cat and the 

variable one will not even come into existence until someone calls 

the silly function, and even then they will exist only during the brief 

instant that the path of code execution passes through the if construct. 

So, suppose the function silly is called; the path of execution then enters 

the if construct. Here, Cat is declared and comes into existence; 

then one is declared and comes into existence; then the executable 

line one = one + 1 is executed; and then the scope ends and both Cat 

and one vanish in a puff of smoke. And throughout their brief lives, Cat 

and one were completely invisible to the rest of the program. (Do you see 

why?) 

Object Members 

https://learning.oreilly.com/library/view/ios-12-programming/9781492044543/part01ch01.html#EXswiftfilestructure


Inside the three object types (class, struct, and enum), things declared at 

the top level have special names, mostly for historical reasons. Let’s use 

the Manny class as an example: 

class Manny { 

    let name = "manny" 

    func sayName() { 

        print(name) 

    } 

} 

In that code: 

 name is a variable declared at the top level of an object declaration, 

so it is called a property of that object. 

 sayName is a function declared at the top level of an object 

declaration, so it is called a method of that object. 

Things declared at the top level of an object declaration — properties, 

methods, and any objects declared at that level — are collectively 

the members of that object. Members have a special significance, 

because they define the messages you are allowed to send to that object! 

Namespaces 

A namespace is a named region of a program. The names of things 

inside a namespace cannot be reached by things outside it without 

somehow first passing through the barrier of saying that region’s name. 

This is a good thing because it allows the same name to be used in 

different places without a conflict. Clearly, namespaces and scopes are 

closely related notions. 

Namespaces help to explain the significance of declaring an object at the 

top level of an object, like this: 



class Manny { 

    class Klass {} 

} 

This way of declaring Klass makes Klass a nested type. It effectively 

“hides” Klass inside Manny. Manny is a namespace! Code inside Manny 

can see (and say) Klass directly. But code outside Manny can’t do that. 

It has to specify the namespace explicitly in order to pass through the 

barrier that the namespace represents. To do so, it must say Manny’s 

name first, followed by a dot, followed by the term Klass. In short, it has 

to say Manny.Klass. 

The namespace does not, of itself, provide secrecy or privacy; it’s a 

convenience. Thus, in Example 1-1, I gave Manny a Klass class, and I 

also gave Moe a Klass class. But they don’t conflict, because they are in 

different namespaces, and I can differentiate them, if necessary, 

as Manny.Klass and Moe.Klass. 

It will not have escaped your attention that the syntax for diving 

explicitly into a namespace is the message-sending dot-notation syntax. 

They are, in fact, the same thing. 

In effect, message-sending allows you to see into scopes you can’t see 

into otherwise. Code inside Moe can’t automatically see the Klass 

declared inside Manny, but it can see it by taking one easy extra step, 

namely by speaking of Manny.Klass. It can do that because it can see 

Manny (because Manny is declared at a level that code inside Moe can 

see). 

Modules 

The top-level namespaces are modules. By default, your app is a module 

and hence a namespace; that namespace’s name is, roughly speaking, the 

name of the app. For example, if my app is called MyApp, then if I declare 

a class Manny at the top level of a file, that class’s real name 

is MyApp.Manny. But I don’t usually need to use that real name, because my 

https://learning.oreilly.com/library/view/ios-12-programming/9781492044543/part01ch01.html#EXswiftfilestructure


code is already inside the same namespace, and can see the 

name Manny directly. 

Frameworks are also modules, and hence they are also namespaces. 

When you import a module, all the top-level declarations of that module 

become visible to your code, without your having to use the module’s 

namespace explicitly to refer to them. 

For example, Cocoa’s Foundation framework, where NSString lives, is a 

module. When you program iOS, you will say import Foundation (or, more 

likely, you’ll say import UIKit, which itself imports Foundation), thus 

allowing you to speak of NSString without saying Foundation.NSString. 

But you could say Foundation.NSString, and if you were so silly as to 

declare a different NSString in your own module, you would have to 

say Foundation.NSString, in order to differentiate them. You can also create 

your own frameworks, and these, too, will be modules. 

Swift itself is defined in a module — the Swift module. Your 

code always implicitly imports the Swift module. You could make this 

explicit by starting a file with the line import Swift; there is no need to do 

this, but it does no harm either. 

That fact is important, because it solves a major mystery: where do 

things like print come from, and why is it possible to use them outside of 

any message to any object? print is in fact a function declared at the top 

level of the Swift module, and your code can see the Swift module’s top-

level declarations because it imports Swift. The print function thus 

becomes, as far as your code is concerned, an ordinary top-level 

function like any other; it is global to your code, and your code can 

speak of it without specifying its namespace. You can specify its 

namespace — it is perfectly legal to say things 

like Swift.print("hello") — but you probably never will, because there’s 

no name conflict to resolve. 

TIP 

You can actually see the Swift top-level declarations and read and study 

them, and this can be a useful thing to do. For example, to see the 

declaration of print, Command-Control-click the term print in your code. 

Alternatively, explicitly import Swift and Command-Control-click the 



term Swift. Behold, there are the Swift top-level declarations! You won’t 

see any executable Swift code here, but you will see the declarations for 

all the available Swift terms, including top-level functions like print, 

operators like +, and built-in types such as Int and String (look for struct 

Int, struct String, and so on). 

Instances 

Object types — class, struct, and enum — have an important feature in 

common: they can be instantiated. In effect, when you declare an object 

type, you are only defining a type. To instantiate a type is to make a 

thing — an instance — of that type. 

So, for example, I can declare a Dog class, and I can give my class a 

method: 

class Dog { 

    func bark() { 

        print("woof") 

    } 

} 

But I don’t actually have any Dog objects in my program yet. I have 

merely described the type of thing a Dog would be if I had one. To get 

an actual Dog, I have to make one. The process of making an actual Dog 

object whose type is the Dog class is the process of instantiating Dog. 

The result is a new object — a Dog instance. 

In Swift, instances can be created by using the object type’s name as a 

function name and calling the function. This involves using parentheses. 

When you append parentheses to the name of an object type, you are 

sending a very special kind of message to that object type: Instantiate 

yourself! 

So now I’m going to make a Dog instance: 



let fido = Dog() 

There’s a lot going on in that code! I did two things. I instantiated Dog, 

thus causing me to end up with a Dog instance. I also put that Dog 

instance into a shoebox called fido — I declared a variable and 

initialized the variable by assigning my new Dog instance to it. 

Now fido is a Dog instance. (Moreover, because I used let, fido will 

always be this same Dog instance. I could have used var instead, but 

even then, initializing fido as a Dog instance would have 

meant fido could only be some Dog instance after that.) 

Now that I have a Dog instance, I can send instance messages to it. And 

what do you suppose they are? They are Dog’s properties and methods! 

For example: 

let fido = Dog() 

fido.bark() 

That code is legal. Not only that, it is effective: it actually does 

cause "woof" to appear in the console. I made a Dog and I made it bark! 

(See Figure 1-1.) 

 

Figure 1-1. Making an instance and calling an instance method 

There’s an important lesson here, so let me pause to emphasize it. By 

default, properties and methods are instance properties and methods. 

You can’t use them as messages to the object type itself; you have to 

have an instance to send those messages to. As things stand, this is 

illegal and won’t compile: 

Dog.bark() // compile error 

It is possible to declare a function bark in such a way that 

saying Dog.bark() is legal, but that would be a different kind of function 

— a class function or a static function — and you would need to say so 

when you declare it. 

https://learning.oreilly.com/library/view/ios-12-programming/9781492044543/part01ch01.html#FIGinstancemethod


The same thing is true of properties. To illustrate, let’s give Dog 

a name property: 

class Dog { 

    var name = "" 

} 

That allows me to set a Dog’s name, but it needs to be an instance of Dog: 

let fido = Dog() 

fido.name = "Fido" 

It is possible to declare a property name in such a way that 

saying Dog.name is legal, but that would be a different kind of property — 

a class property or a static property — and you would need to say so 

when you declare it. 

Why Instances? 

Even if there were no such thing as an instance, an object type is itself 

an object. We know this because it is possible to send a message to an 

object type (the phrase Manny.Klass is a case in point). Why, then, do 

instances exist at all? 

The answer has mostly to do with the nature of instance properties. The 

value of an instance property is defined with respect to a particular 

instance. This is where instances get their real usefulness and power. 

Consider again our Dog class. I’ll give it a name property and 

a bark method; remember, these are an instance property and an instance 

method: 

class Dog { 

    var name = "" 



    func bark() { 

        print("woof") 

    } 

} 

A Dog instance comes into existence with a blank name (an empty string). 

But its name property is a var, so once we have any Dog instance, we can 

assign to its name a new String value: 

let dog1 = Dog() 

dog1.name = "Fido" 

We can also ask for a Dog instance’s name: 

let dog1 = Dog() 

dog1.name = "Fido" 

print(dog1.name) // "Fido" 

The important thing is that we can make more than one Dog instance, 

and that two different Dog instances can have two different name property 

values (Figure 1-2): 

let dog1 = Dog() 

dog1.name = "Fido" 

let dog2 = Dog() 

dog2.name = "Rover" 

print(dog1.name) // "Fido" 

print(dog2.name) // "Rover" 

https://learning.oreilly.com/library/view/ios-12-programming/9781492044543/part01ch01.html#FIGinstanceproperty


 

Figure 1-2. Two dogs with different property values 

Note that a Dog instance’s name property has nothing to do with the name 

of the variable to which a Dog instance is assigned. The variable is just a 

shoebox. You can pass an instance from one shoebox to another. But the 

instance itself maintains its own internal integrity: 

let dog1 = Dog() 

dog1.name = "Fido" 

var dog2 = Dog() 

dog2.name = "Rover" 

print(dog1.name) // "Fido" 

print(dog2.name) // "Rover" 

dog2 = dog1 

print(dog2.name) // "Fido" 

That code didn’t change Rover’s name; it changed which dog was inside 

the dog2 shoebox, replacing Rover with Fido. 

The full power of object-based programming has now emerged. There is 

a Dog object type which defines what it is to be a Dog. Our declaration 

of Dog says that a Dog instance — any Dog instance, every Dog 

instance — has a name property and a bark method. But each Dog instance 

can have its own name property value. They are different instances and 

maintain their own internal state. So multiple instances of the same 

object type behave alike — both Fido and Rover can bark, and will do 

so when they are sent the bark message — but they are different 

instances and can have different property values: 

Fido’s name is "Fido" while Rover’s name is "Rover". 

So an instance is a reflection of the instance methods of its type, but that 

isn’t all it is; it’s also a collection of instance properties. The object type 



is responsible for what properties the instance has, but not necessarily 

for the values of those properties. The values can change as the program 

runs, and apply only to a particular instance. An instance is a cluster of 

particular property values. 

An instance is responsible not only for the values but also for 

the lifetimes of its properties. Suppose we bring a Dog instance into 

existence and assign to its name property the value "Fido". Then this Dog 

instance is keeping the string "Fido" alive just so long as we do not 

replace the value of its name with some other value — and just so long as 

this instance lives. 

In short, an instance is both code and data. The code it gets from its type 

and in a sense is shared with all other instances of that type, but the data 

belong to it alone. The data can persist as long as the instance persists. 

The instance has, at every moment, a state — the complete collection of 

its own personal property values. An instance is a device for maintaining 

state. It’s a box for storage of data. 

The Keyword self 

An instance is an object, and an object is the recipient of messages. 

Thus, an instance needs a way of sending a message to itself. This is 

made possible by the keyword self. This word can be used wherever an 

instance of the appropriate type is expected. 

For example, let’s say I want to keep the thing that a Dog says when it 

barks, such as "woof", in a property. Then in my implementation of bark I 

need to refer to that property. I can do it like this: 

class Dog { 

    var name = "" 

    var whatADogSays = "woof" 

    func bark() { 

        print(self.whatADogSays) 



    } 

} 

Similarly, let’s say I want to write an instance method speak which is 

merely a synonym for bark. My speak implementation can consist of 

simply calling my own bark method. I can do it like this: 

class Dog { 

    var name = "" 

    var whatADogSays = "woof" 

    func bark() { 

        print(self.whatADogSays) 

    } 

    func speak() { 

        self.bark() 

    } 

} 

Observe that the term self in that example appears only in instance 

methods. When an instance’s code says self, it is referring 

to this instance. If the expression self.name appears in a Dog instance 

method’s code, it means the name of this Dog instance, the one whose 

code is running at that moment. 

It turns out that every use of the word self I’ve just illustrated is 

completely optional. You can omit it and all the same things will 

happen: 

class Dog { 



    var name = "" 

    var whatADogSays = "woof" 

    func bark() { 

        print(whatADogSays) 

    } 

    func speak() { 

        bark() 

    } 

} 

The reason is that if you omit the message recipient and the message 

you’re sending can be sent to self, the compiler supplies self as the 

message’s recipient under the hood. However, I never do that (except by 

mistake). As a matter of style, I like to be explicit in my use of self. I 

find code that omits self harder to read and understand. And there are 

situations where you must say self, so I prefer to use it whenever I’m 

allowed to. 

Privacy 

Earlier, I said that a namespace is not, of itself, an insuperable barrier to 

accessing the names inside it. But such a barrier is sometimes desirable. 

For example, not all data stored by an instance is intended for alteration 

by, or even visibility to, another instance. And not every instance 

method is intended to be called by other instances. Any decent object-

based programming language needs a way to endow its object members 

with privacy — a way of making it harder for other objects to see those 

members if they are not supposed to be seen. 

Consider, for example: 



class Dog { 

    var name = "" 

    var whatADogSays = "woof" 

    func bark() { 

        print(self.whatADogSays) 

    } 

    func speak() { 

        print(self.whatADogSays) 

    } 

} 

Here, other objects can come along and change my property whatADogSays. 

Since that property is used by both bark and speak, we could easily end up 

with a Dog that, when told to bark, says "meow". That seems somehow 

undesirable: 

let dog1 = Dog() 

dog1.whatADogSays = "meow" 

dog1.bark() // meow 

You might reply: Well, silly, why did you declare whatADogSays with var? 

Declare it with let instead. Make it a constant! Now no one can change 

it: 

class Dog { 

    var name = "" 

    let whatADogSays = "woof" 



    func bark() { 

        print(self.whatADogSays) 

    } 

    func speak() { 

        print(self.whatADogSays) 

    } 

} 

That is a good answer, but it is not quite good enough. There are two 

problems. Suppose I want a Dog instance itself to be able to change its 

own whatADogSays — by assigning to self.whatADogSays. 

Then whatADogSays has to be a var; otherwise, even the instance itself can’t 

change it. Also, suppose I don’t want any other object to know what this 

Dog says, except by calling bark or speak. Even when declared with let, 

other objects can still read the value of whatADogSays. Maybe I don’t like 

that. 

To solve this problem, Swift provides the private keyword. I’ll talk later 

about all the ramifications of this keyword, but for now it’s enough to 

know that it solves the problem: 

class Dog { 

    var name = "" 

    private var whatADogSays = "woof" 

    func bark() { 

        print(self.whatADogSays) 

    } 

    func speak() { 



        print(self.whatADogSays) 

    } 

} 

Now name is a public property, but whatADogSays is a private property: it 

can’t be seen by other types of object. A Dog instance can speak 

of self.whatADogSays, but a Cat instance with a reference to a Dog instance 

as fido cannot say fido.whatADogSays. The important lesson here is that 

object members are public by default, and if you want privacy, you have 

to ask for it. 

To sum up: A class declaration defines a namespace. This namespace 

requires that other objects use an extra level of dot-notation to refer to 

what’s inside the namespace, but other objects can still refer to what’s 

inside the namespace; the namespace does not, in and of itself, close any 

doors of visibility. The private keyword lets you close those doors. 

RESERVED WORDS 

Certain terms, like class and func and var and let and if and private and import, 

are reserved in Swift; they are part of the language. That means you can’t use them 

as identifiers — as the name of a class, a function, or a variable, for example. If 

you try to do so, you’ll get a compile error. 

To force a reserved word to be an identifier, surround it by backticks (`). This 

(extraordinarily confusing) code is legal: 

class `func` { 

    func `if`() { 

        let `class` = 1 

    } 

} 

Design 



What object types will your program need, what methods and properties 

should they have, when and how will they be instantiated, and what 

should you do with those instances when you have them? Those aren’t 

easy decisions, and there are no clear-cut answers. Object-based 

programming is an art. 

In real life, when you’re programming iOS, many object types you’ll be 

working with will not be yours but Apple’s. Swift itself comes with a 

few useful object types, such as String and Int; you’ll also import UIKit, 

which includes a huge number of object types, all of which spring to life 

in your program. You didn’t create any of those object types, so their 

design is not your problem; instead, you must learn to use them. Apple’s 

object types are aimed at enabling the general functionality that any app 

might need. At the same time, your app will probably 

have specific functionality, unique to its purpose, and you will have to 

design object types to serve that purpose. 

Object-based program design must be founded upon a secure 

understanding of the nature of objects. You want to design object types 

that encapsulate the right sort of functionality (methods) accompanied 

by the right set of data (properties). Then, when you instantiate those 

object types, you want to make sure that your instances have the right 

lifetimes, sufficient exposure to one another, and an appropriate ability 

to communicate with one another. 

Object Types and APIs 

Your program files will have very few, if any, top-level functions and 

variables. Methods and properties of object types — in particular, 

instance methods and instance properties — will be where most of the 

action is. Object types give each actual instance its specialized abilities. 

They also help to organize your program’s code meaningfully and 

maintainably. 

We may summarize the nature of objects in two phrases: encapsulation 

of functionality, and maintenance of state. (I first used this summary 

many years ago in my book REALbasic: The Definitive Guide.) 

Encapsulation of functionality 

http://oreilly.com/catalog/9780596001773/


Each object does its own job, and presents to the rest of the world 

— to other objects, and indeed in a sense to the programmer — an 

opaque wall whose only entrances are the methods to which it 

promises to respond and the actions it promises to perform when 

the corresponding messages are sent to it. The details of how, 

behind the scenes, it actually implements those actions are secreted 

within itself; no other object needs to know them. 

Maintenance of state 

Each individual instance is a bundle of data that it maintains. Often 

that data is private, so it’s encapsulated as well; no other object 

knows what that data is or in what form it is kept. The only way to 

discover from outside what private data an object is maintaining is 

if there’s a public method or property that reveals it. 

As an example, imagine an object whose job is to implement a stack — 

it might be an instance of a Stack class. A stack is a data structure that 

maintains a set of data in LIFO order (last in, first out). It responds to 

just two messages: push and pop. Push means to add a given piece of data 

to the set. Pop means to remove from the set the piece of data that was 

most recently pushed and hand it out. It’s like a stack of plates: plates 

are placed onto the top of the stack or removed from the top of the stack 

one by one, so the first plate to go onto the stack can’t be retrieved until 

all other subsequently added plates have been removed (Figure 1-3). 

 

Figure 1-3. A stack 

The stack object illustrates encapsulation of functionality because the 

outside world knows nothing of how the stack is actually implemented. 

It might be an array, it might be a linked list, it might be any of a 

number of other implementations. But a client object — an object that 

actually sends a push or pop message to the stack object — knows nothing 

of this and cares less, provided the stack object adheres to its contract of 

behaving like a stack. This is also good for the programmer, who can, as 

the program develops, safely substitute one implementation for another 

without harming the vast machinery of the program as a whole. 

The stack object illustrates maintenance of state because it isn’t just the 

gateway to the stack data — it is the stack data. Other objects can get 

https://learning.oreilly.com/library/view/ios-12-programming/9781492044543/part01ch01.html#FIGstack


access to that data, but only by virtue of having access to the stack 

object itself, and only in the manner that the stack object permits. The 

stack data is effectively inside the stack object; no one else can see it. 

All that another object can do is push or pop. 

The sum total of messages that each object type is eligible to be sent by 

other objects — its API (application programming interface) — is like a 

list or menu of things you can ask this type of object to do. Your object 

types divide up your code; their APIs form the basis of communication 

between those divisions. The same is true of objects that you didn’t 

design. Apple’s Cocoa documentation consists largely of lists of object 

APIs. For example, to know what messages you can send to an NSString 

instance, you’d start by studying the NSString class documentation. That 

page is really just a big list of properties and methods, so it tells you 

what an NSString object can do — and thus constitutes the bulk of what 

you need to know in order to use NSStrings in your program. 

Instance Creation, Scope, and Lifetime 

The important moment-to-moment entities in a Swift program are 

mostly instances. Object types define what kinds of instances there can 

be and how each kind of instance behaves. But the actual instances of 

those types are the state-carrying individual “things” that the program is 

all about, and instance methods and properties are messages that can be 

sent to instances. So there need to be instances in order for the program 

to do anything. 

By default, however, there are no instances! Looking back 

at Example 1-1, we defined some object types, but we made no instances 

of them. If we were to run this program, our object types would exist 

from the get-go, but that’s all that would exist. We’ve created a world of 

pure potentiality — some types of object that might exist. In that world, 

nothing would actually happen. 

Instances do not come into being by magic. You have to instantiate a 

type in order to obtain an instance. Much of the action of your program, 

therefore, will consist of instantiating types. And of course you will 

want those instances to persist, so you will also assign each newly 

created instance to a variable as a shoebox to hold it, name it, and give it 

a lifetime. The instance will persist according to the lifetime of the 

https://learning.oreilly.com/library/view/ios-12-programming/9781492044543/part01ch01.html#EXswiftfilestructure


variable that refers to it. And the instance will be visible to other 

instances according to the scope of the variable that refers to it. 

Much of the art of object-based programming involves giving instances 

a sufficient lifetime and making them visible to one another. You will 

often put an instance into a particular shoebox — assigning it to a 

particular variable, declared at a certain scope — exactly so that, thanks 

to the rules of variable lifetime and scope, this instance will persist long 

enough to keep being useful to your program while it will still be 

needed, and so that other code can get a reference to this instance and 

talk to it later. 

Planning how you’re going to create instances, and working out the 

lifetimes and communication between those instances, may sound 

daunting. Fortunately, in real life, when you’re programming iOS, the 

Cocoa framework itself will provide an initial scaffolding for you. 

Before you write a single line of code, the framework ensures that your 

app, as it launches, is given some instances that will persist for the 

lifetime of the app, providing the basis of your app’s visible interface 

and giving you an initial place to put your own instances and give them 

sufficiently long lifetimes. 

Summary and Conclusion 

As we imagine constructing an object-based program for performing a 

particular task, we bear in mind the nature of objects. There are types 

and instances. A type is a set of methods describing what all instances of 

that type can do (encapsulation of functionality). Instances of the same 

type differ only in the value of their properties (maintenance of state). 

We plan accordingly. Objects are an organizational tool, a set of boxes 

for encapsulating the code that accomplishes a particular task. They are 

also a conceptual tool. The programmer, being forced to think in terms 

of discrete objects, must divide the goals and behaviors of the program 

into discrete tasks, each task being assigned to an appropriate object. 

At the same time, no object is an island. Objects can cooperate with one 

another, namely by communicating with one another — that is, by 

sending messages to one another. The ways in which appropriate lines of 

communication can be arranged are innumerable. Coming up with an 

appropriate arrangement — an architecture — for the cooperative and 



orderly relationship between objects is one of the most challenging 

aspects of object-based programming. In iOS programming, you get a 

boost from the Cocoa framework, which provides an initial set of object 

types and a practical basic architectural scaffolding. 

Using object-based programming effectively to make a program do what 

you want it to do while keeping it clear and maintainable is itself an art; 

your abilities will improve with experience. Eventually, you may want 

to do some further reading on effective planning and construction of the 

architecture of an object-based program. I recommend in particular two 

classic, favorite books. Refactoring, by Martin Fowler (Addison-

Wesley, 1999), describes why you might need to rearrange what 

methods belong to what classes (and how to conquer your fear of doing 

so). Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, 

and John Vlissides (also known as “the Gang of Four”), is the bible on 

architecting object-based programs, listing all the ways you can arrange 

objects with the right powers and the right knowledge of one another 

(Addison-Wesley, 1994). 

 


