
Chapter 1. Our Development
Environment

John Wooden, the late coach of the UCLA men’s basketball team is one

of the most successful coaches of all time, winning 10 national

championships in a twelve year period. His teams consisted of top

recruits, including hall-of-fame players such as Lew Alcindor (Kareem

Abdul-Jabbar) and Bill Walton On the first day of practice, John

Wooden would sit down each of his new recruits, players who had been

the best in the country in high school, and teach them to put on their

socks properly. When asked about this, Wooden stated that “it’s the little

details that make the big things come about.”

Chefs use the term mise en place, meaning “everything in its place,” to

describe the practice of preparing the tools and ingredients required for

the menu prior to cooking. This preparation enables the kitchen’s cooks

to successfully prepare meals during busy rushes, as the small details

have already been considered. Much like Coach Wooden’s players and

chefs preparing for a dinner rush, it is worth dedicating time to setting

up our development environment.

A useful development environment does not require expensive software

or top of the line hardware. In fact, I’d encourage you to start simple,

use open source software, and grow your tools with you. Though a

runner prefers a specific brand of sneakers and a carpenter may always

reach for her favorite hammer, it took time and experience to establish

these preferences. Experiment with tools, observe others, and over time

you will create the environment that works best for you.

In this chapter we’ll install a text editor, Node.js, Git, MongoDB, and

several helpful JavaScript packages as well as locate our terminal

application. It’s possible that you already have a development

environment that works well for you, however we will also be installing

several required tools that will be used throughout the book. If you’re

like me and typically skip over the instruction manual, I’d still

encourage you to read through this guide.

https://www.newsweek.com/john-wooden-first-how-put-your-socks-167942

If you find yourself stuck at any point, please reach out to the JavaScript

Everywhere community, via our Spectrum channel

at spectrum.chat/jseverywhere.

Your text editor

Text editors are a lot like pants. We all need them, but our preferences

may vary wildly. Some like simple, well-constructed, and timeless.

Some prefer the flashy paisley pattern. There’s no wrong decision and

you should use whatever makes you most comfortable.

If you don’t already have a favorite, I highly recommend Visual

Studio(VS) Code. It’s an open source editor that is available for Mac,

Windows, and Linux. Additionally, it offers built-in features to simplify

development and is easily modified with community extensions. It’s

even built using JavaScript!

The terminal

If you’re using Visual Studio Code, it comes with an integrated terminal.

For most development tasks, this may be all you need. Personally, I find

using a dedicated terminal client preferable as I find it easier to manage

multiple tabs and use more dedicated window space on my machine. I’d

suggest trying both out and find what works best for you.

Using VSCode

To access the terminal in VSCode, click View > Integrated Terminal. This

will present you with a terminal window. The prompt will be be present

in the same directory as the current project.

Using the built in terminal

All operating systems come with a built in terminal application and this

is a great place to get started. On OS X it is called, fittingly enough,

Terminal. In Windows, the program is PowerShell. The name of the

terminal for Linux distributions may vary, but often include “Terminal.”

https://spectrum.chat/jseverywhere
https://code.visualstudio.com/
https://code.visualstudio.com/

Navigating the file system

Once you’ve found your terminal, the most critical ability you will need

is the ability to navigate the file system. This can be done using

the cd command, which stands for “change directory.”

COMMAND LINE PROMPTS

When looking at terminal instructions they will often include a $ or > at

the start of the line. These are used to designate the prompt and should

not be copied. In this book, I’ll be designating the terminal prompt with

a dollar sign ($). When entering instructions into your terminal

application, do not copy the $.

When we open our Terminal application, we’ll be presented with a

blinking cursor prompt. By default, we are in our computer’s home

directory. If you haven’t already, I’d recommend making

a Projects folder that is a sub-directory within your home directory. This

folder can house all of your development projects. To navigate into that

folder you would type:

$ cd Projects

Now let’s say that we can have a folder called jseverywhere in our

Projects directory. We can type cd jseverywhere from the Projects

directory to navigate into there. To navigate backwards a directory (in

this case, to Projects), we would type cd ..

All together, this would look something like:

> $ cd Projects # navigate from Home dir to Projects dir

/Projects > $ cd jseverywhere # navigate from Projects dir to
jsevewehre dir

/Projects/jseverwhere > $ cd .. # navigate back from jseverwhere to
Projects

/Projects > $ # Prompt is currently in the Projects dir

If this is new to you, spend some time navigating through your files until

you’re comfortable. I’ve found that file system issues are a common

tripping point for budding developers. Having a solid grasp of this will

provide you with a solid basis for establishing your workflows.

Command Line Tools and Homebrew (Mac
Only)

Certain command line utilities are only available to macOS users once

Xcode is installed. You can jump through this hoop, without installing

Xcode by installing xcode-select via your terminal. To do so, run the

following command and click through the install prompts:

$ xcode-select --install

Homebrew is a package manager for macOS. It makes installing

development dependencies, like programming languages and databases

as simple as running a command line prompt. If you use a Mac, it will

dramatically simplify your development environment. To install

Homebrew, either head over to brew.sh to copy and paste the install

command, or type the following:

$ /usr/bin/ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/in

stall)"

Node.js and npm

Node.js is “a JavaScript runtime, built on Chrome’s V8 JavaScript

Engine.” In practical terms this means that Node is a platform that

allows developers to write JavaScript outside of a browser environment.

Node.js enables us to write server-side applications in JavaScript.

Bundled along with Node.js, comes npm, the default package manager

for Node.js. npm enables us to install thousands of libraries and

JavaScript tools within our projects.

MANAGING NODE.JS VERSIONS

If you plan on managing a large number of Node projects you may find

that you also need to manage multiple versions of Node on your

machine. If that’s the case, I recommend using nvm to install Node. nvm

is a script that enables you to manage multiple active Node versions. For

Windows users, I recommend nvm-windows. I won’t be covering Node

versioning, but it is a helpful tool. If this is your first time working with

https://brew.sh/
https://github.com/creationix/nvm
https://github.com/coreybutler/nvm-windows

Node, I recommend proceeding with the following instructions for your

system.

Installing Node.js and npm for macOS

macOS users can install Node.js and npm using Homebrew. To install

Node.js, type the following command into your terminal:

$ brew update

$ brew install node@10.16

With Node installed, open your terminal application to verify it is

working.

$ node --version
Expected output v10.16.3

$ npm --version
Expected output 6.2.0

If you see a version number after typing those commands,

congratulations you’ve successfully installed Node and npm for macOS!

Installing Node.js and npm for Windows

For Windows, the most straightforward way to install Node.js is to

visit Node.org and download the installer for your operating system.

First, visit Node.organd install the LTS version (10.15.3 at the time of

writing), following the installation steps for your operating system. With

Node installed, open your terminal application to verify it is working.

$ node --version
Expected output v10.15.3

$ npm --version
Expected output 6.2.0

If you see a version number after typing those commands,

congratulations you’ve successfully installed Node and npm for

Windows!

MongoDB

MongoDB is the database that we will be using in the development of

our API. Mongo is a popular choice when working with Node.js,

https://nodejs.org/
https://nodejs.org/

because it treats our data as JSON documents. This means that it’s

comfortable for JavaScript developers to work with from the get-go.

Installing MongDB for macOS

To install MongoDB for macOS, first install with Homebrew:

$ brew update

$ brew install mongodb

Now, we will create a directory to which Mongo will write our data and

give it the proper permissions. Within your terminal, run the following

commands:

$ cd

$ sudo mkdir -p /data/db
If prompted, enter your password when prompted and press `return`

sudo chown -R `id -un` /data/db
If prompted, enter your password when prompted and press `return`

To verify that Mongo has installed and start the Mongo Daemon,

type mongod into your terminal. This should start the Mongo server. To

stop the server and exit the Mongo process, hold ctrl+c.

Installing MongoDB for Windows

To install MongoDB for Windows, first download the installer from the

MongoDB Download Center at https://www.mongodb.com/download-

center/community. Once the file has downloaded, run the installer.

Once installation is complete, we will need to create a directory in which

Mongo will write our data. Within your terminal, run the following

commands:

$ cd C:\

$ md "\data\db"

To verify that Mongo has installed and start the Mongo Daemon,

type C:\mongodb\bin\mongod.exe into your terminal. This should start the

Mongo server.

TROUBLE INSTALLING MONGO ON WINDOWS?

https://www.mongodb.com/download-center/community?jmp=docs
https://www.mongodb.com/download-center/community?jmp=docs

Note that, the location of mongod.exe may be different depending on your

system preferences. If that prompt doesn’t work, you may need to track

it down. The MongoDB installation documentation offers a more

extensive Windows installation guide.

Git

Git is the most popular version control software, allowing you to do

things like copy code repositories, merge code with others, and create

branches of your own code that do not impact one another. Git will be

helpful for “cloning” this book’s sample code repositories, meaning it

will allow you to directly copy a folder of sample code. Depending on

your operating system, Git may already be installed. Type the following

into your Terminal window:

$ git --version

If a number is returned, congrats you’re all set! If not, visit git-

scm.com to install Git, or use Homebrew for macOS. Once you’ve

completed the installation steps, once again type git --version into your

terminal to verify that it has worked.

Expo

Expo is a toolchain that simplifies the bootstrapping and development

iOS and Android projects with React Native. We will need to install the

Expo command line tool and, optionally (though recommended), the

Expo app for iOS or Android. We’ll cover this in more detail in the

mobile application portion of the book, but if you’re interested in getting

a head start visit expo.io to learn more. To install the command line

tools, type the following into your terminal:

npm install -g expo-cli

To install the Expo application, visit the Apple App Store of Google

Play Store on your device.

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows
https://git-scm.com/
https://git-scm.com/
https://expo.io/

Prettier

Prettier is a code formatting tool with support for a number of languages

including JavaScript, HTML, CSS, GraphQL, and Markdown. It makes

it easy to follow basic formatting rules, meaning that when you run the

Prettier command, your code is automatically formatted to follow a

standard set of best practices. Even better, you can configure your editor

to do this automatically every time you save a file. This means that

you’ll never again have a project with things like inconsistent spaces and

mixed quotes.

I recommend installing Prettier globally on your machine and

configuring a plugin for your editor. To install Prettier globally, go to

your command line and type

npm install --global prettier

Once you’ve installed Prettier, visit Prettier.io to find the plugin for your

text editor. With the editor plugin installed, I recommend adding the

following settings, within your editor’s settings file:

"editor.formatOnSave": true,

"prettier.requireConfig": true

These settings will automatically format files on save, whenever

a .prettierrc configuration file is within the project. The .prettierrc file

specifie specific options for prettier to follow. Now whenever that file is

present, your editor will automatically reformat your code to meet the

conventions of the project. Each project within this book will include

a .prettierrc file.

ESLint

ESLint is a code linter for JavaScript. A linter differs from a formatter,

such as Prettier, in that a linter also checks for code quality rules, such as

unused variables, infinite loops, and unreachable code that falls after a

return. Much like Prettier, I recommend installing the ESLint plugin for

your favorite text editor. This will alert you to errors in real time as you

https://prettier.io/

write your code. You can find a list of editor plugins on the ESLint

Website, at eslint.org/docs/user-guide/integrations.

Similar to Prettier, projects can specify the ESLint rules they would like

to follow within an .eslintrc file. This allows project maintainers fine

grained control over their code preferences and a means to automatically

enforce coding standards. Each of the projects within this book will

include a helpful, but permissive set of ESLint rules, aimed at helping

you to avoid common pitfalls.

Making things look nice

This is optional, but I’ve found that I enjoy programming just a bit more

when I find my setup aesthetically pleasing. I can’t help it, I have a

degree in the arts. Take some time and test out different color themes

and typefaces. Personally, I’ve grown to love the Dracula Theme, which

is a color theme available for nearly every text editor and terminal, along

with Adobe’s Source Code Pro typeface.

Conclusion

In this chapter we’ve set up a working and flexible JavaScript

development environment on our computer. One of the great joys of

programming is personalizing your environment. I encourage you to

experiment with the themes, colors, and tools that you use to make this

environment your own. In the next section of the book, we will put this

environment to work by developing our API application.

https://eslint.org/docs/user-guide/integrations
https://draculatheme.com/
https://github.com/adobe-fonts/source-code-pro

