
Chapter 1. Introduction

This is not so much an instructional manual, but rather notes, tables, and

examples for machine learning. It was created by the author as an

additional resource during training, meant to be distributed as a physical

notebook. Participants (who favor the physical characteristics of dead-

tree material) could add their own notes and thoughts and have a

valuable reference of curated examples.

We will walk through classification with structured data. Other common

machine learning applications include predicting a continuous value

(regression), creating clusters, or trying to reduce dimensionality, among

others. This book does not discuss deep learning techniques. While those

techniques work well for unstructured data, most recommend the

techniques in this book for structured data.

We assume knowledge and familiarity with Python. Learning how to

manipulate data using the pandas library is useful. We have many

examples using pandas, and it is an excellent tool for dealing with

structured data. However, some of the indexing operations may be

confusing if you are not familiar with numpy. Full coverage of pandas

could be a book in itself.

Libraries Used

This book uses many libraries. This can be a good thing and a bad thing.

Some of these libraries may be hard to install or conflict with other

library versions. Do not feel like you need to install all of these libraries.

Use “JIT installation” and only install the libraries that you want to use

as you need them.

>>> import autosklearn, catboost,
category_encoders, dtreeviz, eli5, fancyimpute,
fastai, featuretools, glmnet_py, graphviz,
hdbscan, imblearn, janitor, lime, matplotlib,
missingno, mlxtend, numpy, pandas, pdpbox, phate,
pydotplus, rfpimp, scikitplot, scipy, seaborn,
shap, sklearn, statsmodels, tpot, treeinterpreter,
umap, xgbfir, xgboost, yellowbrick

>>> for lib in [
... autosklearn,

https://pandas.pydata.org/

... catboost,

... category_encoders,

... dtreeviz,

... eli5,

... fancyimpute,

... fastai,

... featuretools,

... glmnet_py,

... graphviz,

... hdbscan,

... imblearn,

... lime,

... janitor,

... matplotlib,

... missingno,

... mlxtend,

... numpy,

... pandas,

... pandas_profiling,

... pdpbox,

... phate,

... pydotplus,

... rfpimp,

... scikitplot,

... scipy,

... seaborn,

... shap,

... sklearn,

... statsmodels,

... tpot,

... treeinterpreter,

... umap,

... xgbfir,

... xgboost,

... yellowbrick,

...]:

... try:

... print(lib.__name__, lib.__version__)

... except:

... print("Missing", lib.__name__)
catboost 0.11.1
category_encoders 2.0.0
Missing dtreeviz
eli5 0.8.2
fancyimpute 0.4.2
fastai 1.0.28
featuretools 0.4.0
Missing glmnet_py
graphviz 0.10.1
hdbscan 0.8.22
imblearn 0.4.3
janitor 0.16.6
Missing lime
matplotlib 2.2.3
missingno 0.4.1
mlxtend 0.14.0
numpy 1.15.2
pandas 0.23.4
Missing pandas_profiling
pdpbox 0.2.0

phate 0.4.2
Missing pydotplus
rfpimp
scikitplot 0.3.7
scipy 1.1.0
seaborn 0.9.0
shap 0.25.2
sklearn 0.21.1
statsmodels 0.9.0
tpot 0.9.5
treeinterpreter 0.1.0
umap 0.3.8
xgboost 0.81
yellowbrick 0.9

NOTE

Most of these libraries are easily installed with pip or conda. With fastai I

need to use pip install --no-deps fastai. The umap library is installed

with pip install umap-learn. The janitor library is installed with pip install

pyjanitor. The autosklearn library is installed with pip install auto-sklearn.

I usually use Jupyter for doing an analysis. You can use other notebook

tools as well. Note that some, like Google Colab, have preinstalled many

of the libraries (though they may be outdated versions).

There are two main options for installing libraries in Python. One is to

use pip (an acronym for Pip Installs Python), a tool that comes with

Python. The other option is to use Anaconda. We will introduce both.

Installation with Pip

Before using pip, we will create a sandbox environment to install our

libraries into. This is called a virtual environment named env:

$ python -m venv env

NOTE

On Macintosh and Linux, use python; on Windows, use python3. If

Windows doesn’t recognize that from the command prompt, you may

need to reinstall or fix your install and make sure you check the “Add

Python to my PATH” checkbox.

https://anaconda.org/

Then you activate the environment so that when you install libraries,

they go in the sandbox environment and not in the global Python

installation. As many of these libraries change and are updated, it is best

to lock down versions on a per-project basis so you know that your code

will run.

Here is how we activate the virtual environment on Linux and

Macintosh:

$ source env/bin/activate

You will notice that the prompt is updated, indicating that we are using

the virtual environment:

 (env) $ which python

 env/bin/python

On Windows, you will need to activate the environment by running this

command:

C:> env\Scripts\activate.bat

Again, you will notice that the prompt is updated, indicating that we are

using the virtual environment:

 (env) C:> where python

 env\Scripts\python.exe

On all platforms, you can install packages using pip. To install pandas,

type:

(env) $ pip install pandas

Some of the package names are different than the library names. You

can search for packages using:

(env) $ pip search libraryname

Once you have your packages installed, you can create a file with all of

the versions of the packages using pip:

(env) $ pip freeze > requirements.txt

With this requirements.txt file you can easily install the packages into a

new virtual environment:

(other_env) $ pip install -r requirements.txt

Installation with Conda

The conda tool comes with Anaconda and lets us create environments and

install packages.

To create an environment named env, run:

$ conda create --name env python=3.6

To activate this environment, run:

$ conda activate env

This will update the prompt on both Unix and Windows systems. Now

you can search for packages using:

(env) $ conda search libraryname

To install a package, like pandas, run:

(env) $ conda install pandas

To create a file with the package requirements in it, run:

(env) $ conda env export > environment.yml

To install these requirements in a new environment, run:

(other_env) $ conda create -f environment.yml

