
Chapter 1. Why Python for Finance

Banks are essentially technology firms.

Hugo Banziger

The Python Programming Language

Python is a high-level, multipurpose programming language that is used

in a wide range of domains and technical fields. On the Python

website you find the following executive summary:

Python is an interpreted, object-oriented, high-level programming language

with dynamic semantics. Its high-level built in data structures, combined with

dynamic typing and dynamic binding, make it very attractive for Rapid

Application Development, as well as for use as a scripting or glue language

to connect existing components together. Python’s simple, easy to learn

syntax emphasizes readability and therefore reduces the cost of program

maintenance. Python supports modules and packages, which encourages

program modularity and code reuse. The Python interpreter and the

extensive standard library are available in source or binary form without

charge for all major platforms, and can be freely distributed.

This pretty well describes why Python has evolved into one of the major

programming languages today. Nowadays, Python is used by the

beginner programmer as well as by the highly skilled expert developer,

at schools, in universities, at web companies, in large corporations and

financial institutions, as well as in any scientific field.

Among other features, Python is:

Open source

Python and the majority of supporting libraries and tools available

are open source and generally come with quite flexible and open

licenses.

Interpreted

https://www.python.org/doc/essays/blurb
https://www.python.org/doc/essays/blurb

The reference CPython implementation is an interpreter of the

language that translates Python code at runtime to executable byte

code.

Multiparadigm

Python supports different programming and implementation

paradigms, such as object orientation and imperative, functional, or

procedural programming.

Multipurpose

Python can be used for rapid, interactive code development as well

as for building large applications; it can be used for low-level

systems operations as well as for high-level analytics tasks.

Cross-platform

Python is available for the most important operating systems, such

as Windows, Linux, and macOS. It is used to build desktop as well

as web applications, and it can be used on the largest clusters and

most powerful servers as well as on such small devices as

the Raspberry Pi.

Dynamically typed

Types in Python are in general inferred at runtime and not

statically declared as in most compiled languages.

Indentation aware

In contrast to the majority of other programming languages,

Python uses indentation for marking code blocks instead of

parentheses, brackets, or semicolons.

Garbage collecting

Python has automated garbage collection, avoiding the need for the

programmer to manage memory.

When it comes to Python syntax and what Python is all about, Python

Enhancement Proposal 20—i.e., the so-called “Zen of Python”—

provides the major guidelines. It can be accessed from every interactive

shell with the command import this:

In [1]: import this

http://www.raspberrypi.org/

 The Zen of Python, by Tim Peters

 Beautiful is better than ugly.

 Explicit is better than implicit.

 Simple is better than complex.

 Complex is better than complicated.

 Flat is better than nested.

 Sparse is better than dense.

 Readability counts.

 Special cases aren't special enough to break the

rules.

 Although practicality beats purity.

 Errors should never pass silently.

 Unless explicitly silenced.

 In the face of ambiguity, refuse the temptation to

guess.

 There should be one-- and preferably only one --

obvious way to do it.

 Although that way may not be obvious at first unless

you're Dutch.

 Now is better than never.

 Although never is often better than *right* now.

 If the implementation is hard to explain, it's a bad

idea.

 If the implementation is easy to explain, it may be

a good idea.

 Namespaces are one honking great idea -- let's do

more of those!

A Brief History of Python

Although Python might still have the appeal of something new to some

people, it has been around for quite a long time. In fact, development

efforts began in the 1980s by Guido van Rossum from the Netherlands.

He is still active in Python development and has been awarded the title

of Benevolent Dictator for Life by the Python community. In July 2018,

van Rossum stepped down from this position after decades of being an

active driver of the Python core development efforts. The following can

be considered milestones in the development of Python:

 Python 0.9.0 released in 1991 (first release)

 Python 1.0 released in 1994

 Python 2.0 released in 2000

 Python 2.6 released in 2008

 Python 3.0 released in 2008

 Python 3.1 released in 2009

 Python 2.7 released in 2010

 Python 3.2 released in 2011

 Python 3.3 released in 2012

 Python 3.4 released in 2014

 Python 3.5 released in 2015

 Python 3.6 released in 2016

 Python 3.7 released in June 2018

It is remarkable, and sometimes confusing to Python newcomers, that

there are two major versions available, still being developed and, more

importantly, in parallel use since 2008. As of this writing, this will

probably keep on for a little while since tons of code available and in

production is still Python 2.6/2.7. While the first edition of this book

was based on Python 2.7, this second edition uses Python 3.7

throughout.

The Python Ecosystem

http://bit.ly/2DYWqCW

A major feature of Python as an ecosystem, compared to just being a

programming language, is the availability of a large number of packages

and tools. These packages and tools generally have to be imported when

needed (e.g., a plotting library) or have to be started as a separate system

process (e.g., a Python interactive development environment).

Importing means making a package available to the current namespace

and the current Python interpreter process.

Python itself already comes with a large set of packages and modules

that enhance the basic interpreter in different directions, known as

the Python Standard Library. For example, basic mathematical

calculations can be done without any importing, while more specialized

mathematical functions need to be imported through the math module:

In [2]: 100 * 2.5 + 50

Out[2]: 300.0

In [3]: log(1)

 NameError Traceback (most recent call last)

 <ipython-input-3-74f22a2fd43b> in <module>

 ----> 1 log(1)

 NameError: name 'log' is not defined

In [4]: import math

In [5]: math.log(1)

Out[5]: 0.0

Without further imports, an error is raised.

After importing the math module, the calculation can be executed.

While math is a standard Python module available with any Python

installation, there are many more packages that can be installed

optionally and that can be used in the very same fashion as the standard

modules. Such packages are available from different (web) sources.

However, it is generally advisable to use a Python package manager that

makes sure that all libraries are consistent with each other

(see Chapter 2 for more on this topic).

https://docs.python.org/3/library/index.html
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch02.html#infrastructure

The code examples presented so far use interactive Python

environments: IPython and Jupyter, respectively. These are probably the

most widely used interactive Python environments at the time of this

writing. Although IPython started out as just an enhanced interactive

Python shell, it today has many features typically found in integrated

development environments (IDEs), such as support for profiling and

debugging. Those features missing in IPython are typically provided by

advanced text/code editors, like Vim, which can also be integrated with

IPython. Therefore, it is not unusual to combine IPython with one’s

text/code editor of choice to form the basic toolchain for a Python

development process.

IPython enhances the standard interactive shell in many ways. Among

other things, it provides improved command-line history functions and

allows for easy object inspection. For instance, the help text (docstring)

for a function is printed by just adding a ? before or after the function

name (adding ?? will provide even more information).

IPython originally came in two popular versions: a shell version and

a browser-based version (the Notebook). The Notebook variant proved

so useful and popular that it evolved into an independent, language-

agnostic project now called Jupyter. Given this background, it is no

surprise that Jupyter Notebook inherits most of the beneficial features of

IPython—and offers much more, for example when it comes to

visualization.

Refer to VanderPlas (2016, Chapter 1) for more details on using

IPython.

The Python User Spectrum

Python does not only appeal to professional software developers; it is

also of use for the casual developer as well as for domain experts and

scientific developers.

Professional software developers find in Python all they might require to

efficiently build large applications. Almost all programming paradigms

are supported; there are powerful development tools available; and any

task can, in principle, be addressed with Python. These types of users

typically build their own frameworks and classes, also work on the

http://www.ipython.org/
http://jupyter.org/
http://vim.org/

fundamental Python and scientific stack, and strive to make the most of

the ecosystem.

Scientific developers or domain experts are generally heavy users of

certain packages and frameworks, have built their own applications that

they enhance and optimize over time, and tailor the ecosystem to their

specific needs. These groups of users also generally engage in longer

interactive sessions, rapidly prototyping new code as well as exploring

and visualizing their research and/or domain data sets.

Casual programmers like to use Python generally for specific problems

they know that Python has its strengths in. For example, visiting the

gallery page of matplotlib, copying a certain piece of visualization code

provided there, and adjusting the code to their specific needs might be a

beneficial use case for members of this group.

There is also another important group of Python users: beginner

programmers, i.e., those that are just starting to program. Nowadays,

Python has become a very popular language at universities, colleges, and

even schools to introduce students to programming.1 A major reason for

this is that its basic syntax is easy to learn and easy to understand, even

for the non-developer. In addition, it is helpful that Python supports

almost all programming styles.2

The Scientific Stack

There is a certain set of packages that is collectively labeled

the scientific stack. This stack comprises, among others, the following

packages:

NumPy

NumPy provides a multidimensional array object to store

homogeneous or heterogeneous data; it also provides optimized

functions/methods to operate on this array object.
SciPy

SciPy is a collection of subpackages and functions implementing

important standard functionality often needed in science or

finance; for example, one finds functions for cubic splines

interpolation as well as for numerical integration.
matplotlib

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#idm44843986952824
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#idm44843987014440
http://www.numpy.org/
http://www.scipy.org/
http://www.matplotlib.org/

This is the most popular plotting and visualization package for

Python, providing both 2D and 3D visualization capabilities.
pandas

pandas builds on NumPy and provides richer classes for the

management and analysis of time series and tabular data; it is

tightly integrated with matplotlib for plotting and PyTables for data

storage and retrieval.
scikit-learn

scikit-learn is a popular machine learning (ML) package that

provides a unified application programming interface (API) for

many different ML algorithms, such as for estimation,

classification, or clustering.
PyTables

PyTables is a popular wrapper for the HDF5 data storage package; it is

a package to implement optimized, disk-based I/O operations

based on a hierarchical database/file format.

Depending on the specific domain or problem, this stack is enlarged by

additional packages, which more often than not have in common that

they build on top of one or more of these fundamental packages.

However, the least common denominator or basic building blocks in

general are the NumPy ndarray class (see Chapter 4) and

the pandas DataFrame class (see Chapter 5).

Taking Python as a programming language alone, there are a number of

other languages available that can probably keep up with its syntax and

elegance. For example, Ruby is a popular language often compared to

Python. The language’s website describes Ruby as:

A dynamic, open source programming language with a focus on simplicity

and productivity. It has an elegant syntax that is natural to read and easy to

write.

The majority of people using Python would probably also agree with the

exact same statement being made about Python itself. However, what

distinguishes Python for many users from equally appealing languages

like Ruby is the availability of the scientific stack. This makes Python

not only a good and elegant language to use, but also one that is capable

of replacing domain-specific languages and tool sets like Matlab or R. It

http://pandas.pydata.org/
http://scikit-learn.org/
http://www.pytables.org/
http://www.hdfgroup.org/HDF5/
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch04.html#numpy
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch05.html#pandas
http://www.ruby-lang.org/

also provides by default anything that you would expect, say, as a

seasoned web developer or systems administrator. In addition, Python is

good at interfacing with domain-specific languages such as R, so that the

decision usually is not about either Python or something else—it is

rather about which language should be the major one.

Technology in Finance

With these “rough ideas” of what Python is all about, it makes sense to

step back a bit and to briefly contemplate the role of technology in

finance. This will put one in a position to better judge the role Python

already plays and, even more importantly, will probably play in the

financial industry of the future.

In a sense, technology per se is nothing special to financial institutions

(as compared, for instance, to biotechnology companies) or to the

finance function (as compared to other corporate functions, like

logistics). However, in recent years, spurred by innovation and also

regulation, banks and other financial institutions like hedge funds have

evolved more and more into technology companies instead of

being just financial intermediaries. Technology has become a major

asset for almost any financial institution around the globe, having the

potential to lead to competitive advantages as well as disadvantages.

Some background information can shed light on the reasons for this

development.

Technology Spending

Banks and financial institutions together form the industry that spends

the most on technology on an annual basis. The following statement

therefore shows not only that technology is important for the financial

industry, but that the financial industry is also really important to the

technology sector:

FRAMINGHAM, Mass., June 14, 2018 – Worldwide spending on information

technology (IT) by financial services firms will be nearly $500 billion in

2021, growing from $440 billion in 2018, according to new data from a

series of Financial Services IT Spending Guides from International Data

Corporation (IDC).

IDC

In particular, banks and other financial institutions are engaging in a race

to make their business and operating models digital:

Bank spending on new technologies was predicted to amount to 19.9 billion

U.S. dollars in 2017 in North America.

The banks develop current systems and work on new technological solutions

in order to increase their competitiveness on the global market and to attract

clients interested in new online and mobile technologies. It is a big

opportunity for global fintech companies which provide new ideas and

software solutions for the banking industry.

Statista

Large multinational banks today generally employ thousands of

developers to maintain existing systems and build new ones. Large

investment banks with heavy technological requirements often have

technology budgets of several billion USD per year.

Technology as Enabler

The technological development has also contributed to innovations and

efficiency improvements in the financial sector. Typically, projects in

this area run under the umbrella of digitalization.

The financial services industry has seen drastic technology-led changes over

the past few years. Many executives look to their IT departments to improve

efficiency and facilitate game-changing innovation—while somehow also

lowering costs and continuing to support legacy systems. Meanwhile,

FinTech start-ups are encroaching upon established markets, leading with

customer-friendly solutions developed from the ground up and unencumbered

by legacy systems.

PwC 19th Annual Global CEO Survey 2016

As a side effect of the increasing efficiency, competitive advantages

must often be looked for in ever more complex products or transactions.

This in turn inherently increases risks and makes risk management as

well as oversight and regulation more and more difficult. The financial

crisis of 2007 and 2008 tells the story of potential dangers resulting from

http://bit.ly/2RUAV8Y
http://bit.ly/2Q04KYr
https://pwc.to/1OYTO2d

such developments. In a similar vein, “algorithms and computers gone

wild” represent a potential risk to the financial markets; this materialized

dramatically in the so-called flash crash of May 2010, where automated

selling led to large intraday drops in certain stocks and stock

indices. Part IV covers topics related to the algorithmic trading of

financial instruments.

Technology and Talent as Barriers to Entry

On the one hand, technology advances reduce cost over time, ceteris

paribus. On the other hand, financial institutions continue to invest

heavily in technology to both gain market share and defend their current

positions. To be active today in certain areas in finance often brings with

it the need for large-scale investments in both technology and skilled

staff. As an example, consider the derivatives analytics space:

Aggregated over the total software lifecycle, firms adopting in-house

strategies for OTC [derivatives] pricing will require investments between

$25 million and $36 million alone to build, maintain, and enhance a

complete derivatives library.

Ding (2010)

Not only is it costly and time-consuming to build a full-fledged

derivatives analytics library, but you also need to have enough experts to

do so. And these experts have to have the right tools and technologies

available to accomplish their tasks. With the development of the Python

ecosystem, such efforts have become more efficient and budgets in this

regard can be reduced significantly today compared to, say, 10 years

ago. Part V covers derivatives analytics and builds a small but powerful

and flexible derivatives pricing library with Python and standard Python

packages alone.

Another quote about the early days of Long-Term Capital Management

(LTCM), formerly one of the most respected quantitative hedge funds—

which, however, went bust in the late 1990s—further supports this

insight about technology and talent:

Meriwether spent $20 million on a state-of-the-art computer system and

hired a crack team of financial engineers to run the show at LTCM, which set

http://en.wikipedia.org/wiki/2010_Flash_Crash
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/part04.html#algo_trading
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/part05.html#dx_library

up shop in Greenwich, Connecticut. It was risk management on an industrial

level.

Patterson (2010)

The same computing power that Meriwether had to buy for millions of

dollars is today probably available for thousands or can be rented from a

cloud provider based on a flexible fee plan. Chapter 2 shows how to set

up an infrastructure in the cloud for interactive financial analytics,

application development, and deployment with Python. The budgets for

such a professional infrastructure start at a few USD per month. On the

other hand, trading, pricing, and risk management have become so

complex for larger financial institutions that today they need to deploy

IT infrastructures with tens of thousands of computing cores.

Ever-Increasing Speeds, Frequencies, and Data
Volumes

The one dimension of the finance industry that has been influenced most

by technological advances is the speed and frequency with which

financial transactions are decided and executed. Lewis (2014)

describes so-called flash trading—i.e., trading at the highest speeds

possible—in vivid detail.

On the one hand, increasing data availability on ever-smaller time scales

makes it necessary to react in real time. On the other hand, the

increasing speed and frequency of trading makes the data volumes

further increase. This leads to processes that reinforce each other and

push the average time scale for financial transactions systematically

down. This is a trend that had already started a decade ago:

Renaissance’s Medallion fund gained an astonishing 80 percent in 2008,

capitalizing on the market’s extreme volatility with its lightning-fast

computers. Jim Simons was the hedge fund world’s top earner for the year,

pocketing a cool $2.5 billion.

Patterson (2010)

Thirty years’ worth of daily stock price data for a single stock represents

roughly 7,500 closing quotes. This kind of data is what most of today’s

finance theory is based on. For example, modern or mean-variance

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch02.html#infrastructure

portfolio theory (MPT), the capital asset pricing model (CAPM), and

value-at-risk (VaR) all have their foundations in daily stock price data.

In comparison, on a typical trading day during a single trading hour the

stock price of Apple Inc. (AAPL) may be quoted around 15,000 times—

roughly twice the number of quotes compared to available end-of-day

closing quotes over 30 years (see the example in “Data-Driven and AI-

First Finance”). This brings with it a number of challenges:

Data processing

It does not suffice to consider and process end-of-day quotes for

stocks or other financial instruments; “too much” happens during

the day, and for some instruments during 24 hours for 7 days a

week.

Analytics speed

Decisions often have to be made in milliseconds or even faster,

making it necessary to build the respective analytics capabilities

and to analyze large amounts of data in real time.

Theoretical foundations

Although traditional finance theories and concepts are far from

being perfect, they have been well tested (and sometimes well

rejected) over time; for the millisecond and microsecond scales

important as of today, consistent financial concepts and theories in

the traditional sense that have proven to be somewhat robust over

time are still missing.

All these challenges can in general only be addressed by modern

technology. Something that might also be a little bit surprising is that the

lack of consistent theories often is addressed by technological

approaches, in that high-speed algorithms exploit market microstructure

elements (e.g., order flow, bid-ask spreads) rather than relying on some

kind of financial reasoning.

The Rise of Real-Time Analytics

There is one discipline that has seen a strong increase in importance in

the finance industry: financial and data analytics. This phenomenon has

a close relationship to the insight that speeds, frequencies, and data

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#ai_first
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#ai_first

volumes increase at a rapid pace in the industry. In fact, real-time

analytics can be considered the industry’s answer to this trend.

Roughly speaking, “financial and data analytics” refers to the discipline

of applying software and technology in combination with (possibly

advanced) algorithms and methods to gather, process, and analyze data

in order to gain insights, to make decisions, or to fulfill regulatory

requirements, for instance. Examples might include the estimation of

sales impacts induced by a change in the pricing structure for a financial

product in the retail branch of a bank, or the large-scale overnight

calculation of credit valuation adjustments (CVA) for complex

portfolios of derivatives trades of an investment bank.

There are two major challenges that financial institutions face in this

context:

Big data

Banks and other financial institutions had to deal with massive

amounts of data even before the term “big data” was coined;

however, the amount of data that has to be processed during single

analytics tasks has increased tremendously over time, demanding

both increased computing power and ever-larger memory and

storage capacities.

Real-time economy

In the past, decision makers could rely on structured, regular

planning as well as decision and (risk) management processes,

whereas they today face the need to take care of these functions in

real time; several tasks that have been taken care of in the past via

overnight batch runs in the back office have now been moved to

the front office and are executed in real time.

Again, one can observe an interplay between advances in technology

and financial/business practice. On the one hand, there is the need to

constantly improve analytics approaches in terms of speed and

capability by applying modern technologies. On the other hand,

advances on the technology side allow new analytics approaches that

were considered impossible (or infeasible due to budget constraints) a

couple of years or even months ago.

One major trend in the analytics space has been the utilization of parallel

architectures on the central processing unit (CPU) side and massively

parallel architectures on the general-purpose graphics processing unit

(GPGPU) side. Current GPGPUs have computing cores in the

thousands, making necessary a sometimes radical rethinking of what

parallelism might mean to different algorithms. What is still an obstacle

in this regard is that users generally have to learn new programming

paradigms and techniques to harness the power of such hardware.

Python for Finance

The previous section described selected aspects characterizing the role

of technology in finance:

 Costs for technology in the finance industry

 Technology as an enabler for new business and innovation

 Technology and talent as barriers to entry in the finance industry

 Increasing speeds, frequencies, and data volumes

 The rise of real-time analytics

This section analyzes how Python can help in addressing several of the

challenges these imply. But first, on a more fundamental level, a brief

analysis of Python for finance from a language and syntax point of view.

Finance and Python Syntax

Most people who make their first steps with Python in a finance context

may attack an algorithmic problem. This is similar to a scientist who, for

example, wants to solve a differential equation, evaluate an integral, or

simply visualize some data. In general, at this stage, little thought is

given to topics like a formal development process, testing,

documentation, or deployment. However, this especially seems to be the

stage where people fall in love with Python. A major reason for this

might be that Python syntax is generally quite close to the mathematical

syntax used to describe scientific problems or financial algorithms.

This can be illustrated by a financial algorithm, namely the valuation of

a European call option by Monte Carlo simulation. The example

considers a Black-Scholes-Merton (BSM) setup in which the option’s

underlying risk factor follows a geometric Brownian motion.

Assume the following numerical parameter values for the valuation:

 Initial stock index level S0 = 100

 Strike price of the European call option K = 105

 Time to maturity T = 1 year

 Constant, riskless short rate r = 0.05

 Constant volatility σσ = 0.2

In the BSM model, the index level at maturity is a random variable

given by Equation 1-1, with z being a standard normally distributed

random variable.

Equation 1-1. Black-Scholes-Merton (1973) index level at maturity

ST=S0exp((r–12σ2)T+σT−−√z)ST=S0expr–12σ2T+σTz

The following is an algorithmic description of the Monte Carlo valuation

procedure:

1. Draw I pseudo-random numbers z(i),i∈{1,2,...,I}z(i),i∈{1,2,...,I},

from the standard normal distribution.

2. Calculate all resulting index levels at maturity ST(i)ST(i) for

given z(i) and Equation 1-1.

3. Calculate all inner values of the option at maturity as hT(i) =

max(ST(i) – K, 0).

4. Estimate the option present value via the Monte Carlo estimator as

given in Equation 1-2.
Equation 1-2. Monte Carlo estimator for European option

C0≈e–rT1I∑IhT(i)C0≈e–rT1I∑IhT(i)

This problem and algorithm must now be translated into Python. The

following code implements the required steps:

In [6]: import math

 import numpy as np

In [7]: S0 = 100.

 K = 105.

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#bsm_rv
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#bsm_rv
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#bsm_mcs_est

 T = 1.0

 r = 0.05

 sigma = 0.2

In [8]: I = 100000

In [9]: np.random.seed(1000)

In [10]: z = np.random.standard_normal(I)

In [11]: ST = S0 * np.exp((r - sigma ** 2 / 2) * T + sigma * math.sqrt(T) * z)

In [12]: hT = np.maximum(ST - K, 0)

In [13]: C0 = math.exp(-r * T) * np.mean(hT)

In [14]: print('Value of the European call option: {:5.3f}.'.format(C0))

 Value of the European call option: 8.019.

NumPy is used here as the main package.

The model and simulation parameter values are defined.

The seed value for the random number generator is fixed.

Standard normally distributed random numbers are drawn.

End-of-period values are simulated.

The option payoffs at maturity are calculated.

The Monte Carlo estimator is evaluated.

The resulting value estimate is printed.

Three aspects are worth highlighting:

Syntax

The Python syntax is indeed quite close to the mathematical

syntax, e.g., when it comes to the parameter value assignments.

Translation

Every mathematical and/or algorithmic statement can generally be

translated into a single line of Python code.

Vectorization

One of the strengths of NumPy is the compact, vectorized syntax,

e.g., allowing for 100,000 calculations within a single line of code.

This code can be used in an interactive environment like IPython or

Jupyter Notebook. However, code that is meant to be reused regularly

typically gets organized in so-called modules (or scripts), which are

single Python files (technically text files) with the suffix .py. Such a

module could in this case look like Example 1-1 and could be saved as a

file named bsm_mcs_euro.py.

Example 1-1. Monte Carlo valuation of European call option

Monte Carlo valuation of European call option
in Black-Scholes-Merton model
bsm_mcs_euro.py

Python for Finance, 2nd ed.
(c) Dr. Yves J. Hilpisch

import math
import numpy as np

Parameter Values
S0 = 100. # initial index level
K = 105. # strike price
T = 1.0 # time-to-maturity
r = 0.05 # riskless short rate
sigma = 0.2 # volatility

I = 100000 # number of simulations

Valuation Algorithm
z = np.random.standard_normal(I) # pseudo-random numbers
index values at maturity
ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * math.sqrt(T) * z)
hT = np.maximum(ST - K, 0) # payoff at maturity
C0 = math.exp(-r * T) * np.mean(hT) # Monte Carlo estimator

Result Output
print('Value of the European call option %5.3f.' % C0)

The algorithmic example in this subsection illustrates that Python, with

its very syntax, is well suited to complement the classic duo of scientific

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#bsm_mcs_euro

languages, English and mathematics. It seems that adding Python to the

set of scientific languages makes it more well rounded. One then has:

 English for writing and talking about scientific and financial

problems, etc.

 Mathematics for concisely, exactly describing and

modeling abstract aspects, algorithms, complex quantities, etc.

 Python for technically modeling and implementing abstract

aspects, algorithms, complex quantities, etc.

MATHEMATICS AND PYTHON SYNTAX

There is hardly any programming language that comes as close to

mathematical syntax as Python. Numerical algorithms are therefore in

general straightforward to translate from the mathematical

representation into the Pythonic implementation. This makes

prototyping, development, and code maintenance in finance quite

efficient with Python.

In some areas, it is common practice to use pseudo-code and therewith

to introduce a fourth language family member. The role of pseudo-code

is to represent, for example, financial algorithms in a more technical

fashion that is both still close to the mathematical representation and

already quite close to the technical implementation. In addition to the

algorithm itself, pseudo-code takes into account how computers work in

principle.

This practice generally has its cause in the fact that with most

(compiled) programming languages the technical implementation is

quite “far away” from its formal, mathematical representation. The

majority of programming languages make it necessary to include so

many elements that are only technically required that it is hard to see the

equivalence between the mathematics and the code.

Nowadays, Python is often used in a pseudo-code way since its syntax is

almost analogous to the mathematics and since the technical “overhead”

is kept to a minimum. This is accomplished by a number of high-level

concepts embodied in the language that not only have their advantages

but also come in general with risks and/or other costs. However, it is

safe to say that with Python you can, whenever the need arises, follow

the same strict implementation and coding practices that other languages

might require from the outset. In that sense, Python can provide the best

of both worlds: high-level abstraction and rigorous implementation.

Efficiency and Productivity Through Python

At a high level, benefits from using Python can be measured in three

dimensions:

Efficiency

How can Python help in getting results faster, in saving costs, and

in saving time?

Productivity

How can Python help in getting more done with the same

resources (people, assets, etc.)?

Quality

What does Python allow one to do that alternative technologies do

not allow for?

A discussion of these aspects can by nature not be exhaustive. However,

it can highlight some arguments as a starting point.

SHORTER TIME-TO-RESULTS

A field where the efficiency of Python becomes quite obvious is

interactive data analytics. This is a field that benefits tremendously from

such powerful tools as IPython, Jupyter Notebook, and packages

like pandas.

Consider a finance student who is writing their master’s thesis and is

interested in S&P 500 index values. They want to analyze historical

index levels for, say, a few years to see how the volatility of the index

has fluctuated over time and hope to find evidence that volatility, in

contrast to some typical model assumptions, fluctuates over time and is

far from being constant. The results should also be visualized. The

student mainly has to do the following:

 Retrieve index level data from the web

 Calculate the annualized rolling standard deviation of the log

returns (volatility)

 Plot the index level data and the volatility results

These tasks are complex enough that not too long ago one would have

considered them to be something for professional financial analysts

only. Today, even the finance student can easily cope with such

problems. The following code shows how exactly this works—without

worrying about syntax details at this stage (everything is explained in

detail in subsequent chapters):

In [16]: import numpy as np

 import pandas as pd

 from pylab import plt, mpl

In [17]: plt.style.use('seaborn')

 mpl.rcParams['font.family'] = 'serif'

 %matplotlib inline

In [18]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv',

 index_col=0, parse_dates=True)

 data = pd.DataFrame(data['.SPX'])

 data.dropna(inplace=True)

 data.info()

 <class 'pandas.core.frame.DataFrame'>

 DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29

 Data columns (total 1 columns):

 .SPX 2138 non-null float64

 dtypes: float64(1)

 memory usage: 33.4 KB

In [19]: data['rets'] = np.log(data / data.shift(1))

 data['vola'] = data['rets'].rolling(252).std() * np.sqrt(252)

In [20]: data[['.SPX', 'vola']].plot(subplots=True, figsize=(10, 6));

This imports NumPy and pandas.

This imports matplotlib and configures the plotting style and

approach for Jupyter.

pd.read_csv() allows the retrieval of remotely or locally stored data

sets in comma-separated values (CSV) form.

A subset of the data is picked and NaN (“not a number”) values

eliminated.

This shows some metainformation about the data set.

The log returns are calculated in vectorized fashion (“no looping”

on the Python level).

The rolling, annualized volatility is derived.

This finally plots the two time series.

Figure 1-1 shows the graphical result of this brief interactive session. It

can be considered almost amazing that a few lines of code suffice to

implement three rather complex tasks typically encountered in financial

analytics: data gathering, complex and repeated mathematical

calculations, as well as visualization of the results. The example

illustrates that pandas makes working with whole time series almost as

simple as doing mathematical operations on floating-point numbers.

Translated to a professional finance context, the example implies that

financial analysts can—when applying the right Python tools and

packages that provide high-level abstractions—focus on their domain

and not on the technical intrinsicalities. Analysts can also react faster,

providing valuable insights almost in real time and making sure they are

one step ahead of the competition. This example of increased

efficiency can easily translate into measurable bottom-line effects.

Figure 1-1. S&P 500 closing values and annualized volatility

ENSURING HIGH PERFORMANCE

In general, it is accepted that Python has a rather concise syntax and that

it is relatively efficient to code with. However, due to the very nature of

Python being an interpreted language, the prejudice persists that Python

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#spx_vola

often is too slow for compute-intensive tasks in finance. Indeed,

depending on the specific implementation approach, Python can be

really slow. But it does not have to be slow—it can be highly performing

in almost any application area. In principle, one can distinguish at least

three different strategies for better performance:

Idioms and paradigms

In general, many different ways can lead to the same result in

Python, but sometimes with rather different performance

characteristics; “simply” choosing the right way (e.g., a specific

implementation approach, such as the judicious use of data

structures, avoiding loops through vectorization, or the use of a

specific package such as pandas) can improve results significantly.

Compiling

Nowadays, there are several performance packages available that

provide compiled versions of important functions or that compile

Python code statically or dynamically (at runtime or call time) to

machine code, which can make such functions orders of magnitude

faster than pure Python code; popular ones are Cython and Numba.

Parallelization

Many computational tasks, in particular in finance, can

significantly benefit from parallel execution; this is nothing special

to Python but something that can easily be accomplished with it.

PERFORMANCE COMPUTING WITH PYTHON

Python per se is not a high-performance computing technology.

However, Python has developed into an ideal platform to access current

performance technologies. In that sense, Python has become something

like a glue language for performance computing technologies.

This subsection sticks to a simple, but still realistic, example that

touches upon all three strategies (later chapters illustrate the strategies in

detail). A quite common task in financial analytics is to evaluate

complex mathematical expressions on large arrays of numbers. To this

end, Python itself provides everything needed:

In [21]: import math
 loops = 2500000

 a = range(1, loops)
 def f(x):
 return 3 * math.log(x) + math.cos(x) ** 2
 %timeit r = [f(x) for x in a]

 1.59 s ± 41.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop
each)

The Python interpreter needs about 1.6 seconds in this case to evaluate

the function f() 2,500,000 times. The same task can be implemented

using NumPy, which provides optimized (i.e., precompiled) functions to

handle such array-based operations:

In [22]: import numpy as np

 a = np.arange(1, loops)
 %timeit r = 3 * np.log(a) + np.cos(a) ** 2
 87.9 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 10
loops each)

Using NumPy considerably reduces the execution time to about 88

milliseconds. However, there is even a package specifically dedicated to

this kind of task. It is called numexpr, for “numerical expressions.”

It compiles the expression to improve upon the performance of the

general NumPy functionality by, for example, avoiding in-memory copies

of ndarray objects along the way:

In [23]: import numexpr as ne

 ne.set_num_threads(1)
 f = '3 * log(a) + cos(a) ** 2'
 %timeit r = ne.evaluate(f)
 50.6 ms ± 4.2 ms per loop (mean ± std. dev. of 7 runs, 10
loops each)

Using this more specialized approach further reduces execution time to

about 50 milliseconds. However, numexpr also has built-in capabilities to

parallelize the execution of the respective operation. This allows us to

use multiple threads of a CPU:

In [24]: ne.set_num_threads(4)
 %timeit r = ne.evaluate(f)
 22.8 ms ± 1.76 ms per loop (mean ± std. dev. of 7 runs, 10
loops each)

Parallelization brings execution time further down to below 23

milliseconds in this case, with four threads utilized. Overall, this is a

performance improvement of more than 90 times. Note, in particular,

that this kind of improvement is possible without altering the basic

problem/algorithm and without knowing any detail about compiling or

parallelization approaches. The capabilities are accessible from a high

level even by non-experts. However, one has to be aware, of course, of

which capabilities and options exist.

This example shows that Python provides a number of options to make

more out of existing resources—i.e., to increase productivity. With the

parallel approach, three times as many calculations can be accomplished

in the same amount of time as compared to the sequential approach—in

this case simply by telling Python to use multiple available CPU threads

instead of just one.

From Prototyping to Production

Efficiency in interactive analytics and performance when it comes to

execution speed are certainly two benefits of Python to consider. Yet

another major benefit of using Python for finance might at first sight

seem a bit subtler; at second sight, it might present itself as an important

strategic factor for financial institutions. It is the possibility to use

Python end-to-end, from prototyping to production.

Today’s practice in financial institutions around the globe, when it

comes to financial development processes, is still often characterized by

a separated, two-step process. On the one hand, there are the quantitative

analysts (“quants”) responsible for model development and technical

prototyping. They like to use tools and environments

like Matlab and R that allow for rapid, interactive application

development. At this stage of the development efforts, issues like

performance, stability, deployment, access management, and version

control, among others, are not that important. One is mainly looking for

a proof of concept and/or a prototype that exhibits the main desired

features of an algorithm or a whole application.

Once the prototype is finished, IT departments with

their developers take over and are responsible for translating the

existing prototype code into reliable, maintainable, and

performant production code. Typically, at this stage there is a paradigm

shift in that compiled languages, such as C++ or Java, are used to fulfill

the requirements for deployment and production. Also, a formal

development process with professional tools, version control, etc., is

generally applied.

http://mathworks.com/
https://www.r-project.org/

This two-step approach has a number of generally unintended

consequences:

Inefficiencies

Prototype code is not reusable; algorithms have to be implemented

twice; redundant efforts take time and resources; risks arise during

translation

Diverse skill sets

Different departments show different skill sets and use different

languages to implement “the same things”; people not only

program but also speak different languages

Legacy code

Code is available and has to be maintained in different languages,

often using different styles of implementation

Using Python, on the other hand, enables a streamlined end-to-end

process from the first interactive prototyping steps to highly reliable and

efficiently maintainable production code. The communication between

different departments becomes easier. The training of the workforce is

also more streamlined in that there is only one major language covering

all areas of financial application building. It also avoids the inherent

inefficiencies and redundancies when using different technologies in

different steps of the development process. All in all, Python can

provide a consistent technological framework for almost all tasks in

financial analytics, financial application development, and algorithm

implementation.

Data-Driven and AI-First Finance

Basically all the observations regarding the relationship of technology

and the financial industry first formulated in 2014 for the first edition of

this book still seem pretty current and important in August 2018, at the

time of updating this chapter for the second edition of the book.

However, this section comments on two major trends in the financial

industry that are about to reshape it in a fundamental way. These two

trends have mainly crystallized themselves over the last few years.

Data-Driven Finance

Some of the most important financial theories, such as MPT and CAPM,

date as far back as to the 1950s and 1960s. However, they still represent

a cornerstone in the education of students in such fields as economics,

finance, financial engineering, and business administration. This might

be surprising since the empirical support for most of these theories is

meager at best, and the evidence is often in complete contrast to what

the theories suggest and imply. On the other hand, their popularity is

understandable since they are close to humans’ expectations of how

financial markets might behave and since they are elegant mathematical

theories resting on a number of appealing, if in general too simplistic,

assumptions.

The scientific method, say in physics, starts with data, for example from

experiments or observations, and moves on to hypotheses and

theories that are then tested against the data. If the tests are positive, the

hypotheses and theories might be refined and properly written down, for

instance, in the form of a research paper for publication. If the tests are

negative, the hypotheses and theories are rejected and the search begins

anew for ones that conform with the data. Since physical laws are stable

over time, once such a law is discovered and well tested it is generally

there to stay, in the best case, forever.

The history of (quantitative) finance in large parts contradicts the

scientific method. In many cases, theories and models have been

developed “from scratch” on the basis of simplifying mathematical

assumptions with the goal of discovering elegant answers to central

problems in finance. Among others, popular assumptions in finance are

normally distributed returns for financial instruments and linear

relationships between quantities of interest. Since these phenomena are

hardly ever found in financial markets, it should not come as a surprise

that empirical evidence for the elegant theories is often lacking. Many

financial theories and models have been formulated, proven, and

published first and have only later been tested empirically. To some

extent, this is of course due to the fact that financial data back in the

1950s to the 1970s or even later was not available in the form that it is

today even to students getting started with a bachelor’s in finance.

The availability of such data to financial institutions has drastically

increased since the early to mid-1990s, and nowadays even individuals

doing financial research or getting involved in algorithmic trading have

access to huge amounts of historical data down to the tick level as well

as real-time tick data via streaming services. This allows us to return to

the scientific method, which starts in general with the data before ideas,

hypotheses, models, and strategies are devised.

A brief example shall illustrate how straightforward it has become today

to retrieve professional data on a large scale even on a local machine,

making use of Python and a professional data subscription to the Eikon

Data APIs. The following example retrieves tick data for the Apple Inc.

stock for one hour during a regular trading day. About 15,000 tick

quotes, including volume information, are retrieved. While the symbol

for the stock is AAPL, the Reuters Instrument Code (RIC) is AAPL.O:

In [26]: import eikon as ek

In [27]: data = ek.get_timeseries('AAPL.O', fields='*',

 start_date='2018-10-18 16:00:00',

 end_date='2018-10-18 17:00:00',

 interval='tick')

In [28]: data.info()

 <class 'pandas.core.frame.DataFrame'>

 DatetimeIndex: 35350 entries, 2018-10-18 16:00:00.002000 to 2018-10-

18

 16:59:59.888000

 Data columns (total 2 columns):
 VALUE 35285 non-null float64

 VOLUME 35350 non-null float64

 dtypes: float64(2)

 memory usage: 828.5 KB

In [29]: data.tail()

Out[29]: AAPL.O VALUE VOLUME

 Date

 2018-10-18 16:59:59.433 217.13 10.0

 2018-10-18 16:59:59.433 217.13 12.0

 2018-10-18 16:59:59.439 217.13 231.0

 2018-10-18 16:59:59.754 217.14 100.0

 2018-10-18 16:59:59.888 217.13 100.0

Eikon Data API usage requires a subscription and an API

connection.

Retrieves the tick data for the Apple Inc. (AAPL.O) stock.

http://bit.ly/eikon_data_api
http://bit.ly/eikon_data_api

Shows the last five rows of tick data.

The Eikon Data APIs give access not only to structured financial data,

such as historical price data, but also to unstructured data such as news

articles. The next example retrieves metadata for a small selection of

news articles and shows the beginning of one of the articles as full text:

In [30]: news = ek.get_news_headlines('R:AAPL.O Language:LEN',

 date_from='2018-05-01',

 date_to='2018-06-29',

 count=7)

In [31]: news

Out[31]:

 versionCreated \

 2018-06-28 23:00:00.000 2018-06-28 23:00:00.000

 2018-06-28 21:23:26.526 2018-06-28 21:23:26.526

 2018-06-28 19:48:32.627 2018-06-28 19:48:32.627

 2018-06-28 17:33:10.306 2018-06-28 17:33:10.306

 2018-06-28 17:33:07.033 2018-06-28 17:33:07.033

 2018-06-28 17:31:44.960 2018-06-28 17:31:44.960

 2018-06-28 17:00:00.000 2018-06-28 17:00:00.000

text \

 2018-06-28 23:00:00.000 RPT-FOCUS-AI ambulances and robot doctors:

Chi...

 2018-06-28 21:23:26.526 Why Investors Should Love Apple's (AAPL) TV

En...

 2018-06-28 19:48:32.627 Reuters Insider - Trump: We're reclaiming our
...

 2018-06-28 17:33:10.306 Apple v. Samsung ends not with a whimper but

a...

 2018-06-28 17:33:07.033 Apple's trade-war discount extended for

anothe...

 2018-06-28 17:31:44.960 Other Products: Apple's fast-growing island

of...

 2018-06-28 17:00:00.000 Pokemon Go creator plans to sell the tech

behi...

 storyId

\

 2018-06-28 23:00:00.000 urn:newsml:reuters.com:20180628:nL4N1TU4F8:6

 2018-06-28 21:23:26.526 urn:newsml:reuters.com:20180628:nNRA6e2vft:1

 2018-06-28 19:48:32.627 urn:newsml:reuters.com:20180628:nRTV1vNw1p:1

 2018-06-28 17:33:10.306 urn:newsml:reuters.com:20180628:nNRA6e1oza:1

 2018-06-28 17:33:07.033 urn:newsml:reuters.com:20180628:nNRA6e1pmv:1

 2018-06-28 17:31:44.960 urn:newsml:reuters.com:20180628:nNRA6e1m3n:1

 2018-06-28 17:00:00.000 urn:newsml:reuters.com:20180628:nL1N1TU0PC:3

 sourceCode

 2018-06-28 23:00:00.000 NS:RTRS

 2018-06-28 21:23:26.526 NS:ZACKSC

 2018-06-28 19:48:32.627 NS:CNBC

 2018-06-28 17:33:10.306 NS:WALLST

 2018-06-28 17:33:07.033 NS:WALLST

 2018-06-28 17:31:44.960 NS:WALLST

 2018-06-28 17:00:00.000 NS:RTRS

In [32]: story_html = ek.get_news_story(news.iloc[1, 2])

In [33]: from bs4 import BeautifulSoup

In [34]: story = BeautifulSoup(story_html, 'html5lib').get_text()

In [35]: print(story[83:958])

 Jun 28, 2018 For years, investors and Apple AAPL have been beholden

to

 the iPhone, which is hardly a negative since its flagship product

is

 largely responsible for turning Apple into one of the world's

biggest

 companies. But Apple has slowly pushed into new growth areas,
with

 streaming television its newest frontier. So let's take a look at

what

 Apple has planned as it readies itself to compete against the

likes of

 Netflix NFLX and Amazon AMZN in the battle for the new age of

 entertainment.Apple's second-quarter revenues jumped by 16% to

reach

 $61.14 billion, with iPhone revenues up 14%. However, iPhone unit

sales

 climbed only 3% and iPhone revenues accounted for over 62% of

total Q2

 sales. Apple knows this is not a sustainable business model,

because

 rare is the consumer product that can remain in vogue for

decades. This

 is why Apple has made a big push into news,

Retrieves metadata for a small selection of news articles.

Retrieves the full text of a single article, delivered as an HTML

document.

Imports the BeautifulSoup HTML parsing package and …

… extracts the contents as plain text (a str object).

Prints the beginning of the news article.

Although just scratching the surface, these two examples illustrate that

structured and unstructured historical financial data is available in a

standardized, efficient way via Python wrapper packages and data

subscription services. In many circumstances, similar data sets can be

accessed for free even by individuals who make use of, for instance,

trading platforms such as the one by FXCM Group, LLC, that is

introduced in Chapter 14 and also used in Chapter 16. Once the data is

on the Python level—independent from the original source—the full

power of the Python data analytics ecosystem can be harnessed.

DATA-DRIVEN FINANCE

Data is what drives finance these days. Even some of the largest and

often most successful hedge funds call themselves “data-driven” instead

of “finance-driven.” More and more offerings are making huge amounts

of data available to large and small institutions and individuals. Python

is generally the programming language of choice to interact with the

APIs and to process and analyze the data.

AI-First Finance

With the availability of large amounts of financial data via

programmatic APIs, it has become much easier and more fruitful to

apply methods from artificial intelligence (AI) in general and

from machine and deep learning (ML, DL) in particular to financial

problems, such as in algorithmic trading.

Python can be considered a first-class citizen in the AI world as well. It

is often the programming language of choice for AI researchers and

practitioners alike. In that sense, the financial domain benefits from

developments in diverse fields, sometimes not even remotely connected

to finance. As one example consider the TensorFlow open source

package for deep learning, which is developed and maintained by

Google Inc. and used by (among others) its parent company Alphabet

Inc. in its efforts to build, produce, and sell self-driving cars.

Although for sure not even remotely related to the problem of

automatically, algorithmically trading stock, TensorFlow can, for example,

be used to predict movements in financial markets. Chapter 15 provides

a number of examples in this regard.

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch14.html#trading_platform
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch16.html#automated_trading
http://tensorflow.org/
http://tensorflow.org/
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch15.html#trading_strategies

One of the most widely used Python packages for ML is scikit-learn.

The code that follows shows how, in a highly simplified manner,

classification algorithms from ML can be used to predict the direction of

future market price movements and to base an algorithmic trading

strategy on those predictions. All the details are explained in Chapter 15,

so the example is therefore rather concise. First, the data import and the

preparation of the features data (directional lagged log return data):

In [36]: import numpy as np

 import pandas as pd

In [37]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv',

 index_col=0, parse_dates=True)

 data = pd.DataFrame(data['AAPL.O'])

 data['Returns'] = np.log(data / data.shift())

 data.dropna(inplace=True)

In [38]: lags = 6

In [39]: cols = []

 for lag in range(1, lags + 1):

 col = 'lag_{}'.format(lag)

 data[col] = np.sign(data['Returns'].shift(lag))

 cols.append(col)

 data.dropna(inplace=True)

Selects historical end-of-day data for the Apple Inc. stock (AAPL.O).

Calculates the log returns over the complete history.

Generates DataFrame columns with directional lagged log return data

(+1 or -1).

Next, the instantiation of a model object for a support vector

machine (SVM) algorithm, the fitting of the model, and the prediction

step. Figure 1-2 shows that the prediction-based trading strategy, going

long or short on Apple Inc. stock depending on the prediction,

outperforms the passive benchmark investment in the stock itself:

In [40]: from sklearn.svm import SVC

In [41]: model = SVC(gamma='auto')

In [42]: model.fit(data[cols], np.sign(data['Returns']))

Out[42]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch15.html#trading_strategies
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#aapl_algo

 decision_function_shape='ovr', degree=3, gamma='auto',

kernel='rbf',

 max_iter=-1, probability=False, random_state=None, shrinking=True,

 tol=0.001, verbose=False)

In [43]: data['Prediction'] = model.predict(data[cols])

In [44]: data['Strategy'] = data['Prediction'] * data['Returns']

In [45]: data[['Returns', 'Strategy']].cumsum().apply(np.exp).plot(

 figsize=(10, 6));

Instantiates the model object.

Fits the model, given the features and the label data (all

directional).

Uses the fitted model to create the predictions (in-sample), which

are the positions of the trading strategy at the same time (long or

short).

Calculates the log returns of the trading strategy given the

prediction values and the benchmark log returns.

Plots the performance of the ML-based trading strategy compared

to the performance of the passive benchmark investment.

Figure 1-2. ML-based algorithmic trading strategy vs. passive benchmark investment in Apple Inc. stock

The simplified approach taken here does not account for transaction

costs, nor does it separate the data set into training and testing subsets.

However, it shows how straightforward the application of ML

algorithms to financial data is, at least in a technical sense; practically, a

number of important topics need to be considered (see López de Prado

(2018)).

AI-FIRST FINANCE

AI will reshape finance in a way that other fields have been reshaped

already. The availability of large amounts of financial data via

programmatic APIs functions as an enabler in this context. Basic

methods from AI, ML, and DL are introduced in Chapter 13 and applied

to algorithmic trading in Chapters 15 and 16. A proper treatment of AI-

first finance, however, would require a book fully dedicated to the topic.

AI in finance, as a natural extension of data-driven finance, is for sure a

fascinating and exciting field, both from a research and a practitioner’s

point of view. Although this book uses several methods from AI, ML,

and DL in different contexts, overall the focus lies—in line with the

subtitle of the book—on the fundamental Python techniques and

approaches needed for data-driven finance. These are, however, equally

important for AI-first finance.

Conclusion

Python as a language—and even more so as an ecosystem—is an ideal

technological framework for the financial industry as whole and the

individual working in finance alike. It is characterized by a number of

benefits, like an elegant syntax, efficient development approaches, and

usability for prototyping as well as production. With its huge amount of

available packages, libraries, and tools, Python seems to have answers to

most questions raised by recent developments in the financial industry in

terms of analytics, data volumes and frequency, compliance and

regulation, as well as technology itself. It has the potential to provide a

single, powerful, consistent framework with which to streamline end-to-

end development and production efforts even across larger financial

institutions.

In addition, Python has become the programming language of choice for

artificial intelligence in general and machine and deep learning in

particular. Python is therefore the right language for data-driven finance

as well as for AI-first finance, two recent trends that are about to reshape

finance and the financial industry in fundamental ways.

Further Resources

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch13.html#statistics
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch15.html#trading_strategies
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch16.html#automated_trading

The following books cover several aspects only touched upon in this

chapter in more detail (e.g., Python tools, derivatives analytics, machine

learning in general, and machine learning in finance):

 Hilpisch, Yves (2015). Derivatives Analytics with

Python. Chichester, England: Wiley Finance.

 López de Prado, Marcos (2018). Advances in Financial Machine

Learning. Hoboken, NJ: John Wiley & Sons.

 VanderPlas, Jake (2016). Python Data Science Handbook.

Sebastopol, CA: O’Reilly.

When it comes to algorithmic trading, the author’s company offers a

range of online training programs that focus on Python and other tools

and techniques required in this rapidly growing field:

 http://pyalgo.tpq.io

 http://certificate.tpq.io

Sources referenced in this chapter are, among others, the following:

 Ding, Cubillas (2010). “Optimizing the OTC Pricing and

Valuation Infrastructure.” Celent.

 Lewis, Michael (2014). Flash Boys. New York: W. W. Norton &

Company.

 Patterson, Scott (2010). The Quants. New York: Crown Business.

http://dawp.tpq.io/
http://dawp.tpq.io/
http://pyalgo.tpq.io/
http://certificate.tpq.io/

