
Chapter 1. Why Python for Finance 

Banks are essentially technology firms. 

Hugo Banziger 

The Python Programming Language 

Python is a high-level, multipurpose programming language that is used 

in a wide range of domains and technical fields. On the Python 

website you find the following executive summary: 

Python is an interpreted, object-oriented, high-level programming language 

with dynamic semantics. Its high-level built in data structures, combined with 

dynamic typing and dynamic binding, make it very attractive for Rapid 

Application Development, as well as for use as a scripting or glue language 

to connect existing components together. Python’s simple, easy to learn 

syntax emphasizes readability and therefore reduces the cost of program 

maintenance. Python supports modules and packages, which encourages 

program modularity and code reuse. The Python interpreter and the 

extensive standard library are available in source or binary form without 

charge for all major platforms, and can be freely distributed. 

This pretty well describes why Python has evolved into one of the major 

programming languages today. Nowadays, Python is used by the 

beginner programmer as well as by the highly skilled expert developer, 

at schools, in universities, at web companies, in large corporations and 

financial institutions, as well as in any scientific field. 

Among other features, Python is: 

Open source 

Python and the majority of supporting libraries and tools available 

are open source and generally come with quite flexible and open 

licenses. 

Interpreted 

https://www.python.org/doc/essays/blurb
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The reference CPython implementation is an interpreter of the 

language that translates Python code at runtime to executable byte 

code. 

Multiparadigm 

Python supports different programming and implementation 

paradigms, such as object orientation and imperative, functional, or 

procedural programming. 

Multipurpose 

Python can be used for rapid, interactive code development as well 

as for building large applications; it can be used for low-level 

systems operations as well as for high-level analytics tasks. 

Cross-platform 

Python is available for the most important operating systems, such 

as Windows, Linux, and macOS. It is used to build desktop as well 

as web applications, and it can be used on the largest clusters and 

most powerful servers as well as on such small devices as 

the Raspberry Pi. 

Dynamically typed 

Types in Python are in general inferred at runtime and not 

statically declared as in most compiled languages. 

Indentation aware 

In contrast to the majority of other programming languages, 

Python uses indentation for marking code blocks instead of 

parentheses, brackets, or semicolons. 

Garbage collecting 

Python has automated garbage collection, avoiding the need for the 

programmer to manage memory. 

When it comes to Python syntax and what Python is all about, Python 

Enhancement Proposal 20—i.e., the so-called “Zen of Python”—

provides the major guidelines. It can be accessed from every interactive 

shell with the command import this: 

In [1]: import this 

http://www.raspberrypi.org/


        The Zen of Python, by Tim Peters 

 

        Beautiful is better than ugly. 

        Explicit is better than implicit. 

        Simple is better than complex. 

        Complex is better than complicated. 

        Flat is better than nested. 

        Sparse is better than dense. 

        Readability counts. 

        Special cases aren't special enough to break the 

rules. 

        Although practicality beats purity. 

        Errors should never pass silently. 

        Unless explicitly silenced. 

        In the face of ambiguity, refuse the temptation to 

guess. 

        There should be one-- and preferably only one --

obvious way to do it. 

        Although that way may not be obvious at first unless 

you're Dutch. 

        Now is better than never. 

        Although never is often better than *right* now. 

        If the implementation is hard to explain, it's a bad 

idea. 



        If the implementation is easy to explain, it may be 

a good idea. 

        Namespaces are one honking great idea -- let's do 

more of those! 

A Brief History of Python 

Although Python might still have the appeal of something new to some 

people, it has been around for quite a long time. In fact, development 

efforts began in the 1980s by Guido van Rossum from the Netherlands. 

He is still active in Python development and has been awarded the title 

of Benevolent Dictator for Life by the Python community. In July 2018, 

van Rossum stepped down from this position after decades of being an 

active driver of the Python core development efforts. The following can 

be considered milestones in the development of Python: 

 Python 0.9.0 released in 1991 (first release) 

 Python 1.0 released in 1994 

 Python 2.0 released in 2000 

 Python 2.6 released in 2008 

 Python 3.0 released in 2008 

 Python 3.1 released in 2009 

 Python 2.7 released in 2010 

 Python 3.2 released in 2011 

 Python 3.3 released in 2012 

 Python 3.4 released in 2014 

 Python 3.5 released in 2015 

 Python 3.6 released in 2016 

 Python 3.7 released in June 2018 

It is remarkable, and sometimes confusing to Python newcomers, that 

there are two major versions available, still being developed and, more 

importantly, in parallel use since 2008. As of this writing, this will 

probably keep on for a little while since tons of code available and in 

production is still Python 2.6/2.7. While the first edition of this book 

was based on Python 2.7, this second edition uses Python 3.7 

throughout. 

The Python Ecosystem 

http://bit.ly/2DYWqCW


A major feature of Python as an ecosystem, compared to just being a 

programming language, is the availability of a large number of packages 

and tools. These packages and tools generally have to be imported when 

needed (e.g., a plotting library) or have to be started as a separate system 

process (e.g., a Python interactive development environment). 

Importing means making a package available to the current namespace 

and the current Python interpreter process. 

Python itself already comes with a large set of packages and modules 

that enhance the basic interpreter in different directions, known as 

the Python Standard Library. For example, basic mathematical 

calculations can be done without any importing, while more specialized 

mathematical functions need to be imported through the math module: 

In [2]: 100 * 2.5 + 50 

Out[2]: 300.0 
 

In [3]: log(1)   

 

        ----------------------------------------------------------------- 

        NameError                       Traceback (most recent call last) 

        <ipython-input-3-74f22a2fd43b> in <module> 

        ----> 1 log(1)   

 

        NameError: name 'log' is not defined 

 

In [4]: import math   

 

In [5]: math.log(1)   

Out[5]: 0.0 

 

Without further imports, an error is raised. 

 

After importing the math module, the calculation can be executed. 

While math is a standard Python module available with any Python 

installation, there are many more packages that can be installed 

optionally and that can be used in the very same fashion as the standard 

modules. Such packages are available from different (web) sources. 

However, it is generally advisable to use a Python package manager that 

makes sure that all libraries are consistent with each other 

(see Chapter 2 for more on this topic). 

https://docs.python.org/3/library/index.html
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The code examples presented so far use interactive Python 

environments: IPython and Jupyter, respectively. These are probably the 

most widely used interactive Python environments at the time of this 

writing. Although IPython started out as just an enhanced interactive 

Python shell, it today has many features typically found in integrated 

development environments (IDEs), such as support for profiling and 

debugging. Those features missing in IPython are typically provided by 

advanced text/code editors, like Vim, which can also be integrated with 

IPython. Therefore, it is not unusual to combine IPython with one’s 

text/code editor of choice to form the basic toolchain for a Python 

development process. 

IPython enhances the standard interactive shell in many ways. Among 

other things, it provides improved command-line history functions and 

allows for easy object inspection. For instance, the help text (docstring) 

for a function is printed by just adding a ? before or after the function 

name (adding ?? will provide even more information). 

IPython originally came in two popular versions: a shell version and 

a browser-based version (the Notebook). The Notebook variant proved 

so useful and popular that it evolved into an independent, language-

agnostic project now called Jupyter. Given this background, it is no 

surprise that Jupyter Notebook inherits most of the beneficial features of 

IPython—and offers much more, for example when it comes to 

visualization. 

Refer to VanderPlas (2016, Chapter 1) for more details on using 

IPython. 

The Python User Spectrum 

Python does not only appeal to professional software developers; it is 

also of use for the casual developer as well as for domain experts and 

scientific developers. 

Professional software developers find in Python all they might require to 

efficiently build large applications. Almost all programming paradigms 

are supported; there are powerful development tools available; and any 

task can, in principle, be addressed with Python. These types of users 

typically build their own frameworks and classes, also work on the 

http://www.ipython.org/
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fundamental Python and scientific stack, and strive to make the most of 

the ecosystem. 

Scientific developers or domain experts are generally heavy users of 

certain packages and frameworks, have built their own applications that 

they enhance and optimize over time, and tailor the ecosystem to their 

specific needs. These groups of users also generally engage in longer 

interactive sessions, rapidly prototyping new code as well as exploring 

and visualizing their research and/or domain data sets. 

Casual programmers like to use Python generally for specific problems 

they know that Python has its strengths in. For example, visiting the 

gallery page of matplotlib, copying a certain piece of visualization code 

provided there, and adjusting the code to their specific needs might be a 

beneficial use case for members of this group. 

There is also another important group of Python users: beginner 

programmers, i.e., those that are just starting to program. Nowadays, 

Python has become a very popular language at universities, colleges, and 

even schools to introduce students to programming.1 A major reason for 

this is that its basic syntax is easy to learn and easy to understand, even 

for the non-developer. In addition, it is helpful that Python supports 

almost all programming styles.2 

The Scientific Stack 

There is a certain set of packages that is collectively labeled 

the scientific stack. This stack comprises, among others, the following 

packages: 

NumPy 

NumPy provides a multidimensional array object to store 

homogeneous or heterogeneous data; it also provides optimized 

functions/methods to operate on this array object. 
SciPy 

SciPy is a collection of subpackages and functions implementing 

important standard functionality often needed in science or 

finance; for example, one finds functions for cubic splines 

interpolation as well as for numerical integration. 
matplotlib 

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#idm44843986952824
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#idm44843987014440
http://www.numpy.org/
http://www.scipy.org/
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This is the most popular plotting and visualization package for 

Python, providing both 2D and 3D visualization capabilities. 
pandas 

pandas builds on NumPy and provides richer classes for the 

management and analysis of time series and tabular data; it is 

tightly integrated with matplotlib for plotting and PyTables for data 

storage and retrieval. 
scikit-learn 

scikit-learn is a popular machine learning (ML) package that 

provides a unified application programming interface (API) for 

many different ML algorithms, such as for estimation, 

classification, or clustering. 
PyTables 

PyTables is a popular wrapper for the HDF5 data storage package; it is 

a package to implement optimized, disk-based I/O operations 

based on a hierarchical database/file format. 

Depending on the specific domain or problem, this stack is enlarged by 

additional packages, which more often than not have in common that 

they build on top of one or more of these fundamental packages. 

However, the least common denominator or basic building blocks in 

general are the NumPy ndarray class (see Chapter 4) and 

the pandas DataFrame class (see Chapter 5). 

Taking Python as a programming language alone, there are a number of 

other languages available that can probably keep up with its syntax and 

elegance. For example, Ruby is a popular language often compared to 

Python. The language’s website describes Ruby as: 

A dynamic, open source programming language with a focus on simplicity 

and productivity. It has an elegant syntax that is natural to read and easy to 

write. 

The majority of people using Python would probably also agree with the 

exact same statement being made about Python itself. However, what 

distinguishes Python for many users from equally appealing languages 

like Ruby is the availability of the scientific stack. This makes Python 

not only a good and elegant language to use, but also one that is capable 

of replacing domain-specific languages and tool sets like Matlab or R. It 

http://pandas.pydata.org/
http://scikit-learn.org/
http://www.pytables.org/
http://www.hdfgroup.org/HDF5/
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also provides by default anything that you would expect, say, as a 

seasoned web developer or systems administrator. In addition, Python is 

good at interfacing with domain-specific languages such as R, so that the 

decision usually is not about either Python or something else—it is 

rather about which language should be the major one. 

Technology in Finance 

With these “rough ideas” of what Python is all about, it makes sense to 

step back a bit and to briefly contemplate the role of technology in 

finance. This will put one in a position to better judge the role Python 

already plays and, even more importantly, will probably play in the 

financial industry of the future. 

In a sense, technology per se is nothing special to financial institutions 

(as compared, for instance, to biotechnology companies) or to the 

finance function (as compared to other corporate functions, like 

logistics). However, in recent years, spurred by innovation and also 

regulation, banks and other financial institutions like hedge funds have 

evolved more and more into technology companies instead of 

being just financial intermediaries. Technology has become a major 

asset for almost any financial institution around the globe, having the 

potential to lead to competitive advantages as well as disadvantages. 

Some background information can shed light on the reasons for this 

development. 

Technology Spending 

Banks and financial institutions together form the industry that spends 

the most on technology on an annual basis. The following statement 

therefore shows not only that technology is important for the financial 

industry, but that the financial industry is also really important to the 

technology sector: 

FRAMINGHAM, Mass., June 14, 2018 – Worldwide spending on information 

technology (IT) by financial services firms will be nearly $500 billion in 

2021, growing from $440 billion in 2018, according to new data from a 

series of Financial Services IT Spending Guides from International Data 

Corporation (IDC). 



IDC 

In particular, banks and other financial institutions are engaging in a race 

to make their business and operating models digital: 

Bank spending on new technologies was predicted to amount to 19.9 billion 

U.S. dollars in 2017 in North America. 

The banks develop current systems and work on new technological solutions 

in order to increase their competitiveness on the global market and to attract 

clients interested in new online and mobile technologies. It is a big 

opportunity for global fintech companies which provide new ideas and 

software solutions for the banking industry. 

Statista 

Large multinational banks today generally employ thousands of 

developers to maintain existing systems and build new ones. Large 

investment banks with heavy technological requirements often have 

technology budgets of several billion USD per year. 

Technology as Enabler 

The technological development has also contributed to innovations and 

efficiency improvements in the financial sector. Typically, projects in 

this area run under the umbrella of digitalization. 

The financial services industry has seen drastic technology-led changes over 

the past few years. Many executives look to their IT departments to improve 

efficiency and facilitate game-changing innovation—while somehow also 

lowering costs and continuing to support legacy systems. Meanwhile, 

FinTech start-ups are encroaching upon established markets, leading with 

customer-friendly solutions developed from the ground up and unencumbered 

by legacy systems. 

PwC 19th Annual Global CEO Survey 2016 

As a side effect of the increasing efficiency, competitive advantages 

must often be looked for in ever more complex products or transactions. 

This in turn inherently increases risks and makes risk management as 

well as oversight and regulation more and more difficult. The financial 

crisis of 2007 and 2008 tells the story of potential dangers resulting from 

http://bit.ly/2RUAV8Y
http://bit.ly/2Q04KYr
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such developments. In a similar vein, “algorithms and computers gone 

wild” represent a potential risk to the financial markets; this materialized 

dramatically in the so-called flash crash of May 2010, where automated 

selling led to large intraday drops in certain stocks and stock 

indices. Part IV covers topics related to the algorithmic trading of 

financial instruments. 

Technology and Talent as Barriers to Entry 

On the one hand, technology advances reduce cost over time, ceteris 

paribus. On the other hand, financial institutions continue to invest 

heavily in technology to both gain market share and defend their current 

positions. To be active today in certain areas in finance often brings with 

it the need for large-scale investments in both technology and skilled 

staff. As an example, consider the derivatives analytics space: 

Aggregated over the total software lifecycle, firms adopting in-house 

strategies for OTC [derivatives] pricing will require investments between 

$25 million and $36 million alone to build, maintain, and enhance a 

complete derivatives library. 

Ding (2010) 

Not only is it costly and time-consuming to build a full-fledged 

derivatives analytics library, but you also need to have enough experts to 

do so. And these experts have to have the right tools and technologies 

available to accomplish their tasks. With the development of the Python 

ecosystem, such efforts have become more efficient and budgets in this 

regard can be reduced significantly today compared to, say, 10 years 

ago. Part V covers derivatives analytics and builds a small but powerful 

and flexible derivatives pricing library with Python and standard Python 

packages alone. 

Another quote about the early days of Long-Term Capital Management 

(LTCM), formerly one of the most respected quantitative hedge funds—

which, however, went bust in the late 1990s—further supports this 

insight about technology and talent: 

Meriwether spent $20 million on a state-of-the-art computer system and 

hired a crack team of financial engineers to run the show at LTCM, which set 

http://en.wikipedia.org/wiki/2010_Flash_Crash
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/part04.html#algo_trading
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/part05.html#dx_library


up shop in Greenwich, Connecticut. It was risk management on an industrial 

level. 

Patterson (2010) 

The same computing power that Meriwether had to buy for millions of 

dollars is today probably available for thousands or can be rented from a 

cloud provider based on a flexible fee plan. Chapter 2 shows how to set 

up an infrastructure in the cloud for interactive financial analytics, 

application development, and deployment with Python. The budgets for 

such a professional infrastructure start at a few USD per month. On the 

other hand, trading, pricing, and risk management have become so 

complex for larger financial institutions that today they need to deploy 

IT infrastructures with tens of thousands of computing cores. 

Ever-Increasing Speeds, Frequencies, and Data 
Volumes 

The one dimension of the finance industry that has been influenced most 

by technological advances is the speed and frequency with which 

financial transactions are decided and executed. Lewis (2014) 

describes so-called flash trading—i.e., trading at the highest speeds 

possible—in vivid detail. 

On the one hand, increasing data availability on ever-smaller time scales 

makes it necessary to react in real time. On the other hand, the 

increasing speed and frequency of trading makes the data volumes 

further increase. This leads to processes that reinforce each other and 

push the average time scale for financial transactions systematically 

down. This is a trend that had already started a decade ago: 

Renaissance’s Medallion fund gained an astonishing 80 percent in 2008, 

capitalizing on the market’s extreme volatility with its lightning-fast 

computers. Jim Simons was the hedge fund world’s top earner for the year, 

pocketing a cool $2.5 billion. 

Patterson (2010) 

Thirty years’ worth of daily stock price data for a single stock represents 

roughly 7,500 closing quotes. This kind of data is what most of today’s 

finance theory is based on. For example, modern or mean-variance 

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch02.html#infrastructure


portfolio theory (MPT), the capital asset pricing model (CAPM), and 

value-at-risk (VaR) all have their foundations in daily stock price data. 

In comparison, on a typical trading day during a single trading hour the 

stock price of Apple Inc. (AAPL) may be quoted around 15,000 times—

roughly twice the number of quotes compared to available end-of-day 

closing quotes over 30 years (see the example in “Data-Driven and AI-

First Finance”). This brings with it a number of challenges: 

Data processing 

It does not suffice to consider and process end-of-day quotes for 

stocks or other financial instruments; “too much” happens during 

the day, and for some instruments during 24 hours for 7 days a 

week. 

Analytics speed 

Decisions often have to be made in milliseconds or even faster, 

making it necessary to build the respective analytics capabilities 

and to analyze large amounts of data in real time. 

Theoretical foundations 

Although traditional finance theories and concepts are far from 

being perfect, they have been well tested (and sometimes well 

rejected) over time; for the millisecond and microsecond scales 

important as of today, consistent financial concepts and theories in 

the traditional sense that have proven to be somewhat robust over 

time are still missing. 

All these challenges can in general only be addressed by modern 

technology. Something that might also be a little bit surprising is that the 

lack of consistent theories often is addressed by technological 

approaches, in that high-speed algorithms exploit market microstructure 

elements (e.g., order flow, bid-ask spreads) rather than relying on some 

kind of financial reasoning. 

The Rise of Real-Time Analytics 

There is one discipline that has seen a strong increase in importance in 

the finance industry: financial and data analytics. This phenomenon has 

a close relationship to the insight that speeds, frequencies, and data 

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#ai_first
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volumes increase at a rapid pace in the industry. In fact, real-time 

analytics can be considered the industry’s answer to this trend. 

Roughly speaking, “financial and data analytics” refers to the discipline 

of applying software and technology in combination with (possibly 

advanced) algorithms and methods to gather, process, and analyze data 

in order to gain insights, to make decisions, or to fulfill regulatory 

requirements, for instance. Examples might include the estimation of 

sales impacts induced by a change in the pricing structure for a financial 

product in the retail branch of a bank, or the large-scale overnight 

calculation of credit valuation adjustments (CVA) for complex 

portfolios of derivatives trades of an investment bank. 

There are two major challenges that financial institutions face in this 

context: 

Big data 

Banks and other financial institutions had to deal with massive 

amounts of data even before the term “big data” was coined; 

however, the amount of data that has to be processed during single 

analytics tasks has increased tremendously over time, demanding 

both increased computing power and ever-larger memory and 

storage capacities. 

Real-time economy 

In the past, decision makers could rely on structured, regular 

planning as well as decision and (risk) management processes, 

whereas they today face the need to take care of these functions in 

real time; several tasks that have been taken care of in the past via 

overnight batch runs in the back office have now been moved to 

the front office and are executed in real time. 

Again, one can observe an interplay between advances in technology 

and financial/business practice. On the one hand, there is the need to 

constantly improve analytics approaches in terms of speed and 

capability by applying modern technologies. On the other hand, 

advances on the technology side allow new analytics approaches that 

were considered impossible (or infeasible due to budget constraints) a 

couple of years or even months ago. 



One major trend in the analytics space has been the utilization of parallel 

architectures on the central processing unit (CPU) side and massively 

parallel architectures on the general-purpose graphics processing unit 

(GPGPU) side. Current GPGPUs have computing cores in the 

thousands, making necessary a sometimes radical rethinking of what 

parallelism might mean to different algorithms. What is still an obstacle 

in this regard is that users generally have to learn new programming 

paradigms and techniques to harness the power of such hardware. 

Python for Finance 

The previous section described selected aspects characterizing the role 

of technology in finance: 

 Costs for technology in the finance industry 

 Technology as an enabler for new business and innovation 

 Technology and talent as barriers to entry in the finance industry 

 Increasing speeds, frequencies, and data volumes 

 The rise of real-time analytics 

This section analyzes how Python can help in addressing several of the 

challenges these imply. But first, on a more fundamental level, a brief 

analysis of Python for finance from a language and syntax point of view. 

Finance and Python Syntax 

Most people who make their first steps with Python in a finance context 

may attack an algorithmic problem. This is similar to a scientist who, for 

example, wants to solve a differential equation, evaluate an integral, or 

simply visualize some data. In general, at this stage, little thought is 

given to topics like a formal development process, testing, 

documentation, or deployment. However, this especially seems to be the 

stage where people fall in love with Python. A major reason for this 

might be that Python syntax is generally quite close to the mathematical 

syntax used to describe scientific problems or financial algorithms. 



This can be illustrated by a financial algorithm, namely the valuation of 

a European call option by Monte Carlo simulation. The example 

considers a Black-Scholes-Merton (BSM) setup in which the option’s 

underlying risk factor follows a geometric Brownian motion. 

Assume the following numerical parameter values for the valuation: 

 Initial stock index level S0 = 100 

 Strike price of the European call option K = 105 

 Time to maturity T = 1 year 

 Constant, riskless short rate r = 0.05 

 Constant volatility σσ = 0.2 

In the BSM model, the index level at maturity is a random variable 

given by Equation 1-1, with z being a standard normally distributed 

random variable. 

Equation 1-1. Black-Scholes-Merton (1973) index level at maturity 

ST=S0exp((r–12σ2)T+σT−−√z)ST=S0expr–12σ2T+σTz 

The following is an algorithmic description of the Monte Carlo valuation 

procedure: 

1. Draw I pseudo-random numbers z(i),i∈{1,2,...,I}z(i),i∈{1,2,...,I}, 

from the standard normal distribution. 

2. Calculate all resulting index levels at maturity ST(i)ST(i) for 

given z(i) and Equation 1-1. 

3. Calculate all inner values of the option at maturity as hT(i) = 

max(ST(i) – K, 0). 

4. Estimate the option present value via the Monte Carlo estimator as 

given in Equation 1-2. 
Equation 1-2. Monte Carlo estimator for European option 

C0≈e–rT1I∑IhT(i)C0≈e–rT1I∑IhT(i) 

This problem and algorithm must now be translated into Python. The 

following code implements the required steps: 

In [6]: import math 

        import numpy as np   

 

In [7]: S0 = 100.   

        K = 105.   

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch01.html#bsm_rv
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        T = 1.0   

        r = 0.05   

        sigma = 0.2   

 

In [8]: I = 100000   

 

In [9]: np.random.seed(1000)   

 

In [10]: z = np.random.standard_normal(I)   

 

In [11]: ST = S0 * np.exp((r - sigma ** 2 / 2) * T + sigma * math.sqrt(T) * z)  

 
 

In [12]: hT = np.maximum(ST - K, 0)   

 

In [13]: C0 = math.exp(-r * T) * np.mean(hT)   

 

In [14]: print('Value of the European call option: {:5.3f}.'.format(C0))   

         Value of the European call option: 8.019. 

 

NumPy is used here as the main package. 

 

The model and simulation parameter values are defined. 

 

The seed value for the random number generator is fixed. 

 

Standard normally distributed random numbers are drawn. 

 

End-of-period values are simulated. 

 

The option payoffs at maturity are calculated. 

 

The Monte Carlo estimator is evaluated. 

 

The resulting value estimate is printed. 

Three aspects are worth highlighting: 

Syntax 



The Python syntax is indeed quite close to the mathematical 

syntax, e.g., when it comes to the parameter value assignments. 

Translation 

Every mathematical and/or algorithmic statement can generally be 

translated into a single line of Python code. 

Vectorization 

One of the strengths of NumPy is the compact, vectorized syntax, 

e.g., allowing for 100,000 calculations within a single line of code. 

This code can be used in an interactive environment like IPython or 

Jupyter Notebook. However, code that is meant to be reused regularly 

typically gets organized in so-called modules (or scripts), which are 

single Python files (technically text files) with the suffix .py. Such a 

module could in this case look like Example 1-1 and could be saved as a 

file named bsm_mcs_euro.py. 

Example 1-1. Monte Carlo valuation of European call option 

# 
# Monte Carlo valuation of European call option 
# in Black-Scholes-Merton model 
# bsm_mcs_euro.py 
# 
# Python for Finance, 2nd ed. 
# (c) Dr. Yves J. Hilpisch 
# 
import math 
import numpy as np 

 
# Parameter Values 
S0 = 100.  # initial index level 
K = 105.  # strike price 
T = 1.0  # time-to-maturity 
r = 0.05  # riskless short rate 
sigma = 0.2  # volatility 

 
I = 100000  # number of simulations 

 
# Valuation Algorithm 
z = np.random.standard_normal(I)  # pseudo-random numbers 
# index values at maturity 
ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * math.sqrt(T) * z) 
hT = np.maximum(ST - K, 0)  # payoff at maturity 
C0 = math.exp(-r * T) * np.mean(hT)  # Monte Carlo estimator 

 
# Result Output 
print('Value of the European call option %5.3f.' % C0) 

The algorithmic example in this subsection illustrates that Python, with 

its very syntax, is well suited to complement the classic duo of scientific 
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languages, English and mathematics. It seems that adding Python to the 

set of scientific languages makes it more well rounded. One then has: 

 English for writing and talking about scientific and financial 

problems, etc. 

 Mathematics for concisely, exactly describing and 

modeling abstract aspects, algorithms, complex quantities, etc. 

 Python for technically modeling and implementing abstract 

aspects, algorithms, complex quantities, etc. 

MATHEMATICS AND PYTHON SYNTAX 

There is hardly any programming language that comes as close to 

mathematical syntax as Python. Numerical algorithms are therefore in 

general straightforward to translate from the mathematical 

representation into the Pythonic implementation. This makes 

prototyping, development, and code maintenance in finance quite 

efficient with Python. 

In some areas, it is common practice to use pseudo-code and therewith 

to introduce a fourth language family member. The role of pseudo-code 

is to represent, for example, financial algorithms in a more technical 

fashion that is both still close to the mathematical representation and 

already quite close to the technical implementation. In addition to the 

algorithm itself, pseudo-code takes into account how computers work in 

principle. 

This practice generally has its cause in the fact that with most 

(compiled) programming languages the technical implementation is 

quite “far away” from its formal, mathematical representation. The 

majority of programming languages make it necessary to include so 

many elements that are only technically required that it is hard to see the 

equivalence between the mathematics and the code. 

Nowadays, Python is often used in a pseudo-code way since its syntax is 

almost analogous to the mathematics and since the technical “overhead” 

is kept to a minimum. This is accomplished by a number of high-level 

concepts embodied in the language that not only have their advantages 

but also come in general with risks and/or other costs. However, it is 

safe to say that with Python you can, whenever the need arises, follow 



the same strict implementation and coding practices that other languages 

might require from the outset. In that sense, Python can provide the best 

of both worlds: high-level abstraction and rigorous implementation. 

Efficiency and Productivity Through Python 

At a high level, benefits from using Python can be measured in three 

dimensions: 

Efficiency 

How can Python help in getting results faster, in saving costs, and 

in saving time? 

Productivity 

How can Python help in getting more done with the same 

resources (people, assets, etc.)? 

Quality 

What does Python allow one to do that alternative technologies do 

not allow for? 

A discussion of these aspects can by nature not be exhaustive. However, 

it can highlight some arguments as a starting point. 

SHORTER TIME-TO-RESULTS 

A field where the efficiency of Python becomes quite obvious is 

interactive data analytics. This is a field that benefits tremendously from 

such powerful tools as IPython, Jupyter Notebook, and packages 

like pandas. 

Consider a finance student who is writing their master’s thesis and is 

interested in S&P 500 index values. They want to analyze historical 

index levels for, say, a few years to see how the volatility of the index 

has fluctuated over time and hope to find evidence that volatility, in 

contrast to some typical model assumptions, fluctuates over time and is 

far from being constant. The results should also be visualized. The 

student mainly has to do the following: 

 Retrieve index level data from the web 



 Calculate the annualized rolling standard deviation of the log 

returns (volatility) 

 Plot the index level data and the volatility results 

These tasks are complex enough that not too long ago one would have 

considered them to be something for professional financial analysts 

only. Today, even the finance student can easily cope with such 

problems. The following code shows how exactly this works—without 

worrying about syntax details at this stage (everything is explained in 

detail in subsequent chapters): 

In [16]: import numpy as np   

         import pandas as pd   

         from pylab import plt, mpl   

 

In [17]: plt.style.use('seaborn')   

         mpl.rcParams['font.family'] = 'serif'   

         %matplotlib inline 

 

In [18]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                           index_col=0, parse_dates=True)   

         data = pd.DataFrame(data['.SPX'])  

         data.dropna(inplace=True)   

         data.info()   

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29 

         Data columns (total 1 columns): 

         .SPX    2138 non-null float64 

         dtypes: float64(1) 

         memory usage: 33.4 KB 

 

In [19]: data['rets'] = np.log(data / data.shift(1))   

         data['vola'] = data['rets'].rolling(252).std() * np.sqrt(252)   

 

In [20]: data[['.SPX', 'vola']].plot(subplots=True, figsize=(10, 6));   

 

This imports NumPy and pandas. 

 

This imports matplotlib and configures the plotting style and 

approach for Jupyter. 

 

pd.read_csv() allows the retrieval of remotely or locally stored data 

sets in comma-separated values (CSV) form. 

 



A subset of the data is picked and NaN (“not a number”) values 

eliminated. 

 

This shows some metainformation about the data set. 

 

The log returns are calculated in vectorized fashion (“no looping” 

on the Python level). 

 

The rolling, annualized volatility is derived. 

 

This finally plots the two time series. 

Figure 1-1 shows the graphical result of this brief interactive session. It 

can be considered almost amazing that a few lines of code suffice to 

implement three rather complex tasks typically encountered in financial 

analytics: data gathering, complex and repeated mathematical 

calculations, as well as visualization of the results. The example 

illustrates that pandas makes working with whole time series almost as 

simple as doing mathematical operations on floating-point numbers. 

Translated to a professional finance context, the example implies that 

financial analysts can—when applying the right Python tools and 

packages that provide high-level abstractions—focus on their domain 

and not on the technical intrinsicalities. Analysts can also react faster, 

providing valuable insights almost in real time and making sure they are 

one step ahead of the competition. This example of increased 

efficiency can easily translate into measurable bottom-line effects. 

 

Figure 1-1. S&P 500 closing values and annualized volatility 

ENSURING HIGH PERFORMANCE 

In general, it is accepted that Python has a rather concise syntax and that 

it is relatively efficient to code with. However, due to the very nature of 

Python being an interpreted language, the prejudice persists that Python 
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often is too slow for compute-intensive tasks in finance. Indeed, 

depending on the specific implementation approach, Python can be 

really slow. But it does not have to be slow—it can be highly performing 

in almost any application area. In principle, one can distinguish at least 

three different strategies for better performance: 

Idioms and paradigms 

In general, many different ways can lead to the same result in 

Python, but sometimes with rather different performance 

characteristics; “simply” choosing the right way (e.g., a specific 

implementation approach, such as the judicious use of data 

structures, avoiding loops through vectorization, or the use of a 

specific package such as pandas) can improve results significantly. 

Compiling 

Nowadays, there are several performance packages available that 

provide compiled versions of important functions or that compile 

Python code statically or dynamically (at runtime or call time) to 

machine code, which can make such functions orders of magnitude 

faster than pure Python code; popular ones are Cython and Numba. 

Parallelization 

Many computational tasks, in particular in finance, can 

significantly benefit from parallel execution; this is nothing special 

to Python but something that can easily be accomplished with it. 

PERFORMANCE COMPUTING WITH PYTHON 

Python per se is not a high-performance computing technology. 

However, Python has developed into an ideal platform to access current 

performance technologies. In that sense, Python has become something 

like a glue language for performance computing technologies. 

This subsection sticks to a simple, but still realistic, example that 

touches upon all three strategies (later chapters illustrate the strategies in 

detail). A quite common task in financial analytics is to evaluate 

complex mathematical expressions on large arrays of numbers. To this 

end, Python itself provides everything needed: 

In [21]: import math 
         loops = 2500000 



         a = range(1, loops) 
         def f(x): 
             return 3 * math.log(x) + math.cos(x) ** 2 
         %timeit r = [f(x) for x in a] 

         1.59 s ± 41.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop 
each) 

The Python interpreter needs about 1.6 seconds in this case to evaluate 

the function f() 2,500,000 times. The same task can be implemented 

using NumPy, which provides optimized (i.e., precompiled) functions to 

handle such array-based operations: 

In [22]: import numpy as np 

         a = np.arange(1, loops) 
         %timeit r = 3 * np.log(a) + np.cos(a) ** 2 
         87.9 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 10 
loops each) 

Using NumPy considerably reduces the execution time to about 88 

milliseconds. However, there is even a package specifically dedicated to 

this kind of task. It is called numexpr, for “numerical expressions.” 

It compiles the expression to improve upon the performance of the 

general NumPy functionality by, for example, avoiding in-memory copies 

of ndarray objects along the way: 

In [23]: import numexpr as ne 

         ne.set_num_threads(1) 
         f = '3 * log(a) + cos(a) ** 2' 
         %timeit r = ne.evaluate(f) 
         50.6 ms ± 4.2 ms per loop (mean ± std. dev. of 7 runs, 10 
loops each) 

Using this more specialized approach further reduces execution time to 

about 50 milliseconds. However, numexpr also has built-in capabilities to 

parallelize the execution of the respective operation. This allows us to 

use multiple threads of a CPU: 

In [24]: ne.set_num_threads(4) 
         %timeit r = ne.evaluate(f) 
         22.8 ms ± 1.76 ms per loop (mean ± std. dev. of 7 runs, 10 
loops each) 

Parallelization brings execution time further down to below 23 

milliseconds in this case, with four threads utilized. Overall, this is a 

performance improvement of more than 90 times. Note, in particular, 

that this kind of improvement is possible without altering the basic 

problem/algorithm and without knowing any detail about compiling or 

parallelization approaches. The capabilities are accessible from a high 



level even by non-experts. However, one has to be aware, of course, of 

which capabilities and options exist. 

This example shows that Python provides a number of options to make 

more out of existing resources—i.e., to increase productivity. With the 

parallel approach, three times as many calculations can be accomplished 

in the same amount of time as compared to the sequential approach—in 

this case simply by telling Python to use multiple available CPU threads 

instead of just one. 

From Prototyping to Production 

Efficiency in interactive analytics and performance when it comes to 

execution speed are certainly two benefits of Python to consider. Yet 

another major benefit of using Python for finance might at first sight 

seem a bit subtler; at second sight, it might present itself as an important 

strategic factor for financial institutions. It is the possibility to use 

Python end-to-end, from prototyping to production. 

Today’s practice in financial institutions around the globe, when it 

comes to financial development processes, is still often characterized by 

a separated, two-step process. On the one hand, there are the quantitative 

analysts (“quants”) responsible for model development and technical 

prototyping. They like to use tools and environments 

like Matlab and R that allow for rapid, interactive application 

development. At this stage of the development efforts, issues like 

performance, stability, deployment, access management, and version 

control, among others, are not that important. One is mainly looking for 

a proof of concept and/or a prototype that exhibits the main desired 

features of an algorithm or a whole application. 

Once the prototype is finished, IT departments with 

their developers take over and are responsible for translating the 

existing prototype code into reliable, maintainable, and 

performant production code. Typically, at this stage there is a paradigm 

shift in that compiled languages, such as C++ or Java, are used to fulfill 

the requirements for deployment and production. Also, a formal 

development process with professional tools, version control, etc., is 

generally applied. 

http://mathworks.com/
https://www.r-project.org/


This two-step approach has a number of generally unintended 

consequences: 

Inefficiencies 

Prototype code is not reusable; algorithms have to be implemented 

twice; redundant efforts take time and resources; risks arise during 

translation 

Diverse skill sets 

Different departments show different skill sets and use different 

languages to implement “the same things”; people not only 

program but also speak different languages 

Legacy code 

Code is available and has to be maintained in different languages, 

often using different styles of implementation 

Using Python, on the other hand, enables a streamlined end-to-end 

process from the first interactive prototyping steps to highly reliable and 

efficiently maintainable production code. The communication between 

different departments becomes easier. The training of the workforce is 

also more streamlined in that there is only one major language covering 

all areas of financial application building. It also avoids the inherent 

inefficiencies and redundancies when using different technologies in 

different steps of the development process. All in all, Python can 

provide a consistent technological framework for almost all tasks in 

financial analytics, financial application development, and algorithm 

implementation. 

Data-Driven and AI-First Finance 

Basically all the observations regarding the relationship of technology 

and the financial industry first formulated in 2014 for the first edition of 

this book still seem pretty current and important in August 2018, at the 

time of updating this chapter for the second edition of the book. 

However, this section comments on two major trends in the financial 

industry that are about to reshape it in a fundamental way. These two 

trends have mainly crystallized themselves over the last few years. 



Data-Driven Finance 

Some of the most important financial theories, such as MPT and CAPM, 

date as far back as to the 1950s and 1960s. However, they still represent 

a cornerstone in the education of students in such fields as economics, 

finance, financial engineering, and business administration. This might 

be surprising since the empirical support for most of these theories is 

meager at best, and the evidence is often in complete contrast to what 

the theories suggest and imply. On the other hand, their popularity is 

understandable since they are close to humans’ expectations of how 

financial markets might behave and since they are elegant mathematical 

theories resting on a number of appealing, if in general too simplistic, 

assumptions. 

The scientific method, say in physics, starts with data, for example from 

experiments or observations, and moves on to hypotheses and 

theories that are then tested against the data. If the tests are positive, the 

hypotheses and theories might be refined and properly written down, for 

instance, in the form of a research paper for publication. If the tests are 

negative, the hypotheses and theories are rejected and the search begins 

anew for ones that conform with the data. Since physical laws are stable 

over time, once such a law is discovered and well tested it is generally 

there to stay, in the best case, forever. 

The history of (quantitative) finance in large parts contradicts the 

scientific method. In many cases, theories and models have been 

developed “from scratch” on the basis of simplifying mathematical 

assumptions with the goal of discovering elegant answers to central 

problems in finance. Among others, popular assumptions in finance are 

normally distributed returns for financial instruments and linear 

relationships between quantities of interest. Since these phenomena are 

hardly ever found in financial markets, it should not come as a surprise 

that empirical evidence for the elegant theories is often lacking. Many 

financial theories and models have been formulated, proven, and 

published first and have only later been tested empirically. To some 

extent, this is of course due to the fact that financial data back in the 

1950s to the 1970s or even later was not available in the form that it is 

today even to students getting started with a bachelor’s in finance. 



The availability of such data to financial institutions has drastically 

increased since the early to mid-1990s, and nowadays even individuals 

doing financial research or getting involved in algorithmic trading have 

access to huge amounts of historical data down to the tick level as well 

as real-time tick data via streaming services. This allows us to return to 

the scientific method, which starts in general with the data before ideas, 

hypotheses, models, and strategies are devised. 

A brief example shall illustrate how straightforward it has become today 

to retrieve professional data on a large scale even on a local machine, 

making use of Python and a professional data subscription to the Eikon 

Data APIs. The following example retrieves tick data for the Apple Inc. 

stock for one hour during a regular trading day. About 15,000 tick 

quotes, including volume information, are retrieved. While the symbol 

for the stock is AAPL, the Reuters Instrument Code (RIC) is AAPL.O: 

In [26]: import eikon as ek   

 

In [27]: data = ek.get_timeseries('AAPL.O', fields='*', 

                                  start_date='2018-10-18 16:00:00', 

                                  end_date='2018-10-18 17:00:00', 

                                  interval='tick')   

 

In [28]: data.info()   

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 35350 entries, 2018-10-18 16:00:00.002000 to 2018-10-

18 

          16:59:59.888000 

         Data columns (total 2 columns): 
         VALUE     35285 non-null float64 

         VOLUME    35350 non-null float64 

         dtypes: float64(2) 

         memory usage: 828.5 KB 

 

In [29]: data.tail()   

Out[29]: AAPL.O                    VALUE  VOLUME 

         Date 

         2018-10-18 16:59:59.433  217.13    10.0 

         2018-10-18 16:59:59.433  217.13    12.0 

         2018-10-18 16:59:59.439  217.13   231.0 

         2018-10-18 16:59:59.754  217.14   100.0 

         2018-10-18 16:59:59.888  217.13   100.0 

 

Eikon Data API usage requires a subscription and an API 

connection. 

 

Retrieves the tick data for the Apple Inc. (AAPL.O) stock. 

http://bit.ly/eikon_data_api
http://bit.ly/eikon_data_api


 

Shows the last five rows of tick data. 

The Eikon Data APIs give access not only to structured financial data, 

such as historical price data, but also to unstructured data such as news 

articles. The next example retrieves metadata for a small selection of 

news articles and shows the beginning of one of the articles as full text: 

In [30]: news = ek.get_news_headlines('R:AAPL.O Language:LEN', 

                                  date_from='2018-05-01', 

                                  date_to='2018-06-29', 

                                  count=7)   

 

In [31]: news   

Out[31]: 

                                     versionCreated  \ 

    2018-06-28 23:00:00.000 2018-06-28 23:00:00.000 

    2018-06-28 21:23:26.526 2018-06-28 21:23:26.526 

    2018-06-28 19:48:32.627 2018-06-28 19:48:32.627 

    2018-06-28 17:33:10.306 2018-06-28 17:33:10.306 

    2018-06-28 17:33:07.033 2018-06-28 17:33:07.033 

    2018-06-28 17:31:44.960 2018-06-28 17:31:44.960 

    2018-06-28 17:00:00.000 2018-06-28 17:00:00.000 

 

                                                                          

text  \ 

    2018-06-28 23:00:00.000  RPT-FOCUS-AI ambulances and robot doctors: 

Chi... 

    2018-06-28 21:23:26.526  Why Investors Should Love Apple's (AAPL) TV 

En... 

    2018-06-28 19:48:32.627  Reuters Insider - Trump: We're reclaiming our 
... 

    2018-06-28 17:33:10.306  Apple v. Samsung ends not with a whimper but 

a... 

    2018-06-28 17:33:07.033  Apple's trade-war discount extended for 

anothe... 

    2018-06-28 17:31:44.960  Other Products: Apple's fast-growing island 

of... 

    2018-06-28 17:00:00.000  Pokemon Go creator plans to sell the tech 

behi... 

 

                                                                  storyId  

\ 

    2018-06-28 23:00:00.000  urn:newsml:reuters.com:20180628:nL4N1TU4F8:6 

    2018-06-28 21:23:26.526  urn:newsml:reuters.com:20180628:nNRA6e2vft:1 

    2018-06-28 19:48:32.627  urn:newsml:reuters.com:20180628:nRTV1vNw1p:1 

    2018-06-28 17:33:10.306  urn:newsml:reuters.com:20180628:nNRA6e1oza:1 

    2018-06-28 17:33:07.033  urn:newsml:reuters.com:20180628:nNRA6e1pmv:1 

    2018-06-28 17:31:44.960  urn:newsml:reuters.com:20180628:nNRA6e1m3n:1 

    2018-06-28 17:00:00.000  urn:newsml:reuters.com:20180628:nL1N1TU0PC:3 

 

                            sourceCode 

    2018-06-28 23:00:00.000    NS:RTRS 

    2018-06-28 21:23:26.526  NS:ZACKSC 

    2018-06-28 19:48:32.627    NS:CNBC 



    2018-06-28 17:33:10.306  NS:WALLST 

    2018-06-28 17:33:07.033  NS:WALLST 

    2018-06-28 17:31:44.960  NS:WALLST 

    2018-06-28 17:00:00.000    NS:RTRS 

 

In [32]: story_html = ek.get_news_story(news.iloc[1, 2])   

 

In [33]: from bs4 import BeautifulSoup   

 

In [34]: story = BeautifulSoup(story_html, 'html5lib').get_text()   

 

In [35]: print(story[83:958])   

         Jun 28, 2018 For years, investors and Apple AAPL have been beholden 

to 

          the iPhone, which is hardly a negative since its flagship product 

is 

          largely responsible for turning Apple into one of the world's 

biggest 

          companies. But Apple has slowly pushed into new growth areas, 
with 

          streaming television its newest frontier. So let's take a look at 

what 

          Apple has planned as it readies itself to compete against the 

likes of 

          Netflix NFLX and Amazon AMZN in the battle for the new age of 

          entertainment.Apple's second-quarter revenues jumped by 16% to 

reach 

          $61.14 billion, with iPhone revenues up 14%. However, iPhone unit 

sales 

          climbed only 3% and iPhone revenues accounted for over 62% of 

total Q2 

          sales. Apple knows this is not a sustainable business model, 

because 

          rare is the consumer product that can remain in vogue for 

decades. This 

          is why Apple has made a big push into news, 

 

Retrieves metadata for a small selection of news articles. 

 

Retrieves the full text of a single article, delivered as an HTML 

document. 

 

Imports the BeautifulSoup HTML parsing package and … 

 

… extracts the contents as plain text (a str object). 

 

Prints the beginning of the news article. 



Although just scratching the surface, these two examples illustrate that 

structured and unstructured historical financial data is available in a 

standardized, efficient way via Python wrapper packages and data 

subscription services. In many circumstances, similar data sets can be 

accessed for free even by individuals who make use of, for instance, 

trading platforms such as the one by FXCM Group, LLC, that is 

introduced in Chapter 14 and also used in Chapter 16. Once the data is 

on the Python level—independent from the original source—the full 

power of the Python data analytics ecosystem can be harnessed. 

DATA-DRIVEN FINANCE 

Data is what drives finance these days. Even some of the largest and 

often most successful hedge funds call themselves “data-driven” instead 

of “finance-driven.” More and more offerings are making huge amounts 

of data available to large and small institutions and individuals. Python 

is generally the programming language of choice to interact with the 

APIs and to process and analyze the data. 

AI-First Finance 

With the availability of large amounts of financial data via 

programmatic APIs, it has become much easier and more fruitful to 

apply methods from artificial intelligence (AI) in general and 

from machine and deep learning (ML, DL) in particular to financial 

problems, such as in algorithmic trading. 

Python can be considered a first-class citizen in the AI world as well. It 

is often the programming language of choice for AI researchers and 

practitioners alike. In that sense, the financial domain benefits from 

developments in diverse fields, sometimes not even remotely connected 

to finance. As one example consider the TensorFlow open source 

package for deep learning, which is developed and maintained by 

Google Inc. and used by (among others) its parent company Alphabet 

Inc. in its efforts to build, produce, and sell self-driving cars. 

Although for sure not even remotely related to the problem of 

automatically, algorithmically trading stock, TensorFlow can, for example, 

be used to predict movements in financial markets. Chapter 15 provides 

a number of examples in this regard. 

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch14.html#trading_platform
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch16.html#automated_trading
http://tensorflow.org/
http://tensorflow.org/
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch15.html#trading_strategies


One of the most widely used Python packages for ML is scikit-learn. 

The code that follows shows how, in a highly simplified manner, 

classification algorithms from ML can be used to predict the direction of 

future market price movements and to base an algorithmic trading 

strategy on those predictions. All the details are explained in Chapter 15, 

so the example is therefore rather concise. First, the data import and the 

preparation of the features data (directional lagged log return data): 

In [36]: import numpy as np 

         import pandas as pd 

 

In [37]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                            index_col=0, parse_dates=True) 

         data = pd.DataFrame(data['AAPL.O'])   

         data['Returns'] = np.log(data / data.shift())   

         data.dropna(inplace=True) 

 

In [38]: lags = 6 
 

In [39]: cols = [] 

         for lag in range(1, lags + 1): 

             col = 'lag_{}'.format(lag) 

             data[col] = np.sign(data['Returns'].shift(lag))   

             cols.append(col) 

         data.dropna(inplace=True) 

 

Selects historical end-of-day data for the Apple Inc. stock (AAPL.O). 

 

Calculates the log returns over the complete history. 

 

Generates DataFrame columns with directional lagged log return data 

(+1 or -1). 

Next, the instantiation of a model object for a support vector 

machine (SVM) algorithm, the fitting of the model, and the prediction 

step. Figure 1-2 shows that the prediction-based trading strategy, going 

long or short on Apple Inc. stock depending on the prediction, 

outperforms the passive benchmark investment in the stock itself: 

In [40]: from sklearn.svm import SVC 

 

In [41]: model = SVC(gamma='auto')   

 

In [42]: model.fit(data[cols], np.sign(data['Returns']))   

Out[42]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, 

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch15.html#trading_strategies
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           decision_function_shape='ovr', degree=3, gamma='auto', 

kernel='rbf', 

           max_iter=-1, probability=False, random_state=None, shrinking=True, 

           tol=0.001, verbose=False) 

 

In [43]: data['Prediction'] = model.predict(data[cols])   

 

In [44]: data['Strategy'] = data['Prediction'] * data['Returns']   

 

In [45]: data[['Returns', 'Strategy']].cumsum().apply(np.exp).plot( 

                 figsize=(10, 6));   

 

Instantiates the model object. 

 

Fits the model, given the features and the label data (all 

directional). 

 

Uses the fitted model to create the predictions (in-sample), which 

are the positions of the trading strategy at the same time (long or 

short). 

 

Calculates the log returns of the trading strategy given the 

prediction values and the benchmark log returns. 

 

Plots the performance of the ML-based trading strategy compared 

to the performance of the passive benchmark investment. 

 

Figure 1-2. ML-based algorithmic trading strategy vs. passive benchmark investment in Apple Inc. stock 

The simplified approach taken here does not account for transaction 

costs, nor does it separate the data set into training and testing subsets. 

However, it shows how straightforward the application of ML 

algorithms to financial data is, at least in a technical sense; practically, a 

number of important topics need to be considered (see López de Prado 

(2018)). 

AI-FIRST FINANCE 



AI will reshape finance in a way that other fields have been reshaped 

already. The availability of large amounts of financial data via 

programmatic APIs functions as an enabler in this context. Basic 

methods from AI, ML, and DL are introduced in Chapter 13 and applied 

to algorithmic trading in Chapters 15 and 16. A proper treatment of AI-

first finance, however, would require a book fully dedicated to the topic. 

AI in finance, as a natural extension of data-driven finance, is for sure a 

fascinating and exciting field, both from a research and a practitioner’s 

point of view. Although this book uses several methods from AI, ML, 

and DL in different contexts, overall the focus lies—in line with the 

subtitle of the book—on the fundamental Python techniques and 

approaches needed for data-driven finance. These are, however, equally 

important for AI-first finance. 

Conclusion 

Python as a language—and even more so as an ecosystem—is an ideal 

technological framework for the financial industry as whole and the 

individual working in finance alike. It is characterized by a number of 

benefits, like an elegant syntax, efficient development approaches, and 

usability for prototyping as well as production. With its huge amount of 

available packages, libraries, and tools, Python seems to have answers to 

most questions raised by recent developments in the financial industry in 

terms of analytics, data volumes and frequency, compliance and 

regulation, as well as technology itself. It has the potential to provide a 

single, powerful, consistent framework with which to streamline end-to-

end development and production efforts even across larger financial 

institutions. 

In addition, Python has become the programming language of choice for 

artificial intelligence in general and machine and deep learning in 

particular. Python is therefore the right language for data-driven finance 

as well as for AI-first finance, two recent trends that are about to reshape 

finance and the financial industry in fundamental ways. 

Further Resources 

https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch13.html#statistics
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch15.html#trading_strategies
https://learning.oreilly.com/library/view/python-for-finance/9781492024323/ch16.html#automated_trading


The following books cover several aspects only touched upon in this 

chapter in more detail (e.g., Python tools, derivatives analytics, machine 

learning in general, and machine learning in finance): 

 Hilpisch, Yves (2015). Derivatives Analytics with 

Python. Chichester, England: Wiley Finance. 

 López de Prado, Marcos (2018). Advances in Financial Machine 

Learning. Hoboken, NJ: John Wiley & Sons. 

 VanderPlas, Jake (2016). Python Data Science Handbook. 

Sebastopol, CA: O’Reilly. 

When it comes to algorithmic trading, the author’s company offers a 

range of online training programs that focus on Python and other tools 

and techniques required in this rapidly growing field: 

 http://pyalgo.tpq.io 

 http://certificate.tpq.io 

Sources referenced in this chapter are, among others, the following: 

 Ding, Cubillas (2010). “Optimizing the OTC Pricing and 

Valuation Infrastructure.” Celent. 

 Lewis, Michael (2014). Flash Boys. New York: W. W. Norton & 

Company. 

 Patterson, Scott (2010). The Quants. New York: Crown Business. 
 

http://dawp.tpq.io/
http://dawp.tpq.io/
http://pyalgo.tpq.io/
http://certificate.tpq.io/

