
Chapter 1. How Humans Interact with 
Computers 

Timoni West 

In this chapter, we explore the following: 

 Background on the history of human–computer modalities 

 A description of common modalities and their pros and cons 

 The cycles of feedback between humans and computers 

 Mapping modalities to current industry inputs 

 A holistic view of the feedback cycle of good immersive design 

Common Term Definition 

I use the following terms in these specific ways that assume a human-

perceivable element: 

Modality 

A channel of sensory input and output between a computer and a 

human 

Affordances 

Attributes or characteristics of an object that define that object’s 

potential uses 

Inputs 

How you do those things; the data sent to the computer 

Outputs 

A perceivable reaction to an event; the data sent from the computer 

Feedback 

A type of output; a confirmation that what you did was noticed and 

acted on by the other party 



Introduction 

In the game Twenty Questions, your goal is to guess what object another 

person is thinking of. You can ask anything you want, and the other 

person must answer truthfully; the catch is that they answer questions 

using only one of two options: yes or no. 

Through a series of happenstance and interpolation, the way we 

communicate with conventional computers is very similar to Twenty 

Questions. Computers speak in binary, ones and zeroes, but humans do 

not. Computers have no inherent sense of the world or, indeed, anything 

outside of either the binary—or, in the case of quantum computers, 

probabilities. 

Because of this, we communicate everything to computers, from 

concepts to inputs, through increasing levels of human-friendly 

abstraction that cover up the basic communication layer: ones and 

zeroes, or yes and no. 

Thus, much of the work of computing today is determining how to get 

humans to easily and simply explain increasingly complex ideas to 

computers. In turn, humans are also working toward having computers 

process those ideas more quickly by building those abstraction layers on 

top of the ones and zeroes. It is a cycle of input and output, affordances 

and feedback, across modalities. The abstraction layers can take many 

forms: the metaphors of a graphical user interface, the spoken words of 

natural language processing (NLP), the object recognition of computer 

vision, and, most simply and commonly, the everyday inputs of 

keyboard and pointer, which most humans use to interact with 

computers on a daily basis. 

Modalities Through the Ages: Pre-Twentieth 
Century 

To begin, let’s briefly discuss how humans have traditionally given 

instructions to machines. The earliest proto-computing machines, 

programmable weaving looms, famously “read” punch cards. Joseph 

Jacquard created what was, in effect, one of the first pieces of true 

mechanical art, a portrait of himself, using punch cards in 1839 



(Figure 1-1). Around the same time in Russia, Semyon Korsakov had 

realized that punch cards could be used to store and compare datasets. 

 
Figure 1-1. Woven silk portrait of Joseph Jacquard, 1839, who used more than 24,000 punched cards to create the portrait 

Punch cards can hold significant amounts of data, as long as the data is 

consistent enough to be read by a machine. And although pens and 

similar handheld tools are fantastic for specific tasks, allowing humans 

to quickly express information, the average human forearm and finger 

tendons lack the ability to consistently produce near identical 

forms all the time. 

This has long been a known problem. In fact, from the seventeenth 

century—that is, as soon as the technology was available—people began 

to make keyboards. People invented and reinvented keyboards for all 

sorts of reasons; for example, to work against counterfeiting, helping a 

blind sister, and better books. Having a supportive plane against which 

to rest the hands and wrists allowed for inconsistent movement to yield 

consistent results that are impossible to achieve with the pen. 

As mentioned earlier, proto-computers had an equally compelling 

motivation: computers need very consistent physical data, and it’s 

uncomfortable for humans to make consistent data. So, even though it 

might seem surprising in retrospect, by the early 1800s, punch-card 

machines, not yet the calculation monsters they would become, already 

had keyboards attached to them, as depicted in Figure 1-2. 

 
Figure 1-2. A Masson Mills WTM 10 Jacquard Card Cutter, 1783, which were used to create the punched cards read by a Jacquard loom 

Keyboards have been attached to computational devices since the 

beginning, but, of course, they expanded out to typewriters before 

looping back again as the two technologies merged. The impetuous was 

similarly tied to consistency and human fatigue. From Wikipedia: 

By the mid-19th century, the increasing pace of business communication had 

created a need for mechanization of the writing process. Stenographers and 

telegraphers could take down information at rates up to 130 words per 

minute. 

https://learning.oreilly.com/library/view/creating-augmented-and/9781492044185/ch01.html#the_woven_silk
https://learning.oreilly.com/library/view/creating-augmented-and/9781492044185/ch01.html#a_masson_mills


Writing with a pen, in contrast, gets you only about 30 words per 

minute: button presses were undeniably the better alphanumeric 

solution. 

The next century was spent trying to perfect the basic concept. Later 

features, like the addition of the shift key, substantially improved and 

streamlined the design and size of early typewriters. 

I want to pause for a moment here to point out the broader problem 

everyone was trying to solve by using typewriters, and specifically with 

the keyboard as input: at the highest level, people wanted to capture 

their ideas more quickly and more accurately. Remember this; it is a 

consistent theme across all modality improvements.  

Modalities Through the Ages: Through World 
War II 

So much for keyboards, which, as I just pointed out, have been with us 

since the beginning of humans attempting to communicate with their 

machines. From the early twentieth century on—that is, again, as soon 

as metalwork and manufacturing techniques supported it—we gave 

machines a way to communicate back, to have a dialogue with their 

operators before the expensive physical output stage: monitors and 

displays, a field that benefited from significant research and resources 

through the wartime eras via military budgets. 

The first computer displays didn’t show words: early computer panels 

had small light bulbs that would switch on and off to reflect specific 

states, allowing engineers to monitor the computer’s status—and leading 

to the use of the word “monitor.” During WWII, military agencies used 

cathode-ray tube (CRT) screens for radar scopes, and soon after the war, 

CRTs began their life as vector, and later text, computing displays for 

groups like SAGE and the Royal Navy. 

 
Figure 1-3. An example of early computer interfaces for proprioceptive remapping; WAAF radar operator Denise Miley is plotting aircraft in the 

Receiver Room at Bawdsey “Chain Home” station in May 1945 (notice the large knob to her left, a goniometer control that allowed Miley to change 

the sensitivity of the radio direction finders) 

As soon as computing and monitoring machines had displays, we had 

display-specific input to go alongside them. Joysticks were invented for 



aircraft, but their use for remote aircraft piloting was patented in the 

United States in 1926. This demonstrates a curious quirk of human 

physiology: we are able to instinctively remap proprioception—our 

sense of the orientation and placement of our bodies—to new volumes 

and plane angles (see Figure 1-3). If we weren’t able to do so, it would 

be impossible to use a mouse on a desktop on the Z-plane to move the 

mouse anchor on the X. And yet, we can do it almost without thought—

although some of us might need to invert the axis rotation to mimic our 

own internal mappings. 

Modalities Through the Ages: Post-World War 
II 

Joysticks quickly moved out of airplanes and alongside radar and sonar 

displays during WWII. Immediately after the war, in 1946, the first 

display-specific input was invented. Ralph Benjamin, an engineer in the 

Royal Navy, conceived of the rollerball as an alternative to the existing 

joystick inputs: “The elegant ball-tracker stands by his aircraft direction 

display. He has one ball, which he holds in his hand, but his joystick has 

withered away.” The indication seems to be that the rollerball could be 

held in the hand rather than set on a desk. However, the reality of 

manufacturing in 1946 meant that the original roller was a full-sized 

bowling ball. Unsurprisingly, the unwieldy, 10-pound rollerball did not 

replace the joystick. 

This leads us to the five rules of computer input popularity. To take off, 

inputs must have the following characteristics: 

 Cheap 

 Reliable 

 Comfortable 

 Have software that makes use of it 

 Have an acceptable user error rate 

The last can be amortized by good software design that allows for 

nondestructive actions, but beware: after a certain point, even benign 

https://learning.oreilly.com/library/view/creating-augmented-and/9781492044185/ch01.html#an_example_of_early_computer_interfaces
http://bit.ly/2UwqWII


errors can be annoying. Autocorrect on touchscreens is a great example 

of user error often overtaking software capabilities. 

Even though the rollerball mouse wouldn’t reach ubiquity until 1984 

with the rise of the personal computer, many other types of inputs that 

were used with computers moved out of the military through the mid-

1950s and into the private sector: joysticks, buttons and toggles, and, of 

course, the keyboard. 

It might be surprising to learn that styluses predated the mouse. The 

light pen, or gun, created by SAGE in 1955, was an optical stylus that 

was timed to CRT refresh cycles and could be used to interact directly 

on monitors. Another mouse-like option, Data Equipment Company’s 

Grafacon, resembled a block on a pivot that could be swung around to 

move the cursor. There was even work done on voice commands as 

early as 1952 with Bell Labs’ Audrey system, though it recognized only 

10 words. 

By 1963, the first graphics software existed that allowed users to draw 

on MIT Lincoln Laboratory’s TX-2’s monitor, Sketchpad, created by 

Ivan Sutherland at MIT. GM and IBM had a similar joint venture, the 

Design Augmented by Computer, or DAC-1, which used a capacitance 

screen with a metal pencil, instead—faster than the light pen, which 

required waiting for the CRT to refresh. 

Unfortunately, in both the light pen and metal pencil case, the displays 

were upright and thus the user had to hold up their arm for input—what 

became known as the infamous “gorilla arm.” Great workout, but bad 

ergonomics. The RAND corporation had noticed this problem and had 

been working on a tablet-and-stylus solution for years, but it wasn’t 

cheap: in 1964, the RAND stylus—confusingly, later also marketed as 

the Grafacon—cost around $18,000 (roughly $150,000 in 2018 dollars). 

It was years before the tablet-and-stylus combination would take off, 

well after the mouse and graphical user interface (GUI) system had been 

popularized. 

In 1965, Eric Johnson, of the Royal Radar Establishment, published a 

paper on capacitive touchscreen devices and spent the next few years 

writing more clear use cases on the topic. It was picked up by 



researchers at the European Organization for Nuclear Research (CERN), 

who created a working version by 1973. 

By 1968, Doug Engelbart was ready to show the work that his lab, the 

Augmentation Research Center, had been doing at Stanford Research 

Institute since 1963. In a hall under San Francisco’s Civic Center, he 

demonstrated his team’s oNLine System (NLS) with a host of features 

now standard in modern computing: version control, networking, 

videoconferencing, multimedia emails, multiple windows, and working 

mouse integration, among many others. Although the NLS also required 

a chord keyboard and conventional keyboard for input, the mouse is now 

often mentioned as one of the key innovations. In fact, the NLS mouse 

ranked similarly useable to the light pen or ARC’s proprietary knee 

input system in Engelbart’s team’s own research. Nor was it unique: 

German radio and TV manufacturer, Telefunken, released a mouse with 

its RKS 100-86, the Rollkugel, which was actually in commercial 

production the year Engelbart announced his prototype. 

However, Engelbart certainly popularized the notion of the asymmetric 

freeform computer input. The actual designer of the mouse at ARC, Bill 

English, also pointed out one of the truths of digital modalities at the 

conclusion of his 1967 paper, “Display-Selection Techniques for Text 

Manipulation”: 

[I]t seems unrealistic to expect a flat statement that one device is better than 

another. The details of the usage system in which the device is to be 

embedded make too much difference. 

No matter how good the hardware is, the most important aspect is how 

the software interprets the hardware input and normalizes for user intent. 

NOTE 

For more on how software design can affect user perception of inputs, I 

highly recommend the book Game Feel: A Game Designer’s Guide to 

Virtual Sensation by Steve Swink (Morgan Kaufmann Game Design 

Books, 2008). Because each game has its own world and own system, 

the “feel” of the inputs can be rethought. There is less wiggle room for 

innovation in standard computer operating systems, which must feel 

familiar by default to avoid cognitive overload. 

http://bit.ly/2XVHxYs


Another aspect of technology advances worth noting from the 1960s was 

the rise of science fiction, and therefore computing, in popular 

culture. TV shows like Star Trek (1966–1969) portrayed the use of voice 

commands, telepresence, smart watches, and miniature 

computers. 2001: A Space Odyssey (1968) showed a small personal 

computing device that looks remarkably similar to the iPads of today as 

well as voice commands, video calls, and, of course, a very famous 

artificial intelligence. The animated cartoon, The Jetsons (1962–1963), 

had smart watches, as well as driverless cars and robotic assistance. 

Although the technology wasn’t common or even available, people were 

being acclimated to the idea that computers would be small, lightweight, 

versatile, and have uses far beyond text input or calculations. 

The 1970s was the decade just before personal computing. Home game 

consoles began being commercially produced, and arcades took 

off. Computers were increasingly affordable; available at top 

universities, and more common in commercial spaces. Joysticks, 

buttons, and toggles easily made the jump to video game inputs and 

began their own, separate trajectory as game controllers. Xerox 

Corporation’s famous Palo Alto Research Center, or PARC, began work 

on an integrated mouse and GUI computer work system called the 

Alto. The Alto and its successor, the Star, were highly influential for the 

first wave of personal computers manufactured by Apple, Microsoft, 

Commodore, Dell, Atari, and others in the early to mid-1980s. PARC 

also created a prototype of Alan Kay’s 1968 KiddiComp/Dynabook, one 

of the precursors of the modern computer tablet. 

Modalities Through the Ages: The Rise of 
Personal Computing 

Often, people think of the mouse and GUI as a huge and independent 

addition to computer modalities.  But even in the 1970s, Summagraphics 

was making both low- and high-end tablet-and-stylus combinations for 

computers, one of which was white labeled for the Apple II as the Apple 

Graphics Tablet, released in 1979. It was relatively expensive and 

supported by only a few types of software; violating two of the five 

rules. By 1983, HP had released the HP-150, the first touchscreen 

http://bit.ly/2F97Ovb
http://bit.ly/2O0HmGW
http://bit.ly/2O0HmGW


computer. However, the tracking fidelity was quite low, violating the 

user error rule. 

When the mouse was first bundled with personal computer packages 

(1984–1985), it was supported on the operating-system (OS) level, 

which in turn was designed to take mouse input. This was a key turning 

point for computers: the mouse was no longer an optional input, but 

an essential one. Rather than a curio or optional peripheral, computers 

were now required to come with tutorials teaching users how to use a 

mouse, as illustrated in Figure 1-4—similar to how video games include 

a tutorial that teaches players how the game’s actions map to the 

controller buttons. 

 
Figure 1-4. Screenshot of the Macintosh SE Tour, 1987 

It’s easy to look back on the 1980s and think the personal computer was 

a standalone innovation. But, in general, there are very few innovations 

in computing that single-handedly moved the field forward in less than a 

decade. Even the most famous innovations, such as FORTRAN, took 

years to popularize and commercialize. Much more often, the driving 

force behind adoption—of what feels like a new innovation—is simply 

the result of the technology finally fulfilling the aforementioned five 

rules: cheap, reliable, comfortable, have software that makes use of the 

technolgy, and having an acceptable user error rate. 

It is very common to find that the first version of what appears to be 

recent technology was in fact invented decades or even centuries ago. If 

the technology is obvious enough that multiple people try to build it but 

it still doesn’t work, it is likely failing in one of the five rules. It simply 

must wait until technology improves or manufacturing processes catch 

up. 

This truism is of course exemplified in virtual reality (VR) and 

augmented reality (AR) history. Although the first stereoscopic head-

mounted displays (HMDs) were pioneered by Ivan Sutherland in the 

1960s and have been used at NASA routinely since the 1990s, it wasn’t 

until the fields of mobile electronics and powerful graphics processing 

units (GPUs) improved enough that the technology became available at 

a commercially acceptable price, decades later. Even as of today, high-

end standalone HMDs are either thousands of dollars or not 

https://learning.oreilly.com/library/view/creating-augmented-and/9781492044185/ch01.html#screenshot_of_macintosh_se_tour


commercially available. But much like smartphones in the early 2000s, 

we can see a clear path from current hardware to the future of spatial 

computing. 

However, before we dive in to today’s hardware, let’s finish laying out 

the path from the PCs of the early 1980s to the most common types of 

computer today: the smartphone.  

Modalities Through the Ages: Computer 
Miniaturization 

Computers with miniaturized hardware emerged out of the calculator 

and computer industries as early as 1984 with the Psion Organizer. The 

first successful tablet computer was the GriDPad, released in 1989, 

whose VP of research, Jeff Hawkins, later went on to found the 

PalmPilot. Apple released the Newton in 1993, which had a handwritten 

character input system, but it never hit major sales goals. The project 

ended in 1998 as the Nokia 900 Communicator—a combination 

telephone and personal digital assistant (PDA)—and later the PalmPilot 

dominated the miniature computer landscape. Diamond Multimedia 

released its Rio PMP300 MP3 player in 1998, as well, which turned out 

to be a surprise hit during the holiday season. This led to the rise of other 

popular MP3 players by iRiver, Creative NOMAD, Apple, and others. 

In general, PDAs tended to have stylus and keyboard inputs; more 

single-use devices like music players had simple button inputs. From 

almost the beginning of their manufacturing, the PalmPilots shipped 

with their handwriting recognition system, Graffiti, and by 1999 the 

Palm VII had network connectivity. The first Blackberry came out the 

same year with keyboard input, and by 2002 Blackberry had a more 

conventional phone and PDA combination device. 

But these tiny computers didn’t have the luxury of human-sized 

keyboards. This not only pushed the need for better handwriting 

recognition, but also real advances in speech input. Dragon Dictate came 

out in 1990 and was the first consumer option available—though for 

$9,000, it heavily violated the “cheap” rule. By 1992, AT&T rolled out 

voice recognition for its call centers. Lernout & Hauspie acquired 

several companies through the 1990s and was used in Windows XP. 



After an accounting scandal, the company was bought by SoftScan—

later Nuance, which was licensed as the first version of Siri. 

In 2003, Microsoft launched Voice Command for its Windows Mobile 

PDA. By 2007, Google had hired away some Nuance engineers and was 

well on its way with its own voice recognition technology. Today, voice 

technology is increasingly ubiquitous, with most platforms offering or 

developing their own technology, especially on mobile devices. It’s 

worth noting that in 2018, there is no cross-platform or even cross-

company standard for voice inputs: the modality is simply not mature 

enough yet. 

PDAs, handhelds, and smartphones have almost always been 

interchangeable with some existing technology since their inception—

calculator, phone, music player, pager, messages display, or clock. In the 

end, they are all simply different slices of computer functionality. You 

can therefore think of the release of the iPhone in 2007 as a turning point 

for the small-computer industry: by 2008, Apple had sold 10 million 

more than the next top-selling device, the Nokia 2330 classic, even 

though the Nokia held steady sales of 15 million from 2007 to 2008. The 

iPhone itself did not take over iPod sales until 2010, after Apple allowed 

users to fully access iTunes. 

One very strong trend with all small computer devices, whatever the 

brand, is the move toward touch inputs. There are several reasons for 

this. 

The first is simply that visuals are both inviting and useful, and the more 

we can see, the higher is the perceived quality of the device. With 

smaller devices, space is at a premium, and so removing physical 

controls from the device means a larger percentage of the device is 

available for a display. 

The second and third reasons are practical and manufacturing focused. 

As long as the technology is cheap and reliable, fewer moving parts 

means less production cost and less mechanical breakage, both 

enormous wins for hardware companies. 

The fourth reason is that using your hands as an input is perceived as 

natural. Although it doesn’t allow for minute gestures, a well-designed, 

simplified GUI can work around many of the problems that come up 



around user error and occlusion. Much like the shift from keyboard to 

mouse-and-GUI, new interface guidelines for touch allow a reasonably 

consistent and error-free experience for users that would be almost 

impossible using touch with a mouse or stylus-based GUI. 

The final reason for the move toward touch inputs is simply a matter of 

taste: current design trends are shifting toward minimalism in an era 

when computer technology can be overwhelming. Thus, a simplified 

device can be perceived as easier to use, even if the learning curve is 

much more difficult and features are removed. 

One interesting connection point between hands and mice is 

the trackpad, which in recent years has the ability to mimic the 

multitouch gestures of touchpad while avoiding the occlusion problems 

of hand-to-display interactions. Because the tablet allows for relative 

input that can be a ratio of the overall screen size, it allows for more 

minute gestures, akin to a mouse or stylus. It still retains several of the 

same issues that plague hand input—fatigue and lack of the physical 

support that allows the human hand to do its most delicate work with 

tools—but it is useable for almost all conventional OS-level 

interactions.  

Why Did We Just Go Over All of This? 

So, what was the point of our brief history lesson? To set the proper 

stage going forward, where we will move from the realm of the known, 

computing today, to the unknown future of spatial inputs. At any given 

point in time it’s easy to assume that we know everything that has led up 

to the present or that we’re always on the right track. Reviewing where 

we’ve been and how the present came to be is an excellent way to make 

better decisions for the future. 

Let’s move on to exploring human–computer interaction (HCI) for 

spatial computing. We can begin with fundamentals that simply will not 

change in the short term: how humans can take in, process, and output 

information. 

Types of Common HCI Modalities 



There are three main ways by which we interact with computers: 

Visual 

Poses, graphics, text, UI, screens, animations 

Auditory 

Music, tones, sound effects, voice 

Physical 

Hardware, buttons, haptics, real objects 

Notice that in the background we’ve covered so far, physical inputs and 

audio/visual outputs dominate HCI, regardless of computer type. Should 

this change for spatial computing, in a world in which your digital 

objects surround you and interact with the real world? Perhaps. Let’s 

begin by diving into the pros and cons of each modality. 

VISUAL MODALITIES 

Pros: 

 250 to 300 words per minute (WPM) understood by humans 

 Extremely customizable 

 Instantly recognizable and understandable on the human side 

 Very high fidelity compared to sound or haptics 

 Time-independent; can just hang in space forever 

 Easy to rearrange or remap without losing user understanding 

 Good ambient modality; like ads or signs, can be noticed by the 

humans at their leisure 

Cons: 

 Easy to miss; location dependent 

 As input, usually requires robust physical counterpart; gestures and 

poses very tiring 

 Requires prefrontal cortex for processing and reacting to 

complicated information, which takes more cognitive load 



 Occlusion and overlapping are the name of the game 

 Most likely to “interrupt” if the user is in the flow 

 Very precise visual (eye) tracking is processor intensive 

Best uses in HMD-specific interactions: 

 Good for limited camera view or other situations in which a user is 

forced to look somewhere 

 Good for clear and obvious instructions 

 Good for explaining a lot fast 

 Great for tutorials and onboarding 

Example use case—a smartphone: 

 Designed to be visual-only 

 Works even if the sound is off 

 Works with physical feedback 

 Physical affordances are minimal 

 Lots of new animation languages to show feedback 

PHYSICAL MODALITIES 

Pros: 

 Braille: 125 WPM 

 Can be very fast and precise 

 Bypasses high-level thought processes, so is easy to move into a 

physiological and mental “flow” 

 Training feeds into the primary motor cortex; eventually doesn’t 

need the more intensive premotor cortex or basal ganglia 

processing 

 Has strong animal brain “this is real” component; a strong reality 

cue 

 Lightweight feedback is unconsciously acknowledged 



 Least amount of delay between affordance and input 

 Best single-modality input type, as is most precise 

Cons: 

 Can be tiring 

 Physical hardware is more difficult to make, can be expensive, and 

breaks 

 Much higher cognitive load during teaching phase 

 Less flexible than visual: buttons can’t really be moved 

 Modes require more memorization for real flow 

 Wide variations due to human sensitivity 

Best uses in HMD-specific interactions: 

 Flow states 

 Situations in which the user shouldn’t or can’t look at UI all the 

time 

 Situations in which the user shouldn’t look at their hands all the 

time 

 Where mastery is ideal or essential 

Example use case—musical instruments: 

 Comprehensive physical affordances 

 No visuals needed after a certain mastery level; creator is in flow 

 Will almost always have audio feedback component 

 Allows movement to bypass parts of the brain—thought becomes 

action 

AUDIO MODALITIES 

Pros: 

 150 to 160 WPM understood by humans 



 Omnidirectional 

 Easily diegetic to both give feedback and enhance world feel 

 Can be extremely subtle and still work well 

 Like physical inputs, can be used to trigger reactions that don’t 

require high-level brain processing, both evaluative conditioning 

and more base brain stem reflex 

 Even extremely short sounds can be recognized after being taught 

 Great for affordances and confirmation feedback 

Cons: 

 Easy for users to opt out with current devices 

 No ability to control output fidelity 

 Time based: if user misses it, must repeat 

 Can be physically off-putting (brain stem reflex) 

 Slower across the board 

 Vague, imprecise input due to language limitations 

 Dependent on timing and implementation 

 Not as customizable 

 Potentially processor intensive 

Best uses in HMD-specific interactions: 

 Good for visceral reactions 

 Great way to get users looking at a specific thing 

 Great for user-controlled camera 

 Great when users are constrained visually and physically 

 Great for mode switching 

Example use case—a surgery room: 

 Surgeon is visually and physically captive; audio is often the only 

choice 



 Continual voice updates for all information 

 Voice commands for tools, requests, and confirmations 

 Voice can provide most dense information about current state of 

affairs and mental states; very useful in high-risk situations 

Now that we’ve written down the pros and cons of each type of 

modality, we can delve into the HCI process and properly map out the 

cycle. Figure 1-5 illustrates a typical flow, followed by a description of 

how it maps to a game scenario. 

 
Figure 1-5. Cycle of a typical HCI modality loop 

The cycle comprises three simple parts that loop repeatedly in almost all 

HCIs: 

 The first is generally the affordance or discovery phase, in which 

the user finds out what they can do. 

 The second is the input or action phase, in which the user does the 

thing. 

 The third phase is the feedback or confirmation phase, in which the 

computer confirms the input by reacting in some way. 

Figure 1-6 presents the same graphic, now filled out for a conventional 

console video game tutorial UX loop. 

 
Figure 1-6. The cycle of a typical HCI modality loop, with examples 

Let’s walk through this. In many video game tutorials, the first 

affordance with which a user can do something is generally an 

unmissable UI overlay that tells the user the label of the button that they 

need to press. This sometimes manifests with a corresponding image or 

model of the button. There might be an associated sound like a change in 

music, a tone, or dialogue, but during the tutorial it is largely supporting 

and not teaching. 

For conventional console video games, the input stage will be entirely 

physical; for example, a button press. There are exploratory video games 

that might take advantage of audio input like speech, or a combination 

https://learning.oreilly.com/library/view/creating-augmented-and/9781492044185/ch01.html#cycle_of_a_typical_hci
https://learning.oreilly.com/library/view/creating-augmented-and/9781492044185/ch01.html#the_cycle_of_a_typical_hci


of physical and visual inputs (e.g., hand pose), but those are rare. In 

almost all cases, the user will simply press a button to continue. 

The feedback stage is often a combination of all three modalities: the 

controller might have haptic feedback, the visuals will almost certainly 

change, and there will be a confirmation sound. 

It’s worth noting that this particular loop is specifically describing 

the tutorial phase. As users familiarize themselves with and improve 

their gameplay, the visuals will diminish in favor of more visceral 

modalities. Often, later in the game, the sound affordance might become 

the primary affordance to avoid visual overload—remember that, similar 

to physical modalities, audio can also work to cause reactions that 

bypass higher-level brain functions. Visuals are the most information-

dense modalities, but they are often the most distracting in a limited 

space; they also require the most time to understand and then react. 

New Modalities 

With the rise of better hardware and new sensors, we have new ways 

both to talk to computers and have them monitor and react to us. Here’s 

a quick list of inputs that are either in the prototype or 

commercialization stage: 

 Location 

 Breath rate 

 Voice tone, pitch, and frequency 

 Eye movement 

 Pupil dilation 

 Heart rate 

 Tracking unconscious limb movement 

One curious property of these new inputs—as opposed to the three 

common modalities we’ve discussed—is that for the most part, the less 

the user thinks about them, the more useful they will be. Almost every 

one of these new modalities is difficult or impossible to control for long 



periods of time, especially as a conscious input mechanic. Likewise, if 

the goal is to collect data for machine learning training, any conscious 

attempt to alter the data will likely dirty the entire set. Therefore, they 

are best suited to be described as passive inputs. 

One other property of these specific inputs is that they are one-way; the 

computer can react to the change in each, but it cannot respond in kind, 

at least not until computers significantly change. Even then, most of the 

list will lead to ambient feedback loops, not direct or instant feedback. 

The Current State of Modalities for Spatial 
Computing Devices 

As of this writing, AR and VR devices have the following modality 

methods across most hardware offerings: 

Physical 

 For the user input: controllers 

 For the computer output: haptics 

Audio 

 For the user input: speech recognition (rare) 

 For the computer output: sounds and spatialize audio 

Visual 

 For the user input: hand tracking, hand pose recognition, and eye 

tracking 

 For the computer output: HMD 

One peculiarity arises from this list: immersive computing has, for the 

first time, led to the rise of visual inputs through computer vision 

tracking body parts like the hands and eyes. Although hand position and 

movement has often been incidentally important, insofar as it maps to 

pushing physical buttons, it has never before taken on an importance of 



its own. We talk more on this later, but let’s begin with the most 

conventional input type: controllers and touchscreens. 

Current Controllers for Immersive Computing 
Systems 

The most common type of controllers for mixed, augmented, and virtual 

reality (XR) headsets, owes its roots to conventional game controllers. It 

is very easy to trace any given commercial XR HMD’s packaged 

controllers back to the design of the joystick and D-pad. Early work 

around motion tracked gloves, such as NASA Ames’ VIEWlab from 

1989, has not yet been commoditized at scale. Interestingly, Ivan 

Sutherland had posited that VR controllers should be joysticks back in 

1964; almost all have them, or thumbpad equivalents, in 2018. 

Before the first consumer headsets, Sixsense was an early mover in the 

space with its magnetic, tracked controllers, which included buttons on 

both controllers familiar to any game console: A and B, home, as well as 

more genericized buttons, joysticks, bumpers, and triggers. 

Current fully tracked, PC-bound systems have similar inputs. The 

Oculus Rift controllers, Vive controllers, and Windows MR 

controllers all have the following in common: 

 A primary select button (almost always a trigger) 

 A secondary select variant (trigger, grip, or bumper) 

 A/B button equivalents 

 A circular input (thumbpad, joystick, or both) 

 Several system-level buttons, for consistent basic operations across 

all applications 

 
Figure 1-7. The Sixsense Stem input system 

Generally, these last two items are used to call up menus and settings, 

leaving the active app to return to the home screen.  

Standalone headsets have some subset of the previous list in their 

controllers. From the untracked Hololens remote to the Google 



Daydream’s three-degrees-of-freedom (3DOF) controller, you will 

always find the system-level buttons that can perform confirmations and 

then return to the home screen. Everything else depends on the 

capabilities of the HMD’s tracking system and how the OS has been 

designed. 

Although technically raycasting is a visually tracked input, most people 

will think of it as a physical input, so it does bear mentioning 

here. For example, the Magic Leap controller allows for selection both 

with raycast from the six-degrees-of-freedom (6DOF) controller and 

from using the thumbpad, as does the Rift in certain applications, such 

as its avatar creator. But, as of 2019, there is no standardization around 

raycast selection versus analog stick or thumbpad. 

As tracking systems improve and standardize, we can expect this 

standard to solidify over time. Both are useful at different times, and 

much like the classic Y-axis inversion problem, it might be that different 

users have such strongly different preferences that we should always 

allow for both. Sometimes, you want to point at something to select it; 

sometimes you want to scroll over to select it. Why not both? 

Body Tracking Technologies 

Let’s go through the three most commonly discussed types of body 

tracking today: hand tracking, hand pose recognition, and eye tracking. 

HAND TRACKING 

Hand tracking is when the entire movement of the hand is mapped to a 

digital skeleton, and input inferences are made based on the movement 

or pose of the hand. This allows for natural movements like picking up 

and dropping of digital objects and gesture recognition. Hand tracking 

can be entirely computer-vision based, include sensors attached to 

gloves, or use other types of tracking systems. 

HAND POSE RECOGNITION 

This concept is often confused with hand tracking, but hand pose 

recognition is its own specific field of research. The computer has been 

trained to recognize specific hand poses, much like sign language. The 



intent is mapped when each hand pose is tied to specific events like 

grab, release, select, and other common actions. 

On the plus side, pose recognition can be less processor intensive and 

need less individual calibration than robust hand tracking. But 

externally, it can be tiring and confusing to users who might not 

understand that the pose re-creation is more important than natural hand 

movement. It also requires a significant amount of user tutorials to teach 

hand poses. 

EYE TRACKING 

The eyes are constantly moving, but tracking their position makes it 

much easier to infer interest and intent—sometimes even more quickly 

than the user is aware of themselves, given that eye movements update 

before the brain visualization refreshes. Although it’s quickly tiring as 

an input in and of itself, eye tracking is an excellent input to mix with 

other types of tracking. For example, it can be used to triangulate the 

position of the object a user is interested in, in combination with hand or 

controller tracking, even before the user has fully expressed an interest. 

I’m not yet including body tracking or speech recognition on the list, 

largely because there are no technologies on the market today that are 

even beginning to implement either technology as a standard input 

technique. But companies like Leap Motion, Magic Leap, and Microsoft 

are paving the way for all of the nascent tracking types listed here. 

A Note on Hand Tracking and Hand Pose 
Recognition 

Hand tracking and hand pose recognition both must result in interesting, 

and somewhat counterintuitive, changes to how humans often think of 

interacting with computers. Outside of conversational gestures, in which 

hand movement largely plays a supporting role, humans do not generally 

ascribe a significance to the location and pose of their hands. We use 

hands every day as tools and can recognize a mimicked gesture for the 

action it relates to, like picking up an object. Yet in the history of HCI, 

hand location means very little. In fact, peripherals like the mouse and 

the game controller are specifically designed to be hand-location 



agnostic: you can use a mouse on the left or right side, you can hold a 

controller a foot up or down in front of you; it makes no difference to 

what you input. 

The glaring exception to this rule is touch devices, for which hand 

location and input are necessarily tightly connected. Even then, touch 

“gestures” have little to do with hand movement outside of the fingertips 

touching the device; you can do a three-finger swipe with any three 

fingers you choose. The only really important thing is that you fulfill the 

minimum requirement to do what the computer is looking for to get the 

result you want. 

Computer vision that can track hands, eyes, and bodies is potentially 

extremely powerful, but it can be misused. 

Voice, Hands, and Hardware Inputs over the Next 
Generation 

If you were to ask most people on the street, the common assumption is 

that we will ideally, and eventually, interact with our computers the way 

we interact with other humans: talking normally and using our hands to 

gesture and interact. Many, many well-funded teams across various 

companies are working on this problem today, and both of those input 

types will surely be perfected in the coming decades. However, they 

both have significant drawbacks that people don’t often consider when 

they imagine the best-case scenario of instant, complete hand tracking 

and NLP. 

VOICE 

In common vernacular, voice commands aren’t precise, no matter how 

perfectly understood. People often misunderstand even plain-language 

sentences, and often others use a combination of inference, metaphor, 

and synonyms to get their real intent across. In other words, they use 

multiple modalities and modalities within modalities to make sure they 

are understood. Jargon is an interesting linguistic evolution of this: 

highly specialized words that mean a specific thing in a specific context 

to a group are a form of language hotkey, if you will. 

Computers can react much more quickly than humans can—that is their 

biggest advantage. To reduce input to mere human vocalization means 



that we significantly slow down how we can communicate with 

computers from today. Typing, tapping, and pushing action-mapped 

buttons are all very fast and precise. For example, it is much faster to 

select a piece of text, press the hotkeys for “cut,” move the cursor, and 

then press the hotkeys for “paste” than it is to describe those actions to a 

computer. This is true of almost all actions. 

However, to describe a scenario, tell a story, or make a plan with another 

human, it’s often faster to simply use words in conversations because 

any potential misunderstanding can be immediately questioned and 

course-corrected by the listener. This requires a level of working 

knowledge of the world that computers will likely not have until the 

dawn of true artificial intelligence. 

There are other advantages to voice input: when you need hands-free 

input, when you are otherwise occupied, when you need transliteration 

dictation, or when you want a fast modality switch (e.g., “minimize! 

exit!”) without other movement. Voice input will always work best 

when it is used in tandem with other modalities, but that’s no reason it 

shouldn’t be perfected. And, of course, voice recognition and speech-to-

text transcription technology has uses beyond mere input. 

 


