
Chapter 1. Interfaces

This book presents three topics:

Data structures

Starting with the structures in the Java Collections Framework

(JCF), you will learn how to use data structures like lists and maps,

and you will see how they work.

Analysis of algorithms

I present techniques for analyzing code and predicting how fast it

will run and how much space (memory) it will require.

Information retrieval

To motivate the first two topics, and to make the exercises more

interesting, we will use data structures and algorithms to build a

simple web search engine.

Here’s an outline of the order of topics:

 We’ll start with the List interface and you will write classes that

implement this interface two different ways. Then we’ll compare

your implementations with the Java classes ArrayList and LinkedList.

 Next I’ll introduce tree-shaped data structures and you will work

on the first application: a program that reads pages from

Wikipedia, parses the contents, and navigates the resulting tree to

find links and other features. We’ll use these tools to test the

“Getting to Philosophy” conjecture (you can get a preview by

reading http://thinkdast.com/getphil).

 We’ll learn about the Map interface and

Java’s HashMap implementation. Then you’ll write classes that

implement this interface using a hash table and a binary search

tree.

 Finally, you will use these classes (and a few others I’ll present

along the way) to implement a web search engine, including a

crawler that finds and reads pages, an indexer that stores the

contents of web pages in a form that can be searched efficiently,

and a retriever that takes queries from a user and returns relevant

results.

http://thinkdast.com/getphil

Let’s get started.

Why Are There Two Kinds of List?

When people start working with the Java Collections Framework, they

are sometimes confused about ArrayList and LinkedList. Why does Java

provide two implementations of the List interface? And how should you

choose which one to use? I will answer these questions in the next few

chapters.

I’ll start by reviewing interfaces and the classes that implement them,

and I’ll present the idea of “programming to an interface”.

In the first few exercises, you’ll implement classes similar

to ArrayList and LinkedList, so you’ll know how they work, and we’ll see

that each of them has pros and cons. Some operations are faster or use

less space with ArrayList; others are faster or smaller with LinkedList.

Which one is better for a particular application depends on which

operations it performs most often.

Interfaces in Java

A Java interface specifies a set of methods; any class that implements

this interface has to provide these methods. For example, here is the

source code for Comparable, which is an interface defined in the

package java.lang:

public interface Comparable<T> {

 public int compareTo(T o);

}

This interface definition uses a type parameter, T, which

makes Comparable a generic type. In order to implement this interface, a

class has to

 Specify the type T refers to, and

 Provide a method named compareTo that takes an object as a

parameter and returns an int.

For example, here’s the source code for java.lang.Integer:

public final class Integer extends Number implements

Comparable<Integer> {

 public int compareTo(Integer anotherInteger) {

 int thisVal = this.value;

 int anotherVal = anotherInteger.value;

 return (thisVal<anotherVal ? -1 :

(thisVal==anotherVal ? 0 : 1));

 }

 // other methods omitted

}

This class extends Number, so it inherits the methods and instance

variables of Number; and it implements Comparable<Integer>, so it provides a

method named compareTo that takes an Integer and returns an int.

When a class declares that it implements an interface, the compiler

checks that it provides all methods defined by the interface.

As an aside, this implementation of compareTo uses the “ternary operator”,

sometimes written ?:. If you are not familiar with it, you can read about

it at http://thinkdast.com/ternary.

List Interface

http://thinkdast.com/ternary

The Java Collections Framework (JCF) defines

an interface called List and provides two

implementations, ArrayList and LinkedList.

The interface defines what it means to be a List; any class that

implements this interface has to provide a particular set of methods,

including add, get, remove, and about 20 more.

ArrayList and LinkedList provide these methods, so they can be used

interchangeably. A method written to work with a List will work with

an ArrayList, LinkedList, or any other object that implements List.

Here’s a contrived example that demonstrates the point:

public class ListClientExample {

 private List list;

 public ListClientExample() {

 list = new LinkedList();

 }

 private List getList() {

 return list;

 }

 public static void main(String[] args) {

 ListClientExample lce = new ListClientExample();

 List list = lce.getList();

 System.out.println(list);

 }

}

ListClientExample doesn’t do anything useful, but it has the essential

elements of a class that encapsulates a List; that is, it contains a List as

an instance variable. I’ll use this class to make a point, and then you’ll

work with it in the first exercise.

The ListClientExample constructor initializes list by instantiating (that is,

creating) a new LinkedList; the getter method called getList returns a

reference to the internal List object; and main contains a few lines of code

to test these methods.

The important thing about this example is that it uses List whenever

possible and avoids specifying LinkedList or ArrayList unless it is

necessary. For example, the instance variable is declared to be a List,

and getList returns a List, but neither specifies which kind of list.

If you change your mind and decide to use an ArrayList, you only have to

change the constructor; you don’t have to make any other changes.

This style is called interface-based programming, or more casually,

“programming to an interface” (see http://thinkdast.com/interbaseprog).

Here we are talking about the general idea of an interface, not a

Java interface.

When you use a library, your code should only depend on the interface,

like List. It should not depend on a specific implementation,

like ArrayList. That way, if the implementation changes in the future, the

code that uses it will still work.

On the other hand, if the interface changes, the code that depends on it

has to change, too. That’s why library developers avoid changing

interfaces unless absolutely necessary.

Exercise 1

http://thinkdast.com/interbaseprog

Since this is the first exercise, we’ll keep it simple. You will take the

code from the previous section and swap the implementation; that is,

you will replace the LinkedList with an ArrayList. Because the code

programs to an interface, you will be able to swap the implementation

by changing a single line and adding an import statement.

Start by setting up your development environment. For all of the

exercises, you will need to be able to compile and run Java code. I

developed the examples using Java SE Development Kit 7. If you are

using a more recent version, everything should still work. If you are

using an older version, you might find some incompatibilities.

I recommend using an interactive development environment (IDE) that

provides syntax checking, auto-completion, and source code refactoring.

These features help you avoid errors or find them quickly. However, if

you are preparing for a technical interview, remember that you will not

have these tools during the interview, so you might also want to practice

writing code without them.

If you have not already downloaded the code for this book, see the

instructions in “Working with the Code”.

In the directory named code, you should find these files and directories:

 build.xml is an Ant file that makes it easier to compile and run the

code.

 lib contains the libraries you’ll need (for this exercise, just JUnit).

 src contains the source code.

If you navigate into src/com/allendowney/thinkdast, you’ll find the source

code for this exercise:

 ListClientExample.java contains the code from the previous section.

 ListClientExampleTest.java contains a JUnit test for ListClientExample.

Review ListClientExample and make sure you understand what it does.

Then compile and run it. If you use Ant, you can navigate to

the code directory and run ant ListClientExample.

You might get a warning like:

https://learning.oreilly.com/library/view/think-data-structures/9781491972373/preface01.html#code

List is a raw type. References to generic type List<E>

should be parameterized.

To keep the example simple, I didn’t bother to specify the type of the

elements in the List. If this warning bothers you, you can fix it by

replacing each List or LinkedList with List<Integer> or LinkedList<Integer>.

Review ListClientExampleTest. It runs one test, which creates

a ListClientExample, invokes getList, and then checks whether the result is

an ArrayList. Initially, this test will fail because the result is a LinkedList,

not an ArrayList. Run this test and confirm that it fails.

NOTE: This test makes sense for this exercise, but it is not a good

example of a test. Good tests should check whether the class under test

satisfies the requirements of the interface; they should not depend on the

details of the implementation.

In the ListClientExample, replace LinkedList with ArrayList. You might have

to add an import statement. Compile and run ListClientExample. Then run

the test again. With this change, the test should now pass.

To make this test pass, you only had to change LinkedList in the

constructor; you did not have to change any of the places

where List appears. What happens if you do? Go ahead and replace one

or more appearances of List with ArrayList. The program should still

work correctly, but now it is “overspecified”. If you change your mind

in the future and want to swap the interface again, you would have to

change more code.

In the ListClientExample constructor, what happens if you

replace ArrayList with List? Why can’t you instantiate a List?

