
Chapter 1. Data I/O

Events happen all around us, continuously. Occasionally, we make a

record of a discrete event at a certain point in time and space. We can

then define data as a collection of records that someone (or something)

took the time to write down or present in any format imaginable. As data

scientists, we work with data in files, databases, web services, and more.

Usually, someone has gone through a lot of trouble to define a schema

or data model that precisely denotes the names, types, tolerances, and

inter-relationships of all the variables. However, it is not always possible

to enforce a schema during data acquisition. Real data (even in well-

designed databases) often has missing values, misspellings, incorrectly

formatted types, duplicate representations for the same value, and the

worst: several variables concatenated into one. Although you are

probably excited to implement machine-learning algorithms and create

stunning graphics, the most important and time-consuming aspect of

data science is preparing the data and ensuring its integrity.

What Is Data, Anyway?

Your ultimate goal is to retrieve data from its source, reduce the data via

statistical analysis or learning, and then present some kind of knowledge

about what was learned, usually in the form of a graph. However, even if

your result is a single value such as the total revenue, most engaged

user, or a quality factor, you still follow the same protocol: input

data → reductive analysis → output data.

Considering that practical data science is driven by business questions, it

will be to your advantage to examine this protocol from right to left.

First, formalize the question you are trying to answer. For example, do

you require a list of top users by region, a prediction of daily revenue for

the next week, or a plot of the distribution of similarities between items

in inventory? Next, explore the chain of analyses that can answer your

questions. Finally, now that you have decided on your approach, exactly

what data will you need to accomplish this goal? You may be surprised

to find that you do not have the data required. Often you will discover

that a much simpler set of analysis tools (than you originally envisioned)

will be adequate to achieve the desired output.

In this chapter, you will explore the finer details of reading and writing

data from a variety of sources. It is important to ask yourself what data

model is required for any subsequent steps. Perhaps it will suffice to

build a series of numerical array types (e.g., double[][], int[], String[]) to

contain the data. On the other hand, you may benefit from creating a

container class to hold each data record, and then populating

a List or Map with those objects. Still another useful data model is to

formulate each record as a set of key-value pairs in a JavaScript Object

Notation (JSON) document. The decision of what data model to choose

rests largely on the input requirements of the subsequent data-

consuming processes.

Data Models

What form is the data in, and what form do you need to transform it to

so you can move forward? Suppose somefile.txt contained rows

of id, year, and city data.

Univariate Arrays

The simplest data model for this particular example is to create a series

of arrays for the three variables id, year, and city:

int[] id = new int[1024];
int[] year = new int[1024];
String[] city = new String[1024];

As the BufferedReader loops through the lines of the file, values are added

to each position of the arrays with the aid of an incrementing counter.

This data model is probably adequate for clean data of known

dimensions, where all the code ends up in one executable class. It would

be fairly straightforward to feed this data into any number of statistical

analysis or learning algorithms. However, you will probably want to

modularize your code and build classes and subsequent methods suited

for each combination of data source and data model. In that case,

shuttling around arrays will become painful when you have to alter the

signatures of existing methods to accommodate new arguments.

Multivariate Arrays

Here you want each row to hold all the data for a record, but they must

be the same type! So in our case, this would work only if you assigned

cities a numerical, integer value:

int[] row1 = {1, 2014, 1};
int[] row2 = {2, 2015, 1};
int[] row3 = {3, 2014, 2};

You could also make this a 2D array:

int[][] data = {{1, 2014, 1}, {2, 2015, 1}, {3, 2014, 2}};

For your first pass through a dataset, there may be a complicated data

model already, or just a mixture of text, integers, doubles, and date

times. Ideally, after you have worked out what will go into a statistical

analysis or learning algorithm, this data is transformed into a two-

dimensional array of doubles. However, it takes quite a bit of work to

get to that point. On the one hand, it’s convenient to be handed a matrix

of data from which you can forge ahead with machine learning. On the

other, you may not know what compromises were made or what

mistakes have been propagated, undetected.

Data Objects

Another option is to create a container class and then populate a

collection such as List or Map with those containers. The advantages are

that it keeps all the values of a particular record together, and adding

new members to a class will not break any methods that take the class as

an argument. The data in the file somefile.txt can be represented by the

following class:

class Record {
 int id;
 int year;
 String city;
}

Keep the class as lightweight as possible, because a collection

(List or Map) of these objects will add up for a large dataset! Any methods

acting on Record could be static methods ideally in their own class titled

something like RecordUtils.

The collection’s structure, List, is used to hold all the Record objects:

List<Record> listOfRecords = new ArrayList<>();

Looping though the data file with a BufferReader, each line can then be

parsed and its contents stored in a new Record instance. Each

new Record instance is then added to List<Record> listOfRecords. Should

you require a key to quickly look up and retrieve an

individual Record instance, use a Map:

Map<String, Record> mapOfRecords = new HashMap<>();

The key to each record should be a unique identifier for that particular

record, such as a record ID or URL.

Matrices and Vectors

Matrices and vectors are higher-level data structures composed of,

respectively, two- and one-dimensional arrays. Usually, a dataset

contains multiple columns and rows, and we can say that these variables

form a two-dimensional array (or matrix) X in which there are rows

and columns. We choose to be the row index, and to be the column

index, such that each element of the matrix is

When we put values into a data structure like a matrix, we can gain

convenience. In many situations, we will be performing mathematical

operations on our data. A matrix instance can have abstract methods for

performing these operations, with implementation details that are suited

for the task at hand. We will explore matrices and vectors in detail

in Chapter 2.

JSON

https://learning.oreilly.com/library/view/data-science-with/9781491934104/ch02.html#linear_algebra_chapter

JavaScript Object Notation (JSON) has become a prevalent form of

representing data. In general, JSON data is represented by simple rules

at json.org: double quotes! No trailing commas! A JSON object has

outer curly braces and can have any valid set of key-value pairs

separated by commas (the order of contents is not guaranteed, so treat it

as a HashMap type):

{"city":"San Francisco", "year": 2020, "id": 2, "event_codes":[20, 22, 34,
19]}

A JSON array has outer square brackets with valid JSON contents

separated by commas (the order of array contents is guaranteed, so treat

it as an ArrayList type):

[40, 50, 70, "text", {"city":"San Francisco"}]

There are two main categories you will find. Some data files contain

complete JSON objects or arrays. These are usually configuration files.

However, another type of data structure that is common is a text file of

independent JSON objects, one per line. Note that this type of data

structure (list of JSONs) is technically not a JSON object or array

because there are no closing braces or commas between lines, and as

such, trying to parse the whole data structure as one JSON object (or

array) will fail.

Dealing with Real Data

Real data is messy, incomplete, incorrect, and sometimes incoherent. If

you are working with a “perfect” dataset, it’s because someone else

spent a great deal of time and effort in getting it that way. It is also

possible that your data is, in fact, not perfect, and you are unwittingly

performing analyses on junk data. The only way to be sure is to get data

from the source and process it yourself. This way, if there is a mistake,

you know who to blame.

Nulls

Null values appear in a variety of forms. If the data is being passed

around inside Java, it’s entirely possible to have a null. If you are

parsing strings from a text file, a null value may be represented by a

variety of the literal string "null", "NULL", or other string such as "na", or

even a dot. In either case (a null type or null literal), we want to keep

track of these:

private boolean checkNull(String value) {
 return value == null || "null".equalsIgnoreCase(value);
}

Often a null value has been recorded as a blank space or series of blank

spaces. Although this is sometimes a nuisance, it may serve a purpose,

because encoding a 0 is not always appropriate to represent the concept

that the data point does not exist. For example, if we were tracking

binary variables, 0 and 1, and came across an item for which we did not

know the value, then wrongly assigning 0 to the value (and writing it to

the file) would incorrectly assign a true negative value. When writing a

null value to a text file, my preference is for a zero-length string.

Blank Spaces

Blank spaces abound in real data. It is straightforward to check for an

empty string by using the String.isEmpty() method. However, keep in

mind that a string of blank spaces (even one blank space) is not empty!

First, we use the String.trim() method to remove any leading or trailing

spaces around the input value and then check its

length. String.isEmpty() returns true only if the string has zero length:

private boolean checkBlank(String value) {
 return value.trim().isEmpty();
}

Parse Errors

Once we know the string value is neither null nor blank, we parse it into

the type we require. We’ll leave the parsing of strings to strings out of

this, because there is nothing to parse!

When dealing with numeric types, it is unwise to cast strings to a

primitive type such as double, int, or long. It is recommended to use the

object wrapper classes such as Double, Integer, and Long, which have a

string-parsing method that throws a NumberFormatException should

something go wrong. We can catch that exception and update a parsing

error counter. You can also print or log the error:

try {
 double d = Double.parseDouble(value);
 // handle d

} catch (NumberFormatException e) {
 // increment parse error counter etc.
}

Similarly, date times formatted as a string can be parsed

by the OffsetDateTime.parse() method; the DateTimeParseException can

be caught and logged should something be wrong with the input string:

try {
 OffsetDateTime odt = OffsetDateTime.parse(value);
 // handle odt
} catch (DateTimeParseException e) {
 // increment parse error counter etc.
}

Outliers

Now that our data is cleaned and parsed, we can check whether the value

is acceptable given our requirements. If we were expecting a value of

either 0 or 1 and we get a 2, the value is clearly out of range and we can

designate this data point as an outlier. As in the case with nulls and

blanks, we can perform a Boolean test on the value to determine whether

it is within an acceptable range of values. This is good for numeric types

as well as strings and date times.

In the case of checking ranges with numeric types, we need to know the

minimum and maximum acceptable values and whether they are

inclusive or exclusive. For example, if we set minValue =

1.0 and minValueInclusive = true, all values greater than or equal to 1.0 will

pass the test. If we set minValueInclusive = false, only values greater than

1.0 will pass the test. Here is the code:

public boolean checkRange(double value) {
 boolean minBit = (minValueInclusive) ? value >= minValue : value >
minValue;
 boolean maxBit = (maxValueInclusive) ? value <= maxValue : value <
maxValue;
 return minBit && maxBit;
}

Similar methods can be written for integer types.

We can also check whether a string value is in an acceptable range by

setting an enumeration of valid strings. This can be done by creating

a Set instance of valid strings called, for example, validItems, where

the Set.contains() method can be used to test the validity of an input

value:

private boolean checkRange(String value) {
 return validItems.contains(value);
}

For DateTime objects, we can check whether a date is after a minimum

date and before a maximum date. In this case, we define the min and

max as OffsetDateTime objects and then test whether the input date time is

between the min and max.

Note that OffsetDateTime.isBefore() and OffsetDateTime.isAfter() are exclusi

ve. If the input date time is equal to either the min or max, the test will

fail. Here is the code:

private boolean checkRange(OffsetDateTime odt) {
 return odt.isAfter(minDate) && odt.isBefore(maxDate);
}

Managing Data Files

This is where the art of data science begins! How you choose to build a

dataset is not only a matter of efficiency, but also one of flexibility.

There are many options for reading and writing files. As a bare

minimum, the entire contents of the file can be read into a String type by

using a FileReader instance, and then the String can be parsed into the data

model. For large files, I/O errors are avoided by using a BufferedReader to

read each line of the file separately. The strategy presented here is to

parse each line as it is read, keeping only the values that are required and

populating a data structure with those records. If there are 1,000

variables per line, and only three are required, there is no need to keep

all of them. Likewise, if the data in a particular line does not meet

certain criteria, there is also no need to keep it. For large datasets, this

conserves resources compared to reading all the lines into a string array

(String[]) and parsing it later. The more consideration you put into this

step of managing data files, the better off you will be. Every step you

take afterward, whether it’s statistics, learning, or plotting, will rely on

your decisions when building a dataset. The old adage of “garbage in,

garbage out” definitely applies.

Understanding File Contents First

Data files come in a bewildering array of configurations, with some

undesirable features as a result. Recall that ASCII files are just a

collection of ASCII characters printed to each line. There is no

guarantee on the format or precision of a number, the use of single or

double quotes, or the inclusion (or exclusion) of numerous space, null,

and newline characters. In short, despite your assumptions as to the

contents of the file, there can be almost anything on each line. Before

reading in the file with Java, take a look at it in a text editor or with the

command line. Note the number, position, and type of each item in a

line. Pay close attention to how missing or null values are represented.

Also note the type of delimiter and any headers describing the data. If

the file is small enough, you can scan it visually for missing or

incorrectly formatted lines. For example, say we look at the

file somefile.txt with the Unix command less in a bash shell:

bash$ less somefile.txt

"id","year","city"

1,2015,"San Francisco"

2,2014,"New York"

3,2012,"Los Angeles"

...

We see a comma-separated values (CSV) dataset with the

columns id, year, and city. We can quickly check the number of lines in

the file:

bash$ wc -l somefile.txt

1025

This indicates that there are 1,024 lines of data plus one line more for

the header. Other formats are possible, such as tab-separated values

(TSV), a “big string” format in which all the values are concatenated

together, and JSON. For large files, you may want to take the first 100

or so lines and redirect them to an abridged file for purposes of

developing your application:

bash$ head -100 filename > new_filename

In some cases, the data file is just too big for a pair of eyes to scan it for

structure or errors. Clearly, you would have trouble examining a data

file with 1,000 columns of data! Likewise, you are unlikely to find an

error in formatting by scrolling through one million lines of data. In this

case it is essential that you have an existing data dictionary that

describes the format of the columns and the data types (e.g., integer,

float, text) that are expected for each column. You can programmatically

check each line of data as you parse the file via Java; exceptions can be

thrown, and, perhaps, the entire contents of the offending line printed

out so you can examine what went wrong.

Reading from a Text File

The general approach for reading a text file is to create

a FileReader instance surrounded by a BufferedReader that enables reading

each line. Here, FileReader takes the argument of String filename,

but FileReader can also take a File object as its argument. The File object

is useful when filenames and paths are dependent on the operating

system. This is the generic form for reading files line by line with

a BufferedReader:

try(BufferedReader br = new BufferedReader(new
FileReader("somefile.txt"))) {
 String columnNames = br.readline(); // ONLY do this if it exists
 String line;
 while ((line = br.readLine()) != null) {
 /* parse each line */
 // TODO
 }
} catch (Exception e) {
 System.err.println(e.getMessage()); // or log error
}

We can do the exact same thing if the file exists somewhere remotely:

URL url = new URL("http://storage.example.com/public-data/somefile.txt");
try(BufferedReader br = new BufferedReader(
 new InputStreamReader(url.openStream()))) {
 String columnNames = br.readline(); // ONLY do this if it exists
 String line;
 while ((line = br.readLine()) != null) {
 // TODO parse each line
 }
} catch (Exception e) {
 System.err.println(e.getMessage()); // or log error
}

We just have to worry about how to parse each line.

PARSING BIG STRINGS

Consider a file in which each row is a “big string” of concatenated

values, and any substring with starting and stopping positions encodes a

particular variable:

0001201503

0002201401

0003201202

The first four digits are the id number, the second four are the year, and

the last two are the city code. Keep in mind that each line can be

thousands of characters long, and the position of character substrings is

critical. It is typical that numbers will be padded with zeros, and empty

spaces may be present for null values. Note that periods occurring inside

a float (e.g., 32.456) count as a space, as will any other “strange”

character! Usually, text strings are encoded as values. For example, in

this case, New York = 01, Los Angeles = 02, and San Francisco = 03.

In this case, the values from each line can be accessed with

the method String.substring(int beginIndex, int endIndex). Note that the

substring starts at beginIndex and goes up to (but not including) endIndex:

/* parse each line */

int id = Integer.parseInt(line.substring(0, 4));

int year = Integer.parseInt(line.substring(4, 8));

int city = Integer.parseInt(line.substring(8, 10));

PARSING DELIMITED STRINGS

Considering the popularity of spreadsheets and database dumps, it is

highly likely you will be given a CSV dataset at some point. Parsing this

kind of file could not be easier! Consider the data in our example

formatted as a CSV file:

1,2015,"San Francisco"

2,2014,"New York"

3,2012,"Los Angeles"

Then all we need to do is parse with String.split(",") and

utilize String.trim() to remove any pesky leading or trailing whitespaces.

It also will be necessary to remove any quotes around strings

with String.replace("\"", ""):

/* parse each line */
String[] s = line.split(",");
int id = Integer.parseInt(s[0].trim());
int year = Integer.parseInt(s[1].trim());
String city = s[2].trim().replace("\"", "");

In the next example, the data in somefile.txt has been separated by tabs:

1 2015 "San Francisco"

2 2014 "New York"

3 2012 "Los Angeles"

Splitting tab-delimited data is achieved by replacing code

for String.split(",") in the preceding example with this:

String[] s = line.split("\t");

At some point, you will undoubtedly come across CSV files with fields

that contain commas. One example is text taken from a user blog. Yet

another example occurs when denormalized data is put into a column—

for example, “San Francisco, CA” instead of having separate columns

for city and state. This is quite tricky to parse and requires regex.

Instead, why not use the Apache Commons CSV parser library?

/* parse each line */
CSVParser parser = CSVParser.parse(line, CSVFormat.RFC4180);
for(CSVRecord cr : parser) {
 int id = cr.get(1); // columns start at 1 not 0 !!!
 int year = cr.get(2);

 String city = cr.get(3);
}

The Apache Commons CSV library also handles common formats

including CSVFormat.EXCEL, CSVFormat.MYSQL,

and CSVFormat.TDF.

PARSING JSON STRINGS

JSON is a protocol for serializing JavaScript objects and can be

extended to data of all types. This compact, easy-to-read format is

ubiquitous in Internet data APIs (in particular, RESTful services) and is

the standard format for many NoSQL solutions such as MongoDB and

CouchDB. As of version 9.3, the PostgreSQL database offers a JSON

data type and can query native JSON fields. The clear advantage is

human readability; the structure of the data is readily visible, and with

“pretty print,” even more so. In terms of Java, JSON is nothing more

than a collection of HashMaps and ArrayLists, in any nested configuration

imaginable. Each line of the data from the prior examples can be

formatted as a JSON string by placing the values into key-value pairs;

strings are in double quotes (not single quotes), and no trailing commas

are allowed:

{"id":1, "year":2015, "city":"San Francisco"}
{"id":2, "year":2014, "city":"New York"}
{"id":3, "year":2012, "city":"Los Angeles"}

Note that the entire file itself is not technically a JSON object, and

parsing the whole file as such will fail. To be valid JSON format, each

line would need to be separated by a comma and then the entire group

enclosed with square brackets. This would comprise a JSON array.

However, writing this kind of structure would be inefficient and not

useful. It is much more convenient and usable as is: a line-by-line stack

of JSON objects in string representation. Note that the JSON parser does

not know the type of the values in the key-value pairs. So get

the String representation and then parse it to its primitive type by using

the boxed methods. It is straightforward to build our dataset

now, using org.simple.json:

/* create JSON parser outside while loop */
JSONParser parser = new JSONParser();
...

/* create an object by casting the parsed string */

JSONObject obj = (JSONObject) parser.parse(line);
int id = Integer.parseInt(j.get("id").toString());
int year = Integer.parseInt(j.get("year").toString());
String city = j.get("city").toString();

Reading from a JSON File

This section covers files that are stringified JSON objects or arrays. You

have to know beforehand whether the file is a JSON object or an array.

If you look at the file with, for example, ls on the command line, you

can tell if it has curly braces (object) or square braces (array):

{{"id":1, "year":2015, "city":"San Francisco"},
 {"id":2, "year":2014, "city":"New York"},
 {"id":3, "year":2012, "city":"Los Angeles"}}

Then you use the Simple JSON library:

JSONParser parser = new JSONParser();
try{
 JSONObject jObj = (JSONObject) parser.parse(new
FileReader("data.json"));
 // TODO do something with jObj
} catch (IOException|ParseException e) {
 System.err.println(e.getMessage());
}

And if it’s an array,

[{"id":1, "year":2015, "city":"San Francisco"},
 {"id":2, "year":2014, "city":"New York"},
 {"id":3, "year":2012, "city":"Los Angeles"}]

then you can parse the entire JSON array:

JSONParser parser = new JSONParser();
try{
 JSONArray jArr = (JSONArray) parser.parse(new
FileReader("data.json"));
 // TODO do something with jObj
} catch (IOException|ParseException e) {
 System.err.println(e.getMessage());
}

WARNING

If you really have a file with one JSON object per line, the file is not

technically a qualified JSON data structure. Refer back to “Reading

from a Text File” where we read text files, parsing JSON objects one

line at a time.

https://learning.oreilly.com/library/view/data-science-with/9781491934104/ch01.html#readingtextfile
https://learning.oreilly.com/library/view/data-science-with/9781491934104/ch01.html#readingtextfile

Reading from an Image File

When using images as input for learning, we need to convert from the

image format (e.g., PNG) to a data structure that is appropriate, such as

a matrix or vector. There are several points to consider here. First, an

image is a two-dimensional array with coordinates, {x1, x2}, and a set of

associated color or intensity values, {y1…}, that may be stored as a

single, integer value. If all we want is the raw value stored in a 2D

integer array (labeled data here), we read in the buffered image with this:

BufferedImage img = null;
try {
 img = ImageIO.read(new File("Image.png"));
 int height = img.getHeight();
 int width = img.getWidth();
 int[][] data = new int[height][width];
 for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 int rgb = img.getRGB(i, j); // negative integers
 data[i][j] = rgb;
 }
 }
} catch (IOException e) {
 // handle exception
}

We may want to convert the integer into its RGB (red, green, blue)

components by bit shifting the integer:

int blue = 0x0000ff & rgb;
int green = 0x0000ff & (rgb >> 8);
int red = 0x0000ff & (rgb >> 16);
int alpha = 0x0000ff & (rgb >> 24);

However, we can get this information natively from the raster with this:

byte[] pixels = ((DataBufferByte)
img.getRaster().getDataBuffer()).getData();
for (int i = 0; i < pixels.length / 3 ; i++) {
 int blue = Byte.toUnsignedInt(pixels[3*i]);
 int green = Byte.toUnsignedInt(pixels[3*i+1]);
 int red = Byte.toUnsignedInt(pixels[3*i+2]);
}

Color may not be important. Perhaps grayscale is really all that’s

needed:

//convert rgb to grayscale (0 to 1) where colors are on a scale of 0 to 255
double gray = (0.2126 * red + 0.7152 * green + 0.0722 * blue) / 255.0

Also, in some cases the 2D representation is not necessary. We convert

the matrix to a vector by concatenating each row of the matrix onto the

new vector such that xn = x1, x2, ..., where the length n of the vector

is m × p of the matrix, the number of rows times the number of columns.

In the well-known MNIST dataset of handwritten images, the data has

already been corrected (centered and cropped) and then converted into a

binary format. So reading in that data requires a special format

(see Appendix A), but it is already in vector (1D) as opposed to matrix

(2D) format. Learning techniques on the MNIST dataset usually involve

this vectorized format.

Writing to a Text File

Writing data to files has a general form of using the FileWriter class, but

once again the recommended practice is to use the BufferedWriter to avoid

any I/O errors. The general concept is to format all the data you want to

write to file as a single string. For the three variables in our example, we

can do this manually with a delimiter of choice (either a comma or \t):

/* for each instance Record record */
String output = Integer.toString(record.id) + "," +
Integer.toString(record.year) + "," + record.city;

When using Java 8, the method String.join(delimiter, elements) is

convenient!

/* in Java 8 */
String newString = String.join(",", {"a", "b", "c"});

/* or feed in an Iterator */
String newString = String.join(",", myList);

Otherwise, you can instead use the Apache Commons

Lang StringUtils.join(elements, delimiter) or the native StringBuilder class

in a loop:

/* in Java 7 */
String[] strings = {"a", "b", "c"};

/* create a StringBuilder and add the first member */
StringBuilder sb;
sb.append(strings[0]);

/* skip the first string since we already have it */
for(int i = 1; i < strings.length, i++){
 /* choose a delimiter here ... could also be a \t for tabs */
 sb.append(",");
 sb.append(strings[i]);
}

String newString = sb.toString();

https://learning.oreilly.com/library/view/data-science-with/9781491934104/app01.html#datasets_app

Note that successively using myString += myString_part calls

the StringBuilder class, so you might as well use StringBuilder anyway (or

not). In any case, the strings are written line by line. Keep in mind that

the method BufferedWriter.write(String) does not write a new line! You

will have to include a call to BufferedWriter.newLine() if you would like

each data record to be on its own line:

try(BufferedWriter bw = new BufferedWriter(new
FileWriter("somefile.txt"))) {
 for(String s : myStringList){
 bw.write(s);
 /* don't forget to append a new line! */
 bw.newLine();
 }
} catch (Exception e) {
 System.out.println(e.getMessage());
}

The preceding code overwrites all existing data in the file designated by

filename. In some situations, you will want to append data to an existing

file. The FileWriter class takes an optional Boolean field append that

defaults to false if it is excluded. To open a file for appending to the next

available line, use this:

/* setting FileWriter append bit keeps existing data and appends new data

*/

try(BufferedWriter bw = new BufferedWriter(

 new FileWriter("somefile.txt", true))) {

 for(String s : myStringList){

 bw.write(s);

 /* don't forget to append a new line! */

 bw.newLine();

 }

} catch (Exception e) {

 System.out.println(e.getMessage());

}

Still another option is to use the PrintWriter class, which wraps around

the BufferedWriter. PrintWriter and has a method println() that uses the

native newline character of whatever operating system you are on. So

the \n can be excluded in the code. This has the advantage that you don’t

have to worry about adding those pesky newline characters. This could

also be useful if you are generating text files on your own computer (and

therefore OS) and will be consuming these files yourself. Here is an

example using PrintWriter:

try(PrintWriter pw = new PrintWriter(new BufferedWriter(
 new FileWriter("somefile.txt")))) {
 for(String s : myStringList){
 /* adds a new line for you! */
 pw.println(s);

 }
} catch (Exception e) {
 System.out.println(e.getMessage());
}

Any of these methods work just fine with JSON data. Convert each

JSON object to a String with the JSONObject.toString() method and write

the String. If you are writing one JSON object, such as a configuration

file, then it is as simple as this:

JSONObject obj = ...

try(BufferedWriter bw = new BufferedWriter(new
FileWriter("somefile.txt"))) {
 bw.write(obj.toString());
}
} catch (Exception e) {
 System.out.println(e.getMessage());
}

When creating a JSON data file (a stack of JSON objects), loop through

your collection of JSONObjects:

List<JSONObject> dataList = ...

try(BufferedWriter bw = new BufferedWriter(new
FileWriter("somefile.txt"))) {
 for(JSONObject obj : dataList){
 bw.write(obj.toString());
 /* don't forget to append a new line! */
 bw.newLine();
 }
} catch (Exception e) {
 System.out.println(e.getMessage());
}

Don’t forget to set the append-bit in FileWriter if this file is

accumulative! You can add more JSON records to the end of this file

simply by setting the append-bit in the FileWriter:

try(BufferedWriter bw = new BufferedWriter(
 new FileWriter("somefile.txt", true))) {
...
}

Mastering Database Operations

The robustness and flexibility of relational databases such as MySQL

make them the ideal technology for a wide range of use cases. As a data

scientist, you will most likely interact with relational databases in

connection to a larger application, or perhaps you will generate tables of

condensed and organized data specific to the tasks of the data science

group. In either case, mastering the command line, Structured Query

Language (SQL), and Java Database Connectivity (JDBC) are critical

skills.

Command-Line Clients

The command line is a great environment for managing the database as

well as performing queries. As an interactive shell, the client enables

rapid iteration of commands useful for exploring the data. After you

work out queries on the command line, you can later transfer the SQL to

your Java program, where the query can be parameterized for more

flexible use. All of the popular databases such as MySQL, PostgreSQL,

and SQLite have command-line clients. On systems where MySQL has

been installed for development purposes (e.g., your personal computer),

you should be able to connect with an anonymous login with an optional

database name:

bash$ mysql <database>

However, you might not be able to create a new database. You can log

in as the database administrator:

bash$ mysql -u root <database>

Then you can have full access and privileges. In all other cases (e.g., you

are connecting to a production machine, remote instance, or cloud-based

instance), you will need the following:

bash$ mysql -h host -P port -u user -p password <database>

Upon connecting, you will be greeted with the MySQL shell, where you

can make queries for showing all the databases you have access to, the

name of the database you are connected to, and the username:

mysql> SHOW DATABASES;

To switch databases to a new database, the command is USE dbname:

mysql> USE myDB;

You can create tables now:

mysql> CREATE TABLE my_table(id INT PRIMARY KEY, stuff

VARCHAR(256));

Even better, if you have those table creation scripts stored away as files,

the following will read in and execute the file:

mysql> SOURCE <filename>;

Of course, you may want to know what tables are in your database:

mysql> SHOW TABLES;

You may also want to get a detailed description of a table, including

column names, data types, and constraints:

mysql> DESCRIBE <tablename>;

Structured Query Language

Structured Query Language (SQL) is a powerful tool for exploring data.

While object-relational mapping (ORM) frameworks have a place in

enterprise software applications, you may find them too restrictive for

the kinds of tasks you will face as a data scientist. It is a good idea to

brush up on your SQL skills and be comfortable with the basics

presented here.

CREATE

To create databases and tables, use the following SQL:

CREATE DATABASE <databasename>;
CREATE TABLE <tablename> (col1 type, col2 type, ...);

SELECT

A generalized bare-bones SELECT statement will have this form:

SELECT
 [DISTINCT]

 col_name, col_name, ... col_name
 FROM table_name
 [WHERE where_condition]

 [GROUP BY col_name [ASC | DESC]]
 [HAVING where_condition]
 [ORDER BY col_name [ASC | DESC]]
 [LIMIT row_count OFFSET offset]
 [INTO OUTFILE 'file_name']

A few tricks may come in handy. Suppose your dataset contains millions

of points, and you just want to get a general idea of the shape. You can

return a random sample by using ORDER BY:

ORDER BY RAND();

And you can set LIMIT to the sample size you would like back:

ORDER BY RAND() LIMIT 1000;

INSERT

Inserting data into a new row is implemented via the following:

INSERT INTO tablename(col1, col2, ...) VALUES(val1, val2, ...);

Note that you can drop the column name entirely if the values account

for all the columns and not just a subset:

INSERT INTO tablename VALUES(val1, val2, ...);

You can also insert multiple records at once:

INSERT INTO tablename(col1, col2, ...) VALUES(val1, val2, ...),(val1, val2, ...),

(val1, val2, ...);

UPDATE

On some occasions, you will need to alter an existing record. A lot of

times this occurs quickly, on the command line, when you need to patch

a mistake or correct a simple typo. Although you will undoubtedly

access databases in production, analytics, and testing, you may also find

yourself in an ad hoc DBA position. Updating records is common when

dealing with real users and real data:

UPDATE table_name SET col_name = 'value' WHERE other_col_name =
'other_val';

In the realm of data science, it is hard to envision a situation where you

will be programmatically updating data. There will be exceptions, of

course, such as the aforementioned typo corrections or when building a

table piecemeal, but for the most part, updating important data sounds

like a recipe for disaster. This is particularly true if multiple users are

relying on the same data and have already written code, and subsequent

analyses depend on a static dataset.

DELETE

Deleting data is probably unnecessary in these days of cheap storage, but

just like UPDATE, deleting will come in handy when you’ve made an error

and don’t want to rebuild your whole database. Typically, you will be

deleting records based on certain criteria, such as a user_id or record_id,

or before a certain date:

DELETE FROM <tablename> WHERE <col_name> = 'col_value';

Another useful command is TRUNCATE, which deletes all the data in a table

but keeps the table intact. Essentially, TRUNCATE wipes a table clean:

TRUNCATE <tablename>;

DROP

If you want to delete all the contents of a table and the table itself, you

must DROP the table. This gets rid of tables entirely:

DROP TABLE <tablename>;

This deletes an entire database and all of its contents:

DROP DATABASE <databasename>;

Java Database Connectivity

The Java Database Connectivity (JDBC) is a protocol connecting Java

applications with any SQL-compliant database. The JDBC drivers for

each database vendor exist as a separate JAR that must be included in

build and runtime. The JDBC technology strives for a uniform layer

between applications and databases regardless of the vendor.

CONNECTIONS

Connecting to a database with JDBC is extremely easy and convenient.

All you need is a properly formed URI for the database that takes this

general form:

String uri = "jdbc:<dbtype>:[location]/<dbname>?<parameters>"

The DriverManager.getConnection() method will throw an exception, and

you have two choices for dealing with this. The modern Java way is to

put the connection inside the try statement, known as a try with

resource. In this way, the connection will be automatically closed when

the block is done executing, so you do not have to explicitly put in a

call to Connection.close(). Remember that if you decide to put the

connection statement in the actual try block, you will need to explicitly

close the connection, probably in a finally block:

String uri = "jdbc:mysql://localhost:3306/myDB?user=root";
try(Connection c = DriverManager.getConnection(uri)) {
 // TODO do something here
} catch (SQLException e) {
 System.err.println(e.getMessage());
}

Now that you have a connection, you need to ask yourself two

questions:

 Are there any variables in the SQL string (will the SQL string be

altered in any way)?

 Am I expecting any results to come back from the query other than

an indicator that it was successful or not?

Start by assuming that you will create a Statement. If the Statement will

take a variable (e.g., if the SQL will be appended to by an application

variable), then use a PreparedStatement instead. If you do not expect any

results back, you are OK. If you are expecting results to come back, you

need to use ResultSets to contain and process the results.

STATEMENTS

When executing an SQL statement, consider the following example:

DROP TABLE IF EXISTS data;
CREATE TABLE IF NOT EXISTS data(
 id INTEGER PRIMARY KEY,
 yr INTEGER,
 city VARCHAR(80));
INSERT INTO data(id, yr, city) VALUES(1, 2015, "San Francisco"),

 (2, 2014, "New York"),(3, 2012, "Los Angeles");

All of the SQL statements are hardcoded strings with no varying parts.

They return no values (other than a Boolean return code) and can be

executed, individually, inside the above try-catch block with this:

String sql = "<sql string goes here>";
Statement stmt = c.createStatement();
stmt.execute(sql);
stmt.close();

PREPARED STATEMENTS

You will probably not be hardcoding all your data into an SQL

statement. Likewise, you may create a generic update statement for

updating a record’s city column given an id by using an

SQL WHERE clause. Although you may be tempted to build SQL strings by

concatenating them, this is not a recommended practice. Anytime

external input is substituted into an SQL expression, there is room for an

SQL injection attack. The proper method is to use placeholders (as

question marks) in the SQL statement and then use the

class PreparedStatement to properly quote the input variables and execute

the query. Prepared statements not only have a security advantage but

one of speed as well. The PreparedStatement is compiled one time, and for

a large number of inserts, this makes the process extremely efficient

compared to compiling a new SQL statement for each and every

insertion. The preceding INSERT statement, with corresponding Java can

be written as follows:

String insertSQL = "INSERT INTO data(id, yr, city) VALUES(?, ?, ?)";
PreparedStatement ps = c.prepareStatement(insertSQL);
/* set the value for each placeholder ? starting with index = 1 */
ps.setInt(1, 1);
ps.setInt(2, 2015);
ps.setString(3, "San Francisco");
ps.execute();
ps.close();

But what if you have a lot of data and need to loop through a list? This is

where you execute in batch mode. For example, suppose you have

a List of Record objects obtained from an import of CSV:

String insertSQL = "INSERT INTO data(id, yr, city) VALUES(?, ?, ?)";
PreparedStatement ps = c.prepareStatement(insertSQL);
List<Record> records = FileUtils.getRecordsFromCSV();
for(Record r: records) {
 ps.setInt(1, r.id);
 ps.setInt(2, r.year);
 ps.setString(3, r.city);
 ps.addBatch();
}

ps.executeBatch();
ps.close();

RESULT SETS

SELECT statements return results! Anytime you find yourself

writing SELECT you will need to

properly call Statement.executeQuery() instead of execute() and assign the

return value to a ResultSet. In database-speak, the ResultSet is a cursor

that is an iterable data structure. As such, the Java

class ResultSet implements the Java Iterator class and the familiar while-

next loop can be used:

String selectSQL = "SELECT id, yr, city FROM data";
Statement st = c.createStatement();
ResultSet rs = st.executeQuery(selectSQL);
while(rs.next()) {
 int id = rs.getInt("id");
 int year = rs.getInt("yr");
 String city = rs.getString("city"));
 // TODO do something with each row of values
}
rs.close();
st.close();

As in the case with reading files line by line, you must choose what to

do with the data. Perhaps you will store each value in an array of that

type, or perhaps you will store each row of data into a class, and build a

list with that class. Note that we are retrieving the values from

the ResultSet instance by calling column values by their column names

according to the database schema. We can instead increment through the

column indices starting with 1.

Visualizing Data with Plots

Data visualization is an important and exciting component of data

science. The combination of broadly available, interesting data and

interactive graphical technologies has led to stunning visualizations,

capable of telling complex stories. Many times, our visualizations are

the eye candy that everyone has been anticipating. Of utmost importance

is to realize that the same source of data can be used to tell completely

different stories depending on not only the segment of the data you

choose to show, but also the graphical styling utilized.

Keeping in mind that data visualization should always take into

consideration the audience, there are roughly three kinds of consumers

of a visualization. The first is yourself, the all-knowing expert who is

most likely iterating quickly on an analysis or algorithm development.

Your requirements are to see the data as plainly and quickly as possible.

Things such as setting plot titles, axis labels, smoothing, legends, or date

formatting might not be important, because you are intimately aware of

what you are looking at. In essence, we often plot data to get a quick

overview of the data landscape, without concerning ourselves with how

others will view it.

The second consumer of data visualizations is the industry expert. After

you have solved a data science problem and you think it’s ready to

share, it’s essential to fully label the axis, put a meaningful, descriptive

title on it, make sure any series of data are described by a legend, and

ensure that the graphic you have created can mostly tell a story on its

own. Even if it’s not visually stunning, your colleagues and peers will

probably not be concerned with eye candy, but rather the message you

are trying to convey. In fact, it will be much easier to make a scientific

evaluation on the merits of the work if the visualization is clear of

graphical widgets and effects. Of course, this format is also essential for

archiving your data. One month later, you will not remember what those

axes are if you don’t label them now!

The third category of visualization consumer is everybody else. This is

the time to get creative and artistic, because a careful choice of colors

and styles can make good data seem great. Be cautious, however, of the

tremendous amount of time and effort you will spend preparing graphics

at this level of consumer. An added advantage of using JavaFX is the

interactivity allowed via mouse options. This enables you to build a

graphical application similar to many of the web-based dashboards you

are accustomed to.

Creating Simple Plots

Java contains native graphics capabilities in the JavaFX package. Since

version 1.8, scientific plotting is enabled with charts of many types such

as scatter, line, bar, stacked bar, pie, area, stacked area, or bubble via

the javafx.scene.chart package. A Chart object is contained in

a Scene object, which is contained in a Stage object. The general form is to

extend an executable Java class with Application and place all the plotting

directives in the overridden method Application.start().

The Application.launch() method must be called in the main method to

create and display the chart.

SCATTER PLOTS

An example of a simple plot is a scatter chart, which plots a set of x-y

pairs of numbers as points on a grid. These charts

utilize the javafx.scene.chart.XYChart.Data and javafx.scene.chart.XYChart.Ser

ies classes. The Data class is a container that holds any dimension of

mixed types of data, and the Series class contains

an ObservableList of Data instances. There are factory methods in

the javafx.collections.FXCollections class for creating instances

of ObservableList directly, should you prefer that route. However, for

scatter, line, area, bubble, and bar charts, this is unnecessary because

they all utilize the Series class:

public class BasicScatterChart extends Application {

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage stage) throws Exception {
 int[] xData = {1, 2, 3, 4, 5};
 double[] yData = {1.3, 2.1, 3.3, 4.0, 4.8};

 /* add Data to a Series */
 Series series = new Series();
 for (int i = 0; i < xData.length; i++) {
 series.getData().add(new Data(xData[i], yData[i]));
 }

 /* define the axes */
 NumberAxis xAxis = new NumberAxis();
 xAxis.setLabel("x");
 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("y");

 /* create the scatter chart */
 ScatterChart<Number,Number> scatterChart =
 new ScatterChart<>(xAxis, yAxis);
 scatterChart.getData().add(series);

 /* create a scene using the chart */
 Scene scene = new Scene(scatterChart, 800, 600);

 /* tell the stage what scene to use and render it! */
 stage.setScene(scene);

 stage.show();
 }

}

Figure 1-1 depicts the default graphics window that is displayed when

rendering a JavaFX chart for a simple set of data.

Figure 1-1. Scatter plot example

The ScatterChart class can readily be replaced with LineChart, AreaChart,

or BubbleChart in the preceding example.

BAR CHARTS

As an x-y chart, the bar chart utilizes the Data and Series classes. In this

case, however, the only difference is that the x-axis must be a string type

(as opposed to a numeric type) and utilizes the CategoryAxis class instead

of the NumberAxis class. The y-axis remains as a NumberAxis. Typically, the

categories in a bar chart are something like days of the week or market

segments. Note that the BarChart class takes a String, Number pair of types

inside the diamonds. These are useful for making histograms, and we

show one in Chapter 3:

public class BasicBarChart extends Application {

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage stage) throws Exception {

 String[] xData = {"Mon", "Tues", "Wed", "Thurs", "Fri"};
 double[] yData = {1.3, 2.1, 3.3, 4.0, 4.8};

 /* add Data to a Series */
 Series series = new Series();
 for (int i = 0; i < xData.length; i++) {
 series.getData().add(new Data(xData[i], yData[i]));
 }

 /* define the axes */
 CategoryAxis xAxis = new CategoryAxis();
 xAxis.setLabel("x");
 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("y");

 /* create the bar chart */

https://learning.oreilly.com/library/view/data-science-with/9781491934104/ch01.html#scatter_plot_example_fig
https://learning.oreilly.com/library/view/data-science-with/9781491934104/ch03.html#statistics_chapter

 BarChart<String,Number> barChart = new barChart<>(xAxis,
yAxis);
 barChart.getData().add(series);

 /* create a scene using the chart */
 Scene scene = new Scene(barChart, 800, 600);

 /* tell the stage what scene to use and render it! */
 stage.setScene(scene);
 stage.show();
 }

}

PLOTTING MULTIPLE SERIES

Multiple series of any type of plot are easily implemented. In the case of

the scatter plot example, you need only to

create multiple Series instances:

Series series1 = new Series();
Series series2 = new Series();
Series series3 = new Series();

The series are then added in all at once using the addAll() method instead

of the add() method:

scatterChart.getData().addAll(series1, series2, series3);

The resultant plot will show the points superimposed in various colors

with a legend denoting their label name. The same holds true for line,

area, bar, and bubble charts. An interesting feature here is

the StackedAreaChart and StackedBarChart classes, which operate the same

way as their respective AreaChart and BarChart superclasses, except that the

data are stacked one above the other so they do not overlap visually.

Of course, sometimes a visualization would benefit from mixing data

from multiple plot types, such as a scatter plot of data with a line plot

running through the data. Currently, the Scene class accepts only charts of

one type. However, we will demonstrate some workarounds later in this

chapter.

BASIC FORMATTING

There are useful options for making your plot look really professional.

The first place to cleanup might be the axes. Often the minor ticks are

overkill. We can also set the plot range with minimum and maximum

values:

scatterChart.setBackground(null);
scatterChart.setLegendVisible(false);
scatterChart.setHorizontalGridLinesVisible(false);
scatterChart.setVerticalGridLinesVisible(false);
scatterChart.setVerticalZeroLineVisible(false);

At some point, it might be easier to keep the plotting mechanics simple

and include all the style directives in a CSS file. The default CSS for

JavaFX8 is called Modena and will be implemented if you don’t change

the style options. You can create your own CSS and include it in the

scene with this:

scene.getStylesheets().add("chart.css");

The default path is in the src/main/resources directory of your

Java package.

Plotting Mixed Chart Types

Often we want to display multiple plot types in one graphic—for

example, when you want to display the data points as an x-y scatter plot

and then overlay a line plot of the best fitted model. Perhaps you will

also want to include two more lines to represent the boundary of the

model, probably one, two, or three multiples of the standard deviation σ,

or the confidence interval 1.96 × σ. Currently, JavaFX does not allow

multiple plots of the different types to be displayed simultaneously on

the same scene. There is a workaround, however! We can use

a LineChart class to plot multiple series of LineChart instances and then use

CSS to style one of the lines to show only points, one to only show a

solid line, and two to show only a dashed line. Here is the CSS:

.default-color0.chart-series-line {
 -fx-stroke: transparent;
}

.default-color1.chart-series-line {
 -fx-stroke: blue; -fx-stroke-width: 1;
}

.default-color2.chart-series-line {
 -fx-stroke: blue;
 -fx-stroke-width: 1;

 -fx-stroke-dash-array: 1 4 1 4;
}

.default-color3.chart-series-line {
 -fx-stroke: blue;
 -fx-stroke-width: 1;

 -fx-stroke-dash-array: 1 4 1 4;
}

/*.default-color0.chart-line-symbol {
 -fx-background-color: white, green;
}*/

.default-color1.chart-line-symbol {
 -fx-background-color: transparent, transparent;
}

.default-color2.chart-line-symbol {
 -fx-background-color: transparent, transparent;
}

.default-color3.chart-line-symbol {
 -fx-background-color: transparent, transparent;
}

The plot looks like Figure 1-2.

Figure 1-2. Plot of mixed line types with CSS

Saving a Plot to a File

You will undoubtedly have an occasion to save a plot to a file. Perhaps

you will be sending the plot off in an email or including it in a

presentation. With a mixture of standard Java classes and JavaFX

classes, you can easily save plots to any number of formats. With CSS,

you can even style your plots to have publication-quality graphics.

Indeed, the figures in this chapter (and the rest of the book) were

prepared this way.

Each chart type subclasses the abstract class Chart, which inherits the

method snapshot() from the Node class. Chart.snapshot() returns

a WritableImage. There is one catch that must be addressed: in the time it

takes the scene to render the data on the chart, the image will be saved to

a file without the actual data on the plot. It is critical to turn off

animation via Chart.setAnimated(false) someplace after the chart is

instantiated and before data is added to the chart

with Chart.getData.add() or its equivalent:

/* do this right after the chart is instantiated */

https://learning.oreilly.com/library/view/data-science-with/9781491934104/ch01.html#mixedlineplot

scatterChart.setAnimated(false);
...
/* render the image */
stage.show();
...
/* save the chart to a file AFTER the stage is rendered */
WritableImage image = scatterChart.snapshot(new SnapshotParameters(),
null);
File file = new File("chart.png");
ImageIO.write(SwingFXUtils.fromFXImage(image, null), "png", file);

