
Getting Started

1.0 Introduction

The Arduino environment has been designed to be easy to use for

beginners who have no software or electronics experience. With

Arduino, you can build objects that can respond to and/or control light,

sound, touch, and movement. Arduino has been used to create an

amazing variety of things, including musical instruments, robots, light

sculptures, games, interactive furniture, and even interactive clothing.

NOTE

If you’re not a beginner, please feel free to skip ahead to recipes that

interest you.

Arduino is used in many educational programs around the world,

particularly by designers and artists who want to easily create prototypes

but do not need a deep understanding of the technical details behind

their creations. Because it is designed to be used by nontechnical people,

the software includes plenty of example code to demonstrate how to use

the Arduino board’s various facilities.

Though it is easy to use, Arduino’s underlying hardware works at the

same level of sophistication that engineers employ to build embedded

devices. People already working with microcontrollers are also attracted

to Arduino because of its agile development capabilities and its facility

for quick implementation of ideas.

Arduino is best known for its hardware, but you also need software to

program that hardware. Both the hardware and the software are called

“Arduino.” The combination enables you to create projects that sense

and control the physical world. The software is free, open source, and

cross-platform. The boards are inexpensive to buy, or you can build your

own (the hardware designs are also open source). In addition, there is an

active and supportive Arduino community that is accessible worldwide

through the Arduino forums, tutorials, and project hub. These sites offer

learning resources, project development examples, and solutions to

https://forum.arduino.cc/
https://www.arduino.cc/en/Tutorial/HomePage
https://create.arduino.cc/projecthub

problems that can provide inspiration and assistance as you pursue your

own projects.

The recipes in this chapter will get you started by explaining how to set

up the development environment and how to compile and run an

example sketch.

NOTE

You may be used to referring to software source code as a “program” or

just “code.” In the Arduino community, source code that contains

computer instructions for controlling Arduino functionality is referred to

as a sketch. The word sketch will be used throughout this book to refer

to Arduino program code.

The Blink sketch, which is preinstalled on most Arduino boards and

compatibles, is used as an example for recipes in this chapter, though the

last recipe in the chapter goes further by adding sound and collecting

input through some additional hardware, not just blinking the light built

into the board. Chapter 2 covers how to structure a sketch for Arduino

and provides an introduction to programming.

NOTE

If you already know your way around Arduino basics, feel free to jump

forward to later chapters. If you’re a first-time Arduino user, patience in

these early recipes will pay off with smoother results later.

Arduino Software

Software programs, called sketches, are created on a computer using the

Arduino integrated development environment (IDE). The IDE enables

you to write and edit code and convert this code into instructions that

Arduino hardware understands. The IDE also transfers those instructions

to the Arduino board (a process called uploading).

Arduino Hardware

The Arduino board is where the code you write is executed. The board

can only control and respond to electricity, so you’ll attach specific

components to it that enable it to interact with the real world. These

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch02.html#making_the_sketch_do_your_bidding

components can be sensors, which convert some aspect of the physical

world to electricity so that the board can sense it, or actuators, which get

electricity from the board and convert it into something that changes the

world. Examples of sensors include switches, accelerometers, and

ultrasonic distance sensors. Actuators are things like lights and LEDs,

speakers, motors, and displays.

Arduino boards can be enhanced by add-ons called shields, which you

connect to an Arduino by stacking them on top with their pins connected

to all the headers of the Arduino. Different models of Arduino and

certain Arduino-compatibles may have their own add-ons similar to, but

not compatible with shields. This is because some models of boards use

a different layout of connector pins and have a different shape from the

most common Arduino, the Uno. For example, the Arduino MKR and

the Adafruit Feather lines of boards are both physically much smaller

than the Uno, but have different pin layouts. The add-on boards that are

designed to plug directly into MKR boards are called carriers, and for

the Feather line, they are called Featherwings.

There are a variety of official boards that you can use with Arduino

software and a wide range of Arduino-compatible boards produced by

companies and individual members of the community. In addition to all

the boards on the market, you’ll even find Arduino-compatible

controllers inside everything from 3D printers to robots. Some of these

Arduino-compatible boards and products are also compatible with other

programming environments such as MicroPython or CircuitPython.

The most popular boards contain a USB connector that is used to

provide power and connectivity for uploading your software onto the

board. Figure 1-1 shows a basic board that most people start with, the

Arduino Uno. It is powered by an 8-bit processor, the ATmega328P,

which has 2 kilobytes of SRAM (static random-access memory, used to

store program variables), 32 kilobytes of flash memory for storing your

sketches, and runs at 16 MHz. A second chip handles USB connectivity.

Basic board: the Arduino Uno. Photograph courtesy todo.to.it.

The Arduino Leonardo board uses the same form factor as the Uno, but

uses a different processor, the ATmega32U4, which runs your sketches

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#basic_board_colon_the_arduino_uno

and also takes care of USB connectivity. It is slightly cheaper than the

Uno, and also offers some interesting features, such as the ability to

emulate various USB devices such as mice and keyboards. The Arduino-

compatible Teensy and Teensy+ boards from PJRC

(http://www.pjrc.com/teensy/) are also capable of emulating USB

devices.

Another board with a similar pin layout and even faster processor is the

Arduino Zero. Unlike the Arduino Uno and Leonardo, it cannot tolerate

input pin voltages higher than 3.3 volts. The Arduino Zero has a 32-bit

processor running at 48 MHz and has 32 kilobytes of RAM and 256

kilobytes of flash storage. Adafruit’s Metro M0 Express and SparkFun’s

RedBoard Turbo comes in the same form factor as the Arduino Zero,

and also offers compatibility with multiple environments, including the

Arduino IDE and CircuitPython.

ARDUINO AND USB

The Arduino Uno has a second microcontroller onboard to handle all USB

communication; the small surface-mount chip (the ATmega16U2, ATmega8U2 in

older versions of the Uno) is located near the USB socket on the board. This can be

programmed separately to enable the board to appear as different USB devices

(see ??? for an example).

Older Arduino boards, and some of the Arduino-compatible boards, use a chip

from the FTDI company that provides a hardware USB solution for connection to

the serial port of your computer. Some of the cheaper clones that you will

encounter on eBay or Amazon may use a chip that performs a similar function,

such as the CH340. You will probably need to install a driver to use CH340-based

boards.

There’s another class of USB-enabled Arduino-compatible boards you may

encounter, which have no dedicated chip to handle USB communication. Instead,

these boards use a technique called bit-banging, in which software running on the

board manipulates I/O pins to send and receive USB signals. These boards, which

include the popular original Adafruit Trinket, generally do not work well with

modern computers, though you may have luck with an older computer. (Adafruit

has released the Adafruit Trinket M0, which does not have this problem, and as a

bonus, is much faster than its predecessor.)

Finally, you may find Arduino-compatible boards that have no USB connection

whatsoever. Instead, they offer only serial pins that you cannot directly connect to

http://www.pjrc.com/teensy/
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#program_hid_8u2_usb

a computer without a special adapter. See “Serial Hardware” for a list of some

available adapters.

If you want a board for learning that will run all the sketches in this

book, the Uno is a great choice. If you want more performance than the

Uno then consider the Zero, or a similar board such as the Metro M0

Express or RedBoard Turbo.

CAUTION NEEDED WITH SOME 3.3 VOLT BOARDS

Many of the newer boards operate on 3.3 volts rather than 5 volts used

by older boards such as the Uno. Some such boards can be permanently

damaged if a pin receives 5 volts, even for a fraction of a second, so

check the documentation for your board to see if it is tolerant of 5 volts

before wiring things up when there is a risk of pin levels higher than 3.3

volts.

Arduino boards come in other form factors, which means that the pins

on such boards have a different layout and aren’t compatible with

shields designed for the Uno. The MKR1010 is an Arduino board that

uses a much smaller form factor. Its pins are designed for 3.3V I/O (it

is not 5V-tolerant) and like the Zero, it uses an ARM chip. However, the

MKR1010 also includes WiFi and and a circuit to run from and recharge

a LIPO battery. Although the MKR family of boards is not compatible

with shields designed for the Uno, Arduino offers a selection of add-on

boards for the MKR form factor called carriers. Similarly, Adafruit has

a huge collection of Featherwing add-on boards for their Feather line of

development boards, many of which are Arduino-compatible.

You can get boards as small as a postage stamp, such as the Adafruit

Trinket M0; larger boards that have more connection options and more

powerful processors, such as the Arduino Mega and Arduino Due; and

boards tailored for specific applications, such as the Arduino LilyPad for

wearable applications, the Arduino Nano 33 IoT for wireless projects,

and the Arduino Nano Every for embedded applications (standalone

projects that are often battery-operated).

Other Arduino-compatible boards are also available, including the

following:

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch04.html#serial_hardware

 Arduino Nano, a tiny board with USB capability, from Gravitech

(http://store.gravitech.us/arna30wiatn.html)

 Bare Bones Board, a low-cost board available with or without USB

capability, from Modern Device

(http://www.moderndevice.com/products/bbb-kit) and Educato, a

shield compatible version

(https://moderndevice.com/product/educato/)

 Adafruit Industries (http://www.adafruit.com/) has a vast collection

of Arduino and Arduino-compatible boards and accessories

(boards, modules, and components).

 Sparkfun (https://www.sparkfun.com/categories/242) has lots of

Arduino and Arduino-compatible accessories for Arduino projects.

 Seeed Studio (http://www.seeedstudio.com/) sells Arduino and

Arduino-compatible boards as well as many accessories. They also

offer a flexible expansion system for Arduino and other embedded

boards called Grove (http://wiki.seeedstudio.com/Grove_System/),

which uses a modular connector system for sensors and actuators.

 Teensy and Teensy++, tiny but extremely versatile boards, from

PJRC (http://www.pjrc.com/teensy/)

An exhaustive list of Arduino-compatible boards is available

at Wikipedia.

See Also

An overview of Arduino

boards: https://www.arduino.cc/en/Main/Products.

Online guides for getting started with Arduino are available

at http://arduino.cc/en/Guide/Windows for

Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X,

and https://www.arduino.cc/en/Guide/Linux for Linux.

1.1 Installing the Integrated Development
Environment (IDE)

Problem

http://store.gravitech.us/arna30wiatn.html
http://www.moderndevice.com/products/bbb-kit
https://moderndevice.com/product/educato/
http://www.adafruit.com/
https://www.sparkfun.com/categories/242
http://www.seeedstudio.com/
http://wiki.seeedstudio.com/Grove_System/
http://www.pjrc.com/teensy/
https://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems
https://www.arduino.cc/en/Main/Products
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
https://www.arduino.cc/en/Guide/Linux

You want to install the Arduino development environment on your

computer.

Solution

The Arduino software for Windows, Mac, and Linux can be downloaded

from http://arduino.cc/en/Main/Software.

For Windows you can download a Windows installer, which you just

double click to run when you have downloaded it, but you will need to

have administrative privileges to do this. If you are running Windows 10

or Windows 8.1, you can use the Microsoft Store to install Arduino

without needing admin privileges. Alternatively, you can download the

Windows zip file, and unzip the file to any convenient directory that you

have write access to.

Unzipping the file will create a folder named Arduino-

<nn> (where <nn> is the version number of the Arduino release you

downloaded). The directory contains the executable file

(named Arduino.exe), along with various other files and folders. Double-

click the Arduino.exe file and the splash screen should appear

(see Figure 1-2), followed by the main program window (see Figure 1-

3). Be patient, as it can take some time for the software to load.

If you use the Windows installer or install Arduino from the Microsoft

Store, you can launch Arduino from the Start Menu.

Arduino splash screen (Arduino 1.8.9 on Windows 10)

IDE main window (Arduino 1.8.9 on a Mac)

NOTE

The first time you run Arduino on Windows, you may see a warning that

says “Windows Defender Firewall has blocked some features of this

app”, specifying javaw.exe as the source of the warning. The Arduino IDE

is a Java-based application, which is why the warning comes from the

Java program instead of Arduino.exe. It is not clear which, if any, features

of Arduino depend on your permitting access through the firewall, so

http://arduino.cc/en/Main/Software
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#arduino_splash_screen_open_parenthesis_v
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#arduino_ide_main_window_open_parenthesis
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#arduino_ide_main_window_open_parenthesis

you can either accept the defaults or press Cancel. If you want to change

your mind later, you’ll need to open the Windows Defender Firewall

control panel, choose the option to “Allow apps to communicate through

Windows Defender Firewall,” locate “Java(TM) Platform SE Binary” in

the list, and use the Details button to confirm that it’s

the javaw.exe program from your Arduino installation before you change

the settings in the control panel.

The Arduino download for the Mac is a zip file. If you are using the

Safari web browser, the zip file will be automatically unzipped, and the

Arduino application will pop up. Otherwise you’ll need to extract the zip

yourself. Move the application to somewhere convenient—

the Applications folder is a sensible place. Double-click the application.

The splash screen will appear, followed by the main program window.

Linux versions are increasingly available from your distributions

package manager, but these versions are often not the most current

release, so it is best to download the version

from http://arduino.cc/en/Main/Software. It is available for 32 or 64 bit,

and an ARM version which can be used on the Raspberry PI and other

Linux ARM boards.

To enable the Arduino development environment to communicate with

the board, you may need to install drivers.

On Windows, if you used the installer then when you plug in the board it

will automatically associate the installed driver with the board, this may

take a little time. If this process fails, or you installed Arduino using the

zip file then visit procedure

at https://www.arduino.cc/en/Guide/HomePage, click the link for your

board from the list on that page, and follow the instructions there.

If you are using an earlier board (any board that uses FTDI drivers) and

you are online, you can let Windows search for drivers and they will

install automatically. If you don’t have Internet access, or are using

Windows XP you should specify the location of the drivers. Use the file

selector to navigate to the drivers\FTDI USB Drivers directory, located in

the directory where you unzipped the Arduino files. When this driver

has installed, the Found New Hardware Wizard will appear again,

saying a new serial port has been found. Follow the same process again.

http://arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/HomePage

NOTE

You may need to go through the sequence of steps to install the drivers

twice to ensure that the software is able to communicate with the board.

On the Mac, current Arduino boards, such as the Uno, can be used

without additional drivers. When you first plug the board in, a

notification may pop up saying a new network port has been found, you

can dismiss this. If you are using earlier boards that need FTDI drivers,

you can get these from http://www.ftdichip.com/Drivers/D2XX.htm.

On Linux, most distributions use a standard driver that is already

installed, and usually have FTDI support as well, but follow the Linux

link given in this chapter’s introduction for specific information for

your distribution.

If you are using an Arduino-compatible board that is not made by

Arduino, then a similar installation process may be necessary for the

board to be recognised by the IDE. Increasingly this is handled

automatically by the operating system, but you may have to check the

specific board’s documentation for details, especially if it is an Arduino

compatible board rather than an official board.

Discussion

If the software fails to start, check the troubleshooting section of the

Arduino website, http://arduino.cc/en/Guide/Troubleshooting, for help

solving installation problems.

See Also

Online guides for getting started with Arduino are available

at http://arduino.cc/en/Guide/Windows for

Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X,

and https://www.arduino.cc/en/Guide/Linux for Linux.

In addition to the IDE, there is also an online editing environment

called Arduino Create. In order to use this you will need to create an

account and download a plugin that enables the web site to communicate

with the board to upload code. It has cloud storage where your sketches

are saved and provides facilities for sharing code. At the time this book

http://www.ftdichip.com/Drivers/D2XX.htm
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#introduction
http://arduino.cc/en/Guide/Troubleshooting
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
https://www.arduino.cc/en/Guide/Linux

was written, Arduino Create was a fairly new, still evolving service. If

you would like the ability to create Arduino sketches without having to

install a development environment on your computer then have a look

at Arduino Create here: https://create.arduino.cc/.

If you are using a Chromebook, Arduino Create’s Chrome App requires

a monthly subscription of US$1 per month. It has a time-limited trial so

you can try it out. There is another alternatives to compiling and

uploading Arduino code from a Chromebook: Codebender is a web-

based IDE like Arduino Create, but is also supports a number of third-

party Arduino-compatible boards. They have pricing plans available for

classooms and schools as well. See https://edu.codebender.cc/.

1.2 Setting Up the Arduino Board

Problem

You want to power up a new board and verify that it is working.

Solution

Plug the board in to a USB port on your computer and check that the

LED power indicator on the board illuminates. Most Arduino boards

have an LED power indicator that stays on whenever the board is

powered.

The onboard LED (labelled in Figure 1-4) should flash on and off when

the board is powered up (most boards come from the factory preloaded

with software to flash the LED as a simple check that the board is

working).

Basic Arduino board, the Uno rev3

NOTE

The current boards in the Arduino Uno form factor have some pins that

weren’t present on older boards, and you may encounter some older

Arduino shields that don’t have these pins. Fortunately, this usually does

https://create.arduino.cc/
https://edu.codebender.cc/
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#basic_arduino_board_open_parenthesis_uno

not affect the use of older shields: most will continue to work with the

new boards, just as they did with earlier boards (but your mileage may

vary).

The new connections provide a pin (IOREF) for shields to detect the

analog reference voltage (so that analog input values can be correlated

with the supply voltage), SCL and SDA pins to enable a consistent pin

location for I2C devices. The location of the I2C pins had varied on

some earlier boards such as the Mega due to different chip

configurations, and in some cases, certain shields required workarounds

such as the addition of jumper wires to connect the shield’s I2C pins to

the ones on the Mega. Shields designed for the new layout should work

on any board with the new pin locations. An additional pin (next to the

IOREF pin) is not being used at the moment, but enables new

functionality to be implemented in the future without needing to change

the pin layout again.

Discussion

If the power LED does not illuminate when the board is connected to

your computer, the board is probably not receiving power (try a different

USB socket or cable).

The flashing LED is being controlled by code running on the board (new

boards are pre-loaded with the Blink example sketch). If the onboard

LED is flashing, the sketch is running correctly, which means the chip

on the board is working. If the power LED is on but the onboard LED

(usually labeled L) is not flashing, it could be that the factory code is not

on the chip; follow the instructions in Recipe 1.3 to load the Blink

sketch onto the board to verify that the board is working. If you are not

using a standard board, it may not have an onboard LED, so check the

documentation for details of your board.

The Leonardo and Zero-class boards (Arduino Zero, Adafruit Metro M0,

SparkFun RedBoard Turbo) have the same footprint as the Uno (its

headers are in the same position, enabling shields to be attached). They

are significantly different in other respects. The Leonardo has an 8-bit

chip like the Uno, but because it doesn’t have a separate chip for

handling USB communications, the Leonardo only accepts program

uploads immediately after the board has been reset. You’ll see the

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_the_integrated_development_envi

Leonardo’s onboard LED pulse gently while it’s waiting for an upload.

The Leonardo is 5V tolerant. The Zero has a 32 bit ARM chip, with

more memory for storing your program and running it. There is also a

pin that provides a DAC (Digital to Analog Convertor), which means

you can get a varying analog voltage from it. This can be used to

generate audio signals at much higher quality than an Uno. The Zero is

not 5V tolerant, nor are the similar boards from Adafruit (Metro M0

Express) or SparkFun (RedBoard Turbo).

The MKR1010 uses the same chip as the Zero (and like the Zero, is not

5V tolerant), but in a smaller form factor. It also includes Wifi, so is able

to connect to the internet through a WiFi network. The MKR form factor

does not support shields that are designed for the Uno pin layout.

All the 32 bit boards have more pins that support interrupts than most of

the 8-bit boards, which are useful for applications that must quickly

detect signal changes (see ???). The one 8-bit exception to this is the

Arduino Uno WiFi Rev 2, which supports interrupts on any of its digital

pins.

See Also

Online guides for getting started with Arduino are available

at http://arduino.cc/en/Guide/Windows for

Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X,

and http://arduino.cc/en/Guide/Linux for Linux.

A troubleshooting guide can be found

at http://arduino.cc/en/Guide/Troubleshooting.

1.3 Using the Integrated Development
Environment (IDE) to Prepare an Arduino
Sketch

Problem

You want to get a sketch and prepare it for uploading to the board.

Solution

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_hardware_interrupts
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://arduino.cc/en/Guide/Linux
http://arduino.cc/en/Guide/Troubleshooting

Use the Arduino IDE to create, open, and modify sketches that define

what the board will do. You can use buttons along the top of the IDE to

perform these actions (shown in Figure 1-5), or you can use the menus

or keyboard shortcuts (shown in Figure 1-6).

The Sketch Editor area is where you view and edit code for a sketch. It

supports common text-editing keys such as Ctrl-F (⌘+F on a Mac) for

find, Ctrl-Z (⌘+Z on a Mac) for undo, Ctrl-C (⌘+C on a Mac) to copy

highlighted text, and Ctrl-V (⌘+V on a Mac) to paste highlighted text.

Figure 1-6 shows how to load the Blink sketch (the sketch that comes

preloaded on a new Arduino board).

After you’ve started the IDE, go to the File→Examples menu and select

01. Basics→Blink, as shown in Figure 1-6. The code for blinking the

built-in LED will be displayed in the Sketch Editor window (refer

to Figure 1-5).

Before you can send the code to the board, it needs to be converted into

instructions that can be read and executed by the Arduino controller

chip; this is called compiling. To do this, click the compile button (the

top-left button with a tick inside), or select Sketch→Verify/Compile

(Ctrl-R; ⌘+R on a Mac).

You should see a message that reads “Compiling sketch...” and a

progress bar in the message area below the text-editing window. After a

second or two, a message that reads “Done Compiling” will appear. The

black console area will contain the following additional message:

Sketch uses 930 bytes (2%) of program storage space. Maximum

is 32256 bytes.

Global variables use 9 bytes (0%) of dynamic memory, leaving

2039 bytes for

local variables. Maximum is 2048 bytes.

The exact message may differ depending on your board and Arduino

version; it is telling you the size of the sketch and the maximum size that

your board can accept.

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#arduino_ide
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#ide_menu_open_parenthesis_selecting_the
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#ide_menu_open_parenthesis_selecting_the
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#ide_menu_open_parenthesis_selecting_the
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#arduino_ide

Arduino IDE on macOS

Discussion

Source code for Arduino is called a sketch. The process that takes a

sketch and converts it into a form that will work on the board is

called compilation. The IDE uses a number of command-line tools

behind the scenes to compile a sketch. For more information on this,

see ???.

IDE menu (selecting the Blink example sketch) on Windows 10

The final message telling you the size of the sketch indicates how much

program space is needed to store the controller instructions on the board.

If the size of the compiled sketch is greater than the available memory

on the board, the following error message is displayed:

Sketch too big; see

http://www.arduino.cc/en/Guide/Troubleshooting#size for tips

on reducing it.

If this happens, you need to make your sketch smaller to be able to put it

on the board, or get a board with higher flash memory capacity. If your

global variables are using too much memory, you’ll see a different error

instead:

Not enough memory; see

http://www.arduino.cc/en/Guide/Troubleshooting#size

for tips on reducing your footprint.

In that case, you’ll need to go through your code and reduce the amount

of memory that you are allocating to global variables, or get a board

with a higher SRAM (dynamic memory) capacity.

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#understanding_the_arduino_build_proce

If there are errors in the code, the compiler will print one or more error

messages in the console window. These messages can help identify the

error—see ??? on software errors for troubleshooting tips.

NOTE

To prevent you from accidentally overwriting the example code, the

Arduino IDE does not allow you to save changes to the built-in example

sketches. You must rename them using the Save As menu option. You

can save sketches you write yourself with the Save button (see Recipe

1.5).

As you develop and modify a sketch, you should also consider using the

File→Save As menu option and using a different name or version

number regularly so that as you implement each bit, you can go back to

an older version if you need to. You could also put your sketches under

version control.

NOTE

Code uploaded onto the board cannot be downloaded back onto your

computer. Make sure you save your sketch code on your computer. You

cannot save changes that you’ve made to the example files; you need to

use Save As and give the changed file another name.

See Also

Recipe 1.5 shows an example sketch. ??? has tips on troubleshooting

software problems.

1.4 Uploading and Running the Blink Sketch

Problem

You want to transfer your compiled sketch to the Arduino board and see

it working.

Solution

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#tips_on_troubleshooting_software_problem
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#creating_and_saving_a_sketch
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#creating_and_saving_a_sketch
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#creating_and_saving_a_sketch
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#tips_on_troubleshooting_software_problem

Connect your Arduino board to your computer using the USB cable.

Load the Blink sketch into the IDE as described in Recipe 1.3.

Next, select Tools→Board from the drop-down menu and select the

name of the board you have connected (if it is the standard Uno board, it

is probably one of the first entries in the board list).

Now select Tools→Serial Port. You will get a drop-down list of

available serial ports on your computer. Each machine will have a

different combination of serial ports, depending on what other devices

you have used with your computer.

On Windows, they will be listed as numbered COM entries. If there is

only one entry, select it. If there are multiple entries, your board will

probably be the last entry.

On the Mac, if your board is an Uno it will be listed as:

/dev/cu.usbmodem-XXXXXXX(Arduino/Genuino Uno)

If you have an older board, it will be listed as follows:

/dev/tty.usbserial-XXXXXXX

/dev/cu.usbserial-XXXXXXX

Each board will have different values for XXXXXXX. Select either entry.

On Linux, if your board is an Uno it will probably be listed as:

/dev/ttyACMX(Arduino/Genuino Uno)

If you have an older board, it may be listed as follows:

/dev/ttyUSB-X

X is usually 0, but you will see 1, 2, etc. if you have multiple boards

connected at once. Select the entry that corresponds to your Arduino.

NOTE

If you have so many entries in the Port menu that you can’t figure out

which one goes to your Arduino, try this: look at the menu with the

Arduino unplugged from your computer, then plug the Arduino in and

look for the menu option that wasn’t there before. Another approach is

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_the_integrated_development_envi

to select the ports, one by one, and try uploading, until you see the lights

on the board flicker to indicate that the code is uploading.

Click the upload button (in Figure 1-5, it’s the second button from the

left), or choose Sketch→Upload (Ctrl-U, ⌘+U on a Mac).

The IDE will compile the code, as in Recipe 1.3. After the software is

compiled, it is uploaded to the board. If this is a fresh out-of-the-box

Arduino that’s pre-loaded with the Blink sketch, you will see the

onboard LED (labeled as Onboard LED in Figure 1-4) stop blinking.

When the upload begins, two LEDs (labeled as Serial LEDs in Figure 1-

4) near the onboard LED should flicker for a couple of seconds as the

code uploads. The onboard LED should then start flashing as the code

runs. The location of the onboard LED differs across some Arduino

models, such as the Leonardo, MKR boards, and third-party Arduino

clones.

Discussion

For the IDE to send the compiled code to the board, the board needs to

be plugged in to the computer, and you need to tell the IDE which board

and serial port you are using.

When an upload starts, whatever sketch is running on the board is

stopped (if you were running the Blink sketch, the LED will stop

flashing). The new sketch is uploaded to the board, replacing the

previous sketch. The new sketch will start running when the upload has

successfully completed.

NOTE

Some older Arduino boards and compatibles do not automatically

interrupt the running sketch to initiate upload. In this case, you need to

press the Reset button on the board just after the software reports that it

is done compiling (when you see the message about the size of the

sketch). It may take a few attempts to get the timing right between the

end of the compilation and pressing the Reset button.

The IDE will display an error message if the upload is not successful.

Problems are usually due to the wrong board or serial port being selected

or the board not being plugged in. The currently selected board and

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#arduino_ide
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_the_integrated_development_envi
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#basic_arduino_board_open_parenthesis_uno
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#basic_arduino_board_open_parenthesis_uno
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#basic_arduino_board_open_parenthesis_uno

serial port are displayed in the status bar at the bottom of the Arduino

window

See Also

The Arduino page: http://www.arduino.cc/en/Guide/Troubleshooting.

1.5 Creating and Saving a Sketch

Problem

You want to create a sketch and save it to your computer.

Solution

To open an editor window ready for a new sketch, launch the IDE

(see Recipe 1.3), go to the File menu, and select New. Delete the

boilerplate code that is in the Sketch Editor window, and paste the

following code in its place (it’s similar to the Blink sketch, but the blinks

last twice as long):

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(2000); // wait for two seconds

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

http://www.arduino.cc/en/Guide/Troubleshooting
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_the_integrated_development_envi

 delay(2000); // wait for two seconds

}

Compile the code by clicking the compile button (the top-left button

with a triangle inside), or select Sketch→Verify/Compile (see Recipe

1.3).

Upload the code by clicking on the upload button, or choose

File→Upload to I/O board (see Recipe 1.4). After uploading, the LED

should blink, with each flash lasting two seconds.

You can save this sketch to your computer by clicking the Save button,

or select File→Save.

You can save the sketch using a new name by selecting the Save As

menu option. A dialog box will open where you can enter the filename.

Discussion

When you save a file in the IDE, a standard dialog box for the operating

system will open. It suggests that you save the sketch to a folder

called Arduino in your My Documents folder (or your Documents folder on a

Mac). You can replace the default sketch name with a meaningful name

that reflects the purpose of your sketch. Click Save to save the file.

NOTE

The default name is the word sketch followed by the current date.

Sequential letters starting from a are used to distinguish sketches created

on the same day. Replacing the default name with something meaningful

helps you to identify the purpose of a sketch when you come back to it

later.

If you use characters that the IDE does not allow (e.g., the space

character), the IDE will automatically replace these with valid

characters.

Arduino sketches are saved as plain text files with the extension .ino.

Older versions of the IDE used the .pde extension, also used by

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_the_integrated_development_envi
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_the_integrated_development_envi
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#uploading_and_running_the_blink_sketc

Processing. They are automatically saved in a folder with the same name

as the sketch.

You can save your sketches to any folder on your computer, but if you

use the default folder (the Arduino folder in your Documents folder) your

sketches will automatically appear in the Sketchbook menu of the

Arduino software and be easier to locate.

NOTE

If you have edited one of the examples from the Arduino download, you

will not be able to save the changed file using the same filename. This

preserves the standard examples intact. If you want to save a modified

example, you will need to select another location for the sketch.

After you have made changes, you will see a dialog box asking if you

want to save the sketch when a sketch is closed.

NOTE

The § symbol following the name of the sketch in the top bar of the IDE

window indicates that the sketch code has changes that have not yet

been saved on the computer. This symbol is removed when you save the

sketch.

The Arduino software does not provide any kind of version control, so if

you want to be able to revert to older versions of a sketch, you can use

Save As regularly and give each revision of the sketch a slightly

different name.

Frequent compiling as you modify or add code is a good way to check

for errors as you write your code. It will be easier to find and fix any

errors because they will usually be associated with what you have just

written.

NOTE

Once a sketch has been uploaded onto the board there is no way to

download it back to your computer. Make sure you save any changes to

your sketches that you want to keep.

If you try and save a sketch file that is not in a folder with the same

name as the sketch, the IDE will inform you that this can’t be opened as

is and suggest you click OK to create the folder for the sketch with the

same name.

NOTE

Sketches must be located in a folder with the same name as the sketch.

The IDE will create the folder automatically when you save a new

sketch.

Sketches made with older versions of Arduino software have a different

file extension (.pde). The IDE will open them, when you save the sketch

it will create a file with the new extension (.ino). Code written for early

versions of the IDE may not be able to compile in version 1.0. Most of

the changes to get old code running are easy to do. See ??? for more

details.

1.6 Using Arduino

Problem

You want to get started with a project that is easy to build and fun to

use.

Solution

This recipe provides a taste of some of the techniques that are covered in

detail in later chapters.

The sketch is based on the LED blinking code from the previous recipe,

but instead of using a fixed delay, the rate is determined by a light-

sensitive sensor called a light dependent resistor (LDR for short,

see Recipe 6.3). Wire the LDR as shown in Figure 1-7.

Arduino with light dependent resistor

NOTE

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#migrating_to_1_0
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch06.html#detecting_light
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#arduino_with_light_dependent_resistor

If you are not familiar with building a circuit from a schematic,

see ??? for step-by-step illustrations on how to make this circuit on a

breadboard.

NOTE

LDRs contain a compound (cadmium sulfide) that is a hazardous

substance. You can use a phototransistor if you live in a jurisdiction

where it is difficult to obtain an LDR, or if you simply prefer to not use

an LDR. A phototransistor has a long lead and a short lead, much like an

LED. You can wire it exactly as shown in the figure, but you must

connect the long lead to 5V and the short lead to the resistor and pin 0.

Be sure to buy a phototransistor such as Adafruit part number 2831

(https://www.adafruit.com/product/2831), that can sense visible light so

you can test it with a common light source.

The following sketch reads the light level of an LDR connected to

analog pin 0. The light level striking the LDR will change the blink rate

of the internal onboard LED:

const int sensorPin = A0; // connect sensor to

analog input 0

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // enable output on the led

pin

}

void loop()

{

 int rate = analogRead(sensorPin); // read the analog input

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_schematic_diagrams_and_data_sheets
https://www.adafruit.com/product/2831

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(rate); // wait duration

dependent on light level

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(rate);

}

The code in this recipe and throughout this book use the const

int expression to provide meaningful names (sensorPin) for constants

instead of numbers (0). See ??? for more on the use of constants.

Discussion

The value of the 4.7K resistor is not critical. Anything from 1K to 10K

can be used. The light level on the sensor will change the voltage level

on analog pin 0. The analogRead command (see Chapter 6) provides a

value that ranges from around 200 when the sensor is dark to 800 or so

when it is very bright (the sensitivity will vary depending on the type of

LDR and resistor you use, and whether you use a phototransistor in

place of the LDR). The analog reading determines the duration of the

LED on and off times, so the blink delay increases with light intensity.

You can scale the blink rate by using the Arduino map function as

follows:

const int sensorPin = A0; // connect sensor to analog

input 0

// Low and high values for the sensor readings. You may need

to adjust these.

const int low = 200;

const int high = 800;

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_number_symble_define_and_const
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch06.html#getting_input_from_sensors

// the next two lines set the min and max delay between

blinks

const int minDuration = 100; // minimum wait between blinks

const int maxDuration = 1000; // maximum wait between

blinks

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // enable output on the led

pin

}

void loop()

{

 int rate = analogRead(sensorPin); // read the analog

input

 // the next line scales the blink rate between the min and

max values

 rate = map(rate, low,high, minDuration,maxDuration); //

convert blink rate

 rate = constrain(rate, minDuration,maxDuration); //

constrain the value

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(rate); // wait duration

dependent on light level

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(rate);

}

NOTE

If you’re not seeing any change in values as you adjust the light, you

will need to play with the values for low and high. If you are using a

phototransistor and aren’t getting changes in the blink rate, try a value of

10 for low.

Recipe 5.7 provides more details on using the map function to scale

values. Recipe 3.5 has details on using the constrain function to ensure

values do not exceed a given range.

If you want to view the value of the rate variable on your computer, you

can print this to the Arduino Serial Monitor as shown in the revised loop

code that follows. The sketch will display the blink rate in the Serial

Monitor. You open the Serial Monitor window in the Arduino IDE by

clicking on the icon on the right of the top bar (see Chapter 4 for more

on using the Serial Monitor):

const int sensorPin = A0; // connect sensor to analog

input 0

// Low and high values for the sensor readings. You may need

to adjust these.

const int low = 200;

const int high = 800;

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch05.html#changing_the_range_of_values
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch03.html#constraining_a_number_to_a_range_of_v
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch04.html#serial_communications

// the next two lines set the min and max delay between

blinks

const int minDuration = 100; // minimum wait between blinks

const int maxDuration = 1000; // maximum wait between

blinks

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // enable output on the led

pin

 Serial.begin(9600); // initialize Serial

}

void loop()

{

 int rate = analogRead(sensorPin); // read the analog

input

 // the next line scales the blink rate between the min and

max values

 rate = map(rate, low,high, minDuration,maxDuration); //

convert blink rate

 rate = constrain(rate, minDuration,maxDuration); //

constrain the value

 Serial.println(rate); // print rate to serial

monitor

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(rate); // wait duration

dependent on light level

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(rate);

}

You can use the sensor to control the pitch of a sound by connecting a

small speaker to the pin, as shown in Figure 1-8.

Connections for a speaker with the LDR circuit

You will need to increase the on/off rate on the pin to a frequency in the

audio spectrum. This is achieved, as shown in the following code, by

decreasing the min and max durations:

const int outputPin = 9; // Speaker connected to digital

pin 9

const int sensorPin = A0; // connect sensor to analog

input 0

const int low = 200;

const int high = 800;

const int minDuration = 1; // 1ms on, 1ms off (500 Hz)

const int maxDuration = 10; // 10ms on, 10ms off (50 hz)

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#connections_for_a_speaker_with_the_ldr_c

void setup()

{

 pinMode(outputPin, OUTPUT); // enable output on the led

pin

}

void loop()

{

 int sensorReading = analogRead(sensorPin); // read the

analog input

 int rate = map(sensorReading, low,high,

minDuration,maxDuration);

 rate = constrain(rate, minDuration,maxDuration); //

constrain the value

 digitalWrite(outputPin, HIGH); // set the LED on

 delay(rate); // wait duration

dependent on light level

 digitalWrite(outputPin, LOW); // set the LED off

 delay(rate);

}

See Also

See Recipe 3.5 for details on using the constrain function.

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch03.html#constraining_a_number_to_a_range_of_v

See Recipe 5.7 for a discussion on the map function.

If you are interested in creating sounds, see ??? for a full discussion on

audio output with Arduino.

1.7 Using Arduino with boards not included in
the standard distribution

Problem

You want to use a board such as the Arduino MKR 1010, but it does not

appear in the boards menu.

ADDING OTHER BOARDS TO THE BOARDS MENU

The procedure described here is similar for other boards you may want

to add to the boards menu. Check the documentation for you board to

find the location of the definition files for your board.

Solution

In order to use the MKR 1010 with the Arduino software you need to

add its details to the Arduino software you have already downloaded.

To do this got to Tools→Board→Boards Manager.

Selecting Boards Manager (Linux version of Arduino IDE shown)

As this window opens the list of board definitions available online will

be checked to ensure you have the latest versions available, wait till this

has finished.

The window that opens shows you the Board definitions that are already

installed, and ones that are available to download.

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch05.html#changing_the_range_of_values
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#audio_output

The Boards Manager

To find the MKR 1010 you can scroll down the list, or type its name in

the filter box. For the MKR 1010, you’ll need to select the Arduino

SAMD boards. Once you have selected it, click on install and it will be

downloaded and added to the Arduino IDE. This may take some time.

Once it has finished you can add other boards, or click on Close to finish

using the Boards Manager. If you look at the board menu now you

should have the option of selecting the MKR 1010.

The MKR 1010 is now installed and can be programmed using the Arduino IDE

Discussion

The files that you download when you do this describe how to map the

programming concepts in Arduino that connect to specific bits of

hardware in chip, to where that hardware is located in a specific chip, or

family of chips.

Once you have added the description for a particular chip then you will

often be able to work with a family of boards that use that chip. For

example, adding support for the MKR 1010 board also provides support

for the Arduino Zero as both boards use the same microcontroller chip.

To facilitate support for the growing number of Arduino and Arduino-

compatible boards, the Arduino IDE added a Boards Manager in release

1.6. The Boards Manager was developed to enable people to easily add

and remove board details from their installation. It also enables you to

update the board support files if newer versions are available, or chose

the version you use if you need to use a particular one. The Arduino IDE

no longer includes the description files for all the Arduino boards, so

even if you download the latest IDE you may not have the descriptions

for the board you have.

The Boards Manager also enables third parties to add the details of their

boards to the system. If their board descriptions are available online in

the correct format then you can add the location as one of the places for

Boards Manager to use to populate the list it produces. This means those

files will also get checked whenever the Boards Manager updates its

details, so you get notified of updates and can use the same mechanism

to update them once they are installed. To do this go to

Arduino→Preferences and click on the icon to the right of the

Additional Boards Manager URLs

Preferences after clicking on the icon to the right of the Additional Boards

Manager URLs entry

If the people who made the board provide a URL to add to Arduino then

paste it into the ‘additional URLs’ dialog box (on a separate line if there

are any other entries). If there isn’t an explicit URL then Click on the

text below the box to go to the web page that maintains a list

of unofficial Arduino board description URLs, and see if you can find a

link there.

If you want to use a Teensy board (https://www.pjrc.com/teensy/) then

you need to download a separate installer program from the Teensy

website. You can get instructions and the download for that here. It is

important that you use a Teensy installer that has support for the IDE

version that you are using. There is usually a compatible version

produced within a week or two of a new Arduino release.

See Also

 Quick start guides for various Arduino
boards https://www.arduino.cc/en/Guide/HomePage

1.8 Using a 32-Bit Arduino (or Compatible)

Problem

You want 32 bit performance in the Uno form factor.

Solution

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/td_download.html
https://www.arduino.cc/en/Guide/HomePage

The Arduino Zero has the familiar pin layout of the Uno but has a much

more memory and a faster processor. If you have trouble obtaining a

Zero, Adafruit’s Metro M0 Express and SparkFun’s RedBoard Turbo

are compatible alternatives.

The Arduino/Genuino Zero board. Photograph courtesy arduino.cc

Despite the similar physical layout of the pins, there are a number of

differences. What distinguishes these boards from the Uno is that they

use a 32-bit ARM chip, the Microchip SAMD21. This sketch, similar to

the previous recipe, highlights some significant differences between the

ARM-based boards and the Uno.

const int outputPin = A0; // headphones connected to

analog 0

const int sensorPin = A1; // connect sensor to analog

input 1

const int low = 200;

const int high = 800;

const int sampleCount = 16; // number of samples used to

render one cycle

const int minDur = 1000000/(sampleCount*500); // period in

uS for 500 Hz

const int maxDur = 1000000/(sampleCount*50); // period for

50 hz

// table of values for 16 samples of one sine wave cycle

static int sinewave[sampleCount] = {

 0x7FF,0xADD,0xDA7,0xF4D,0xFFF,0xF77,0xDA7,0xB40,

 0x7FF,0x521,0x257,0xB1, 0x0, 0x87, 0x257,0x4BE

};

void setup()

{

 pinMode(outputPin, OUTPUT); // enable output on the led

pin

 analogWriteResolution(12); // set the Arduino DAC

resolution

}

void loop()

{

 int sensorReading = analogRead(sensorPin); // read the

analog input

 int duration = map(sensorReading, low,high,

minDur,maxDur);

 duration = constrain(duration, minDur,maxDur); //

constrain the value

 for(int sample=0; sample < sampleCount; sample++) {

 analogWrite(outputPin, sinewave[sample]);

 delayMicroseconds(duration);

 }

}

Before you can load sketches on the Zero, Adafruit Metro M0 or M4, or

SparkFun RedBoard, open the Arduino Boards Manager and install the

appropriate package (see Recipe 1.7): Arduino SAMD Boards, Adafruit

SAMD Boards, or SparkFun SAMD Boards. If you are using an

Adafruit or SparkFun board, you’ll need to add their board manager

URL to the Arduino IDE first. See https://learn.adafruit.com/add-

boards-arduino-v164/setup (Adafruit)

or https://learn.sparkfun.com/tutorials/installing-arduino-ide/board-

add-ons-with-arduino-board-manager (SparkFun) for details. After

you’ve installed support for your SAMD board, use the Tools menu to

configure the Arduino IDE to use hat board and set the correct serial

port for connecting to it. Next, upload the code using the Arduino IDE.

THESE SAMD-BASED BOARDS ARE NOT 5 VOLT
TOLERANT

You must not connect more than 3.3 volts to their I/O pins or you can

damage the board!

Discussion

Connections for audio output with the LDR circuit for the Zero board

Although the wiring may appear similar at first glance to Figure 1-8, the

sensor input and audio output use different pins. These boards have a

digital to analog converter (DAC) that can create more realistic audio

than the binary output of a standard digital pins. However, the DAC is

only available on analog pin 0 so the sensor input is here connected to

analog pin 1.

https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#using_board_manager
https://learn.adafruit.com/add-boards-arduino-v164/setup
https://learn.adafruit.com/add-boards-arduino-v164/setup
https://learn.sparkfun.com/tutorials/installing-arduino-ide/board-add-ons-with-arduino-board-manager
https://learn.sparkfun.com/tutorials/installing-arduino-ide/board-add-ons-with-arduino-board-manager
https://learning.oreilly.com/library/view/arduino-cookbook-3rd/9781491903513/ch01.html#connections_for_a_speaker_with_the_ldr_c

Another difference that may not be obvious from the figure is that these

boards can only drive up to 7mA on a pin compared to 40mA on the

Uno. And because the pin voltage ranges from 0 to 3.3 volts compared

to the 0 to 5 volt range of the Uno, the maximum power delivered to a

pin is almost 10 time less than the Uno. For that reason, the output pins

should be connected to headphones or an amplifier input as it will not

drive a speaker directly.

The sketch uses a lookup table of 16 samples per sine wave cycle,

however these boards are fast enough to handle much higher resolutions

and you can increase the number of samples to improve the purity of the

signal.

