
Chapter 1. Getting Started

A NOTE FOR EARLY RELEASE READERS

This will be the 2nd chapter of the final book. Please note that the

Github repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material, please reach out

to the author at matt@starburstdata.com.

As we learned in Chapter 1, Presto is a powerful open source distributed

SQL engine. It was designed and written from the ground up for running

interactive analytic queries against disparate data sources of all sizes

ranging from gigabytes to petabytes. In this chapter we will discuss how

to configure and use Presto in a Docker environment, single node

environment, and distributed multi node environment.

Downloading and Using Presto

Presto is an active open source projects with many frequent releases. By

using the most recent version, you will be able to take advantage of the

latest features, bug fixes, and performance improvements. This book

will refer to and use the latest Presto version at the time of writing this

book. This is the version built from the open source repository

on https://github.com/prestosql/presto and available for download on

Maven Central Repository (https://search.maven.org/).

If you choose a different and more recent version of Presto, it should

work the same as described in this book. While it’s unlikely you’ll run

into issues, it’s important to refer to the release notes and documentation

for any changes.

Using Presto in a Docker Container

Starburst Data provides a preconfigured demo environment of Presto in

a Docker container. To run Presto in Docker, you must have Docker

Engine installed on your machine. You can download Docker Engine

from https://www.docker.com.

mailto:matt@starburstdata.com
https://github.com/prestodb/presto
https://prestodb.io/docs/current/
https://prestodb.io/docs/current/
https://www.docker.com/

We will use Docker to run the Presto Server and then using Docker to

connect to the Presto Server using the Presto CLI.

$ docker run -d --name presto starburstdata/presto:302-e.7

Now let’s connect using the Presto CLI.

$ docker exec -it presto presto-cli

 presto> select count(*) from tpch.sf1.nation;

 _col0

 25

 (1 row)

 Query 20181105_001601_00002_e6r6y, FINISHED, 1 node

 Splits: 21 total, 21 done (100.00%)

 0:06 [25 rows, 0B] [4 rows/s, 0B/s]

NOTE

If you try to run docker and you see an error message resembling Query

20181217_115041_00000_i6juj failed: Presto server is still initializing, try

waiting a bit and retry your last command.

To stop Presto running in a Docker container, simply run:

$ docker stop presto

NOTE

Although the docker stop command stopped the running container, it is

still defined. If you try to run Presto with docker again you may get the

error message The container name “/presto" is already in use. It’s always

suggested to clean up your environment when your done by running the

following command to remove the docker container when it is no longer

needed.

$ docker rm presto

Detailed Installation

INSTALLING JAVA

Presto is written in Java and requires a Java JVM to be installed on your

system. Presto often requires a recent update of the latest major release.

For example, at the time of the writing of this book, Presto requires at

least Java version 8 update 151 (Java 8u151) or Java 11. If you do not

have that version of Java, Presto will fail to start. Presto typically moved

to requires the recent versions of Java in order to take advantage of the

new features, but more importantly performance, security, and bug fixes

and improvements. You should always refer to the Presto documentation

for the latest Java requirements.

Presto will run using Oracle Java and OpenJDK, but not limited to those.

You can download Oracle Java from https://www.oracle.com/java/ and

OpenJDK from https://openjdk.java.net/.

INSTALLING PRESTO

We will use the wget and tar commands to download and extract the

Presto Server tarball on a Linux System.

$ wget \

http://central.maven.org/maven2/io/prestosql/presto-

server/305/

 presto-server-305.tar.gz

$ tar xvzf presto-server-305.tar.gz

Once you extract the Presto Server tarball, it will create a single top-

level directory, presto-server-305. This directory is referred to as

the installation directory. The installation directory contains:

lib/

This directory contains the the JARs (Java archive) that make up

the Presto Server.
plugins/

This directory contains the Presto plugin JARs. By default Presto

is packaged with many plugins, but third-party plugins may be

added as well. We will cover Presto plugins in Chapter XX, but

Presto allows for pluggable components to integrate with Presto

such as connectors, functions, and security access controls.
bin/

https://www.oracle.com/java/
https://openjdk.java.net/

This directory contains helper launcher scripts for Presto. These

launcher scripts are use to start, stop, restart, kill and get the status

a running Presto process. They also provide options to override

default behaviors. We’ll discuss this in great detail in the next

section.
etc/

This directory is the configuration directory. It is created by the

user and provide the necessary configurations needed by Presto.

By default, it’s assumed the configurations are located within the

installation directory. But they may be placed elsewhere in the

filesystem.
var/

Finally, there is a data directory. This is the place where logs are

stored and it is created the first time Presto Server is launched. By

default it’s located in the installation directly. However, it is

recommended to configure it outside of the installation directory to

allow for the data to be preserved across upgrades.

PRESTO CONFIGURATION

Before we can start Presto, we need to provide a set of configuration

files.

 Presto Server Configuration

 Presto Catalog Configuration

 Presto Logging Configuration

 Presto Node Configuration

 Java Virtual Machine (JVM) Configuration

It’s very important to point out that these configurations must exist on

every machine where Presto runs. Generally, the content in the

configurations across a cluster of Presto nodes are the same. We will

touch on when they are different a bit later.

By default, the configuration files are expected to be located in

an etc directory inside the installation directory. But the defaults can be

changed. This will be explained in the section detailing the Presto

launcher scripts.

With the exception of the JVM configuration, the above configurations

follow the Java Properties standards. As a general description for Java

Properties, each configuration parameter is stored as a pair of string in

the format key=value. If you’re interested in learning about the full

specification of Java Properties, you should refer to the full Java

documentation on the topic. There are more advanced features such as

trimmings, escapes, line continuations, and encodings. But as a general

recommendation, it’s usually best to stay to using the

basic key=value feature.. For example, Presto will not interpret the full

specification for the node.properties file.

Presto Server Configuration

The file, etc/config.properties, provides the configuration for the Presto

Server. A Presto server can function as a coordinator or a worker. A

Presto servier can also function as both a coordinator and worker.

However, dedicating a single machine to only perform coordinator work

provides the best performance on larger clusters. We will provide

examples of these in the following sections on using Presto.

The following are the basic allowed Presto Server Configuration

properties. In future chapters where we discuss features such as

Authentication, Authorization, and Resource Groups, we will cover

those additional optional properties.

coordinator

Allow this Presto instance to function as a coordinator (accept

queries from clients and manage query execution).
node-scheduler.include-coordinator

Allow scheduling work on the coordinator. For larger clusters,

processing work on the coordinator can impact query performance

because the machine’s resources are not available for the critical

task of scheduling, managing and monitoring query execution.
http-server.http.port

Specifies the port for the HTTP server. Presto uses HTTP for all

communication, internal and external.
query.max-memory

The maximum amount of distributed memory that a query may

use. This is described in greater detail in Chapter XX about

memory management in Presto.
query.max-memory-per-node

The maximum amount of user memory that a query may use on

any one machine. This is described in greater detail in Chapter XX

about memory management in Presto.
query.max-total-memory-per-node

The maximum amount of user and system memory that a query

may use on any one machine, where system memory is the

memory used during execution by readers, writers, and network

buffers, etc. This is described in greater detail in Chapter XX about

memory management in Presto.
discovery-server.enabled

Presto uses the Discovery service to find all the nodes in the

cluster. Every Presto instance will register itself with the

Discovery service on startup. In order to simplify deployment and

avoid running an additional service, the Presto coordinator can run

an embedded version of the Discovery service. It shares the HTTP

server with Presto and thus uses the same port.
discovery.uri

The URI to the Discovery server. When running the embedded

version of Discovery in the Presto coordinator, this should be the

URI of the Presto coordinator. Replace example.net:8080 to match

the host and port of the Presto coordinator. This URI must not end

in a slash.

Presto Catalog Configuration

Presto accesses data via connectors, which are mounted as Presto

catalogs. The connector provides all of the schemas and tables inside of

the catalog. The Hive connector maps each Hive database to a schema.

For example, let’s say we have a Hive database web that contains a table

clicks. In this case, Hive connector is mounted as the hive catalog and

the Hive web database is exposed as a Presto schema. The

table clicks would be accessed in Presto as hive.web.clicks. This will

become more obvious we we start to use Presto.

Catalogs are registered by creating a catalog properties file in

the etc/catalog directory. For example, Presto contains a built in TPC-H

connector. The TPC-H connector provides a set of schemas to support

the TPC Benchmark™ H (TPC-H). TPC-H is a database benchmark

used to measure the performance of highly-complex decision support

databases.

This connector can also be used to test the capabilities and query syntax

of Presto without configuring access to an external data source. When

you query a TPC-H schema, the connector generates the data on the fly

using a deterministic algorithm.

To configure the TPC-H connector, create a catalog properties

file etc/catalog/tpch.properties with the following contents:

connector.name=tpch

In the Presto Command Line Interface section we will show how to

query from this catalog in Presto.

The name of the catalog properties file will be the name of the catalog

exposed in Presto. For example, if you created catalog properties

files etc/cdh-hadoop.properties, etc/hdp-hadoop.properties, and etc/mysql-

dev.properties. The catalogs exposed in Presto would be cdh-hadoop, hdp-

hadoop, and mysql-dev.

Every catalog configuration file requires the connector.name property.

Additional properties are determined by the Presto connector

implementations. These are documented on the Presto documentation.

And we will also discuss them in {{Chapter XX}} about Presto

Connectors.

Presto Logging Configuration

The optional Presto logging configuration file, etc/log.properties, allows

setting the minimum log level for named logger hierarchies. Every

logger has a name, which is typically the fully qualified name of the

class that uses the logger. Loggers have a hierarchy based on the dots in

the name (like Java packages). For example, consider the following log

levels file:

io.prestosql=INFO

This would set the minimum level to INFO for both io.prestosql.server and

io.prestosql.hive. The default minimum level is INFO (thus the above

example does not actually change anything). There are four

levels: DEBUG, INFO, WARN and ERROR. Throughout the book we may refer to

setting logging when discussing topics such as troubleshooting in Presto.

Presto Node Configuration

The node properties file, etc/node.properties, contains configuration

specific to each node. A node is a single installed instance of Presto on a

machine. The following is a minimal etc/node.properties:

node.environment=production

 node.id=ffffffff-ffff-ffff-ffff-ffffffffffff

 node.data-dir=/var/presto/data

Often this file is automatically created using a deployment system when

Presto is first installed. In this chapter we are discussing how to

manually deploy Presto, but there are automation tools such as Ansible

that you may use to create and deploy a Presto cluster. Or automation in

the Public Cloud deployments that will also create this file

automatically.

The following are the allowed Presto Node Configuration properties.

node.environment

The name of the environment. All Presto nodes in a cluster must

have the same environment name.
node.id

The unique identifier for this installation of Presto. This must be

unique for every node. This identifier should remain consistent

across reboots or upgrades of Presto. If running multiple

installations of Presto on a single machine (i.e. multiple nodes on

the same machine), each installation must have a unique identifier.

Running multiple Presto instances on the same machine is

generally not recommended unless you’re using it for development

and testing.
node.data-dir

The location (filesystem path) of the data directory. By default,

Presto will store logs and other data here.

Java Virtual Machine Configuration

The JVM config file, etc/jvm.config, contains a list of command line

options used for launching the Java Virtual Machine (JVM). The format

of the file is a list of options, one per line. These options are not

interpreted by the shell, so options containing spaces or other special

characters should not be quoted.

The following provides a good starting point for creating etc/jvm.config:

-server

 -mx16G

 -XX:+UseG1GC

 -XX:G1HeapRegionSize=32M

 -XX:+UseGCOverheadLimit

 -XX:+ExplicitGCInvokesConcurrent

 -XX:+HeapDumpOnOutOfMemoryError

 -XX:+ExitOnOutOfMemoryError

Because an OutOfMemoryError will typically leave the JVM in an

inconsistent state, we write a heap dump (for debugging) and forcibly

terminate the process when this occurs.

The -mx option is one of the more important properties in this file. It sets

the maximum Heap Space for the JVM. This determines how much

memory is available for the Presto process. Throughout this book we

may refer back to this configuration. For example, we will discuss it in

more detail in Chapter XX about Presto tuning and in Chapter XIX

about Presto memory management.

Now that we have a basic understand of the Presto configuration. Let’s

return back to installing and deploying Presto.

USING PRESTO ON A SINGLE MACHINE

The simplest first step to get started with Presto is to run Presto on a

single machine. Inside the Presto installation directory we created in a

previous section, let’s create the basic set of Presto configurations. We

will use vi to create the configuration file. Please use the contents below

for the files.

$ cd presto-server-305

 $ mkdir -p etc/catalog

 $ vim etc/config.properties

 $ vim etc/node.properties

 $ vim etc/jvm.config

 $ vim etc/catalog/tpch.properties

For the configuration files using the following content.

etc/config.properties

coordinator=true

 node-scheduler.include-coordinator=true

 http-server.http.port=8080

 query.max-memory=5GB

 query.max-memory-per-node=1GB

 query.max-total-memory-per-node=2GB

 discovery-server.enabled=true

 discovery.uri=http://localhost:8080

etc/node.properties

node.environment=demo

 node.id=ffffffff-ffff-ffff-ffff-ffffffffffff

 node.data-dir=/var/presto/data

etc/jvm.config

-server

 -Xmx4G

 -XX:+UseG1GC

 -XX:G1HeapRegionSize=32M

 -XX:+UseGCOverheadLimit

 -XX:+ExplicitGCInvokesConcurrent

 -XX:+HeapDumpOnOutOfMemoryError

 -XX:+ExitOnOutOfMemoryError

 -Djdk.nio.maxCachedBufferSize=2000000

etc/catalog/tpch.properties

connector.name=tpch

The list of commands and configuration can be found on the GitHub

repository we set up for this book. You can find it here:

https://www.github.com/{{TODO}}.

STARTING PRESTO

The installation directory contains a couple of launcher scripts. We will

use those to start Presto.

$ bin/launcher run

This command will run Presto as a foreground process. Logs and other

output to Presto are written to stdout and stderr. When Presto is started

you should see this at the bottom of the output.

YYYY-MM-DDTHH:MM:SS INFO main

 io.prestosql.server.PrestoServer ======== SERVER STARTED

========

Running Presto in the foreground can be useful for quickly verifying

whether the process starts up correctly and that it is using the expected

configuration settings. In a production environment, you will typically

run it as a background daemon process. You can do so via the following

command.

$ bin/launcher start

 Started as 48322

The number 48322 you see in the example above if the process ID (pid).

The number you’ll see will be different.

STOPPING PRESTO

To stop Presto running as a daemon you should run the following

$ bin/launcher stop

 Stopped 48322

To forcefully stop Presto you can run the following

$ bin/launcher kill

 Killed 48322

GET STATUS

You can obtain the status of Presto by running:

$ bin/launcher status

 Running as 48322

If Presto is not running you will see this

$ bin/launcher status

 Not running

In the Presto Command Line Interface below we will explain how to

connect to a Presto Server. If you wish to follow that exercise, you

should keep the Presto Server running here.

PRESTO SERVER LOGS

After starting Presto as a daemon, you’ll find log files in var/log. This

will be located within the installation directly unless you specified a

different location in the etc/node.properties file.

launcher.log

This log is created by the launcher and is connected to stdout and

stderr streams of the server. It will contain a few log messages that

occur while the server logging is being initialized and any errors or

diagnostics produced by the JVM.
server.log

This is the main log file used by Presto. It will typically contain the

relevant information if the server fails during initialization. It is

automatically rotated and compressed.
http-request.log

This is the HTTP request log which contains every HTTP request

received by the server. It is automatically rotated and compressed.
PRESTO LAUNCHER OPTIONS

The following command shows the list of options for the Presto

Launcher.

$ bin/launcher --help

 Usage: launcher [options] command

 Commands: run, start, stop, restart, kill, status

 Options:

 -h, --help show this help message and exit

 -v, --verbose Run verbosely

 --etc-dir=DIR Defaults to INSTALL_PATH/etc

 --launcher-config=FILE

 Defaults to INSTALL_PATH/bin/launcher.properties

 --node-config=FILE Defaults to ETC_DIR/node.properties

 --jvm-config=FILE Defaults to ETC_DIR/jvm.config

 --config=FILE Defaults to ETC_DIR/config.properties

 --log-levels-file=FILE

 Defaults to ETC_DIR/log.properties

 --data-dir=DIR Defaults to INSTALL_PATH

 --pid-file=FILE Defaults to DATA_DIR/var/run/launcher.pid

 --launcher-log-file=FILE

 Defaults to DATA_DIR/var/log/launcher.log (only in daemon

mode)

 --server-log-file=FILE

 Defaults to DATA_DIR/var/log/server.log (only in daemon

mode)

 -D NAME=VALUE Set a Java system property

You will notice that the launcher script allows for the configuration

properties to be located in different locations other than within the

installation etc directory. For example, we will discuss install Presto via

RPM in a following section. Using the RPM installation method will

locate the configuration directly.

Using Presto on a Cluster of Machines

So far we have discussed installing Presto on a single node machine.

Presto was designed and intended to be used in a distributed

environment. For any real usage other than for demo purposes you will

want to install Presto on a cluster of machines. Fortunately, the

installation and configuration is similar to installing on a single machine.

But it requires either manual installation on each machine or by using

some other orchestration deployment methods.

In the Detailed Installation section we deployed a single Presto Server

process to act as both a Coordinator and Worker. Here we will install

and configure one Presto Coordinator and two Presto Workers. As

before, we will use the wget and tar commands to download and extract

the Presto Server tarball on a Linux System. You should do this

on every machine you want to be in the Presto cluster.

$ wget \ https://repo1.maven.org/maven2/io/prestosql/presto-

server/305/

 presto-server-305.tar.gz

$ tar xvzf presto-server-305.tar.gz

As before, we need to create a set of configuration files. Inside the

Presto installation directory let’s create the basic set of Presto

configurations. We will use vi to create the configuration file. Please use

the contents below for the files. You should do this on every machine

you want to be in the Presto cluster.

$ cd presto-server-305

 $ mkdir -p etc/catalog

 $ vi etc/config.properties

 $ vi etc/node.properties

 $ vi etc/jvm.config

 $ vi etc/catalog/tpch.properties

As before, you should use the following content in the configuration

files. These configuration files need to exist on every machine you want

to be in the Presto cluster. You’ll noticed the the etc/config.properties is

different in this distributed set up. The Coordinator will have a slightly

different configuration than the Workers.

etc/config.properties

Coordinator

coordinator=true

 node-scheduler.include-coordinator=false

 http-server.http.port=8080

 query.max-memory=5GB

 query.max-memory-per-node=1GB

 query.max-total-memory-per-node=2GB

 discovery-server.enabled=true

 discovery.uri=http://<coordinator-ip-or-hostname>:8080

Workers

coordinator=false

 http-server.http.port=8080

 query.max-memory=5GB

 query.max-memory-per-node=1GB

 query.max-total-memory-per-node=2GB

 discovery.uri=http://<coordinator-ip-or-hostname>:8080

etc/node.properties

node.environment=demo

etc/jvm.properties

-server

 -Xmx8G

 -XX:+UseG1GC

 -XX:G1HeapRegionSize=32M

 -XX:+UseGCOverheadLimit

 -XX:+ExplicitGCInvokesConcurrent

 -XX:+HeapDumpOnOutOfMemoryError

 -XX:+ExitOnOutOfMemoryError

etc/catalog/tpch.properties

connector.name=tpch

The list of commands and configuration can be found on the GitHub

repository we set up for this book. You can find it here:

https://www.github.com/{{TODO}}.

Now that you have Presto installed and configured on a set of nodes, you

should use the launcher to start Presto on every node. Generally, it’s best

to start the Presto Coordinator first followed by the Presto Workers.

$ bin/launcher start

As before, you can use the Presto CLI to connect to the Presto Server. In

the case of a distributed set up, you need to specify the address of the

Presto Coordinator using the --server option. If you are running the

Presto CLI on the Presto Coordinator node, then you do not need to

specify this option, as it defaults to localhost:8080.

./presto-cli --server <coordinator-ip-or-hostname>:8080

You can now verify that the Presto cluster is running correctly. The

nodes system table contains the list of all the active nodes that are

currently part of the cluster. You can query it using the following

command:

presto> select * from system.runtime.nodes;

 node_id | http_uri | node_version | coordinator | state

 ---------+------------------------+--------------+---------

 c00367d | http://<http_uri>:8080 | 0.213 | true | active

 9408e07 | http://<http_uri>:8080 | 0.213 | false | active

 90dfc04 | http://<http_uri>:8080 | 0.213 | false | active

 (3 rows)

You will observe there will be one entry for every node in the Presto

cluster.

Other Installation Methods
RPM Installation

Presto can also be installed via RPM Package Manager (RPM). To

install Presto using the Presto RPM Package, we will use wget and rpm

commands on a Linux system.

$ wget \ https://repo1.maven.org/maven2/io/prestosql/presto-

server-rpm/305/

 presto-server-rpm-305.rpm

 $ sudo rpm -i presto-server-rpm-305.rpm

This will install Presto in a single node mode and create the basic Presto

configuration files and a service control script to control the Presto

Server.

Control Scripts

The Presto RPM will also deploy service scripts to control the Presto

server process. The script is configured with chkconfig, so that the service

can be started automatically on the operating system boot. After

installing Presto from the RPM, you can run:

service presto [start|stop|restart|status]

Installation Directory Structure

When using the RPM based installation method, Presto is installed in a

directory structure more consistent with how software is installed on

Linux systems. This means that not everything is contained with the

single Presto installation directory structure as we have seen so far.

/usr/lib/presto/lib/

The directory contains the various libraries needed to run the

product. Plugins are located in a plugin subdirectory.
/etc/presto

This directory contains the general Presto configuration files such

as node.properties, jvm.config, config.properties. Catalog

configurations are located in a catalog subdirectory.
/etc/presto/env.sh

This directory contains the Java installation path used by Presto.
/var/log/presto

This directory contains the Presto server logs.
/var/lib/presto/data

This directory is the Presto data directory
/usr/shared/doc/presto

This directory contains any Presto documentation.
/etc/rc.d/init.d/presto

This directory contains the service scripts for controlling the Presto

server process.

The node.properties file requires the following two additional properties

since our directory structure is different from what standard Presto

expects.

catalog.config-dir=/etc/presto/catalog

 plugin.dir=/usr/lib/presto/lib/plugin

Uninstall Presto

If Presto is installed using RPM, you can uninstall it the same way you

remove any other RPM package

$ rpm -e presto

When removing Presto, any Presto related files and configurations will

also be deleted. So it’s important you create a backup if you wish to

keep anything. The Presto logs directory will not be

deleted /var/log/presto.

Cloud Installation

In later chapters we will discuss using Presto in public clouds Amazon

Web Services (AWS), Microsoft Azure, and Google Cloud Platform

(GCP). AWS and GCP provide their own Presto distributions on AWS

Elastic MapReduce (EMR) and GCP Dataproc respectively. Starburst

Data provides their distribution on all three. You can also manually

install Presto on the cloud providers machine instances as well using the

same methods you would for an on premises installation. These options

will be discussed in greater detail in following chapters in this book.

