
Chapter 1. Introduction 

Over the last few decades computing systems have only grown in 

complexity. Reasoning about how software behaves has created multiple 

business categories, all of them trying solve the challenges of gaining 

inshight into complex systems. One approach to get this visibility is by 

analyzing data generated by all applications running in a computing 

system as logs. Logs are a great source of information. They can give 

you precise data of how an application is behaving. However, they 

constrain you to know only the information that the engineers that built 

the application exposed in those logs. Gathering any additional 

information in log format from any system can be as challenging as 

decompiling the program and looking at the execution flow. Another 

popular approach is to use metrics to reason why a program behaves the 

way it does. Metrics differ from logs in the data format, while logs give 

you explicit data, metrics aggregate data to measure how a program 

behaves at an specific point in time. 

Observability is an emergent practice that approach this problem from 

an different angle. People define Observability as the capacity that we 

have to ask arbitrary questions and receive complex answers from any 

given system. A key difference between Observability and log, and 

metrics, aggregation, is the data that you collect. Since by practicing 

observability you need to answer any arbitrary question at any point in 

time, the only way to reason about data is by collecting all data that your 

system can generate, and only aggregate it when it’s necessary to answer 

your questions. 

Nassim Nicholas Taleb, the author of best-seller books like Antifragile: 

Things That Gain From Disorder, popularized the term Black Swan for 

unexpected events, with major consequences, that could have been 

expected if they had been observed before. In his book The Black Swan, 

he rationalizes how having relevant data could help in risk mitigation for 

these rare events. Black Swan events are more common that we think in 

software engineering, and they are inebitable. Since we can assume that 

we cannot prevent these kind of events, our only option is to have as 

much information as possbile about them to address them without 

impacting bussiness systems in a crytical way. Observability helps us 

build robust systems and mitigate future black swan events because it’s 



based on the premise that you’re collecting any data that can anwer any 

future question. The study of Black Swan events and practicing 

Observability converge in once central point, the data that you gather 

from your systems. 

Linux Containers are an abstraction on top of a set of features on the 

Linux Kernel to isolate and manage computer processes. The kernel, 

traditionally in charge of resource management, also provides task 

isolation and security. In Linux, the main features that containers are 

based on are Namespaces and Cgroups. Namespaces are the components 

that isolate tasks from each other. In a sense, when you’re inside a 

namespace, you experience the operating system like if there was no 

other tasks running in the computer. Cgroups are the component that 

provide resource management. From an operational point of view, they 

give you fine grained control to any resource usage, like CPU, disk I/O, 

network and so on. In the last decade, with the raise in popularity of 

Linux Containers, there have been a swift in the way software engineers 

architect large distributed systems and compute plaftforms. Multi-tenant 

computing has grown completely relyant of these features in the Kernel. 

By relying so much on the low level capabilities of the Linux Kernel, 

we’ve tapped into a new source of complexity and information that we 

need consider when we design observable systems. The kernel is an 

evented system, which means that all work is described and executed 

based on events. Opening files are a kind of event, executing an arbitrary 

instruction by a CPU is an event, receiving a network packet is an event, 

and so on. Berkeley Packet Filter (BPF) is a subsystem in the kernel that 

can inspect those new sources of information. BPF allows you to write 

programs that are safely executed when the kernel triggers any event. 

BPF gives you strong safety guarantees to prevent you from injecting 

system crashes and malicious behavior in those programs. BPF is 

enabling a new wave of tools to help system developers observe and 

work with these new platforms. 

In this book, we’re going to show you the power that BPF offers you to 

make any computing system more observable. We’re also going to show 

you how to write BPF programs with the help of multiple programming 

languages. We’ve put the code for your programs in GitHub, so you 

don’t have to copy and paste the code. You can find it in a git 

repository companion to this book. 

https://github.com/bpftools/observability-with-bpf


But before starting to focus on the technical aspects of BPF, let us tell 

you how everything began. 

BPF’s History 

In 1992, Steven McCanne and Van Jacobson wrote the paper “The BSD 

Packet Filter: A New Architecture for User-level Packet Capture”. In 

this paper, the authors described how they implemented a network 

packet filter for the Unix kernel that was 20 times faster than the state of 

the art in packet filtering at the time. Packet filters have a very specific 

purpose, provide applications that monitor the system’s network with 

direct information from the kernel. With this information, applications 

could decide what to do with those packets. BPF introduced two big 

innovations in packet filtering: 

 A new virtual machine designed to work efficiently with register 

based CPUs. 

 The usage of per application buffers that could filter packets 

without copying all the packet information. This minimized the 

amount of data BPF required to make decisions. 

These drastic improvements made all Unix systems adopt BPF as the 

technology of choice for network packet filtering, abandoning old 

implementations that consumed more memory and were less performant. 

This implementation is still present in many derivatives of that Unix 

kernel, including the Linux kernel. 

In early 2014, Alexei Starovoitov introduced the extended BPF 

implementation. This new design was optimized for modern hardware, 

making its resulting instruction set faster than the machine code 

generated by the old BPF interpreter. This extended version also 

increased the number of registers in the BPF virtual machine from two 

32-bit registers to ten 64-bit registers. The increase in the number of 

registers, and their width, opened the possibility to write more complex 

programs, since developers were free to exchange more information 

using function parameters. These changes, among other improvements, 

made extended BPF up to 4 times faster than the original BPF 

implementation. 



The initial goal for this new implementation was to optimize the internal 

BPF instruction set that processed network filters. At this point, BPF 

was still restricted to kernel space, and only a few programs in user-

space could write BPF filters for the kernel to process, like Tcpdump 

and Seccomp, which we’ll talk in future chapters. Today, these 

programs still generate bytecode for the old BPF interpreter, but the 

kernel translates those instructions to the much improved internal 

representation. 

In June of 2014, the extended version of BPF was exposed to user-space. 

This was an inflection point for the future of BPF. As Alexei wrote in 

the patch that introduced these changes: 

this patch set demonstrates the potential of eBPF. 

BPF became a top level kernel subsystem, and it stopped being limited 

to the networking stack. BPF programs started to look more like kernel 

modules, with a big emphasis towards safety and stability. Unlike kernel 

modules, BPF programs don’t require to recompile your kernel, and they 

are guaranteed to complete without crashing. 

The BPF Verifier, which we’ll talk about in the next chapter, added 

these required safety guarantees. It ensures that any BPF program will 

complete without crashing, and it ensures that programs don’t try to 

access memory out of range. These advantages come with certain 

restrictions though, programs have a maximum size allowed, and loops 

need to be bounded, to ensure that the system’s memory is never 

exhausted by a bad BPF program. 

With the changes to make BPF accessible from user-space, the kernel 

developers also added a new system call, bpf. This new syscall will be 

the central piece of communication between user-space and the kernel. 

We’ll talk about how to use this system call to work with BPF programs 

and maps in Chapters 2 and 3 of this book. 

BPF maps will become the main mechanism to exchange data between 

the kernel and user-space. We’ll see in Chapter 2 how to use these 

specialized structures to collect information from the kernel, as well as 

sending information to BPF programs that already running in the kernel. 

https://learning.oreilly.com/library/view/linux-observability-with/9781492050193/ch02.html#running_your_first_BPF_programs
https://learning.oreilly.com/library/view/linux-observability-with/9781492050193/ch03.html#bpf_maps
https://learning.oreilly.com/library/view/linux-observability-with/9781492050193/ch02.html#running_your_first_BPF_programs


The extended BPF version is the starting point for this book. In the last 

five years, BPF has evolved significantly since the introduction of this 

extended version, and we’ll cover in detail the evolution of BPF 

programs, BPF maps, and kernel subsystems that have been affected by 

this evolution. 

Architecture 

BPF’s architecture within the kernel is fastinating. We’ll dive into its 

specific details through the whole book, but we want to give you a quick 

overview about how it works in this chapter. 

As we mentioned earlier, BPF is a highly advanced virtual machine, 

running code instructions in an isolated environment. In a sense, you can 

think of BPF in a similar way you think about the Java Virtual Machine, 

a specialized program that runs machine code compiled from a high 

level programming language. Compilers like LLVM, and GCC in the 

near future, provide support for BPF, allowing you to compile C code 

into BPF instructions. Once your code is compiled, BPF uses a verifier 

to ensure that the program is safe to run by the kernel. It will prevent 

you from running code that might compromise your system by crashing 

the kernel. If your code is safe, the BPF program will be loaded in the 

kernel. The Linux kernel also incorporates a Just-In-Time(JIT) compiler 

for BPF instructions. The JIT will transform the BPF bytecode into 

machine code right after the program is verified, avoiding this overhead 

on execution time. One interesting aspect of this architecture is that you 

don’t need to restart your system to load BPF programs, you can load 

them on demand, and you can also write your own init scripts that load 

BPF programs when your system starts. 

Before the kernel runs any BPF program, it needs to know which 

execution point the program is attached to. There are multiple 

attachment points in the kernel, and the list is growing. The execution 

points are defined by the BPF program types, we’ll talk about them in 

the next chapter. When you choose an execution point, the kernel also 

makes available specific function helpers that you can use to work with 

the data that your program receives, making execution points and BPF 

programs tightly coupled. 



The final component in BPF’s architecture is responsible for sharing 

data between the kernel and user-space. This component is called BPF 

Maps, and we’ll talk about them in Chapter 3. BPF Maps are bi-

directional structures to share data. This means that you can write and 

read on them from both sides, the kernel and user-space. There are 

several types of structures, from simple arrays and hash maps, to very 

specialized maps that allow you to save entire BPF programs in them. 

We’ll cover every component in BPF’s architecture in more details as 

the book progresses. You’ll also learn to take advantage of BPF’s 

extensibility and data sharing with specific examples covering from 

stack trace analysis to network filtering and runtime isolation. 

Conclusion 

We’ve wrote this book to help you get familar with the basic BPF 

concepts that you’re going to need in your day to day when working 

with this Linux subsystem. BPF is still a technology in development, 

new concepts and paradigms are growing as we write this book. 

Hopefully, this book will help you expand your knowledge easily by 

giving you a solid base of its fundational components. 

The next chapter dives directly into the structure of BPF programs and 

how the kernel runs them. It also covers the points in the kernel where 

you can attach those programs. This will help you get familiar with all 

the data that your programs can consume and how to use it. 

 

https://learning.oreilly.com/library/view/linux-observability-with/9781492050193/ch03.html#bpf_maps

