
Chapter 1. What Is Google BigQuery? 

Data Processing Architectures 

Google BigQuery is a serverless, highly scalable data warehouse that 

comes with a built-in query engine. The query engine is capable of 

running SQL queries on terabytes of data in a matter of seconds, and 

petabytes in only minutes. You get this performance without having to 

manage any infrastructure and without having to create or rebuild 

indexes.  

BigQuery has legions of fans. Paul Lamere, a Spotify engineer, was 

thrilled that he could finally talk about how his team uses BigQuery to 

quickly analyze large datasets: “Google’s BigQuery is *da bomb*,” 

he tweeted in February 2016. “I can start with 2.2Billion ‘things’ and 

compute/summarize down to 20K in < 1 min.” The scale and speed are 

just two notable features of BigQuery. What is more transformative is 

not having to manage infrastructure because the simplicity inherent in 

serverless, ad hoc querying can open up new ways of working. 

Companies are increasingly embracing data-driven decision making and 

fostering an open culture where the data is not siloed within 

departments. BigQuery, by providing the technological means to enact a 

cultural shift toward agility and openness, plays a big part in increasing 

the pace of innovation. For example, Twitter recently reported in its 

blog that it was able to democratize data analysis with BigQuery by 

providing some of its most frequently used tables to Twitter employees 

from a variety of teams (Engineering, Finance, and Marketing were 

mentioned). 

For Alpega Group, a global logistics software company, the increased 

innovation and agility offered by BigQuery were key. The company 

went from a situation in which real-time analytics was impossible to 

being able to provide fast, customer-facing analytics in near real time. 

Because Alpega Group does not need to maintain clusters and 

infrastructure, its small tech team is now free to work on software 

development and data capabilities. “That was a real eye opener for 

us,” says the company’s lead architect, Aart Verbeke. “In a conventional 
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environment we would need to install, set up, deploy and host every 

individual building block. Here we simply connect to a surface and use 

it as required.” 

Imagine that you run a chain of equipment rental stores. You charge 

customers based on the length of the rental, so your records include the 

following details that will allow you to properly invoice the customer: 

1. Where the item was rented 

2. When it was rented 

3. Where the item was returned 

4. When it was returned 

Perhaps you record the transaction in a database every time a customer 

returns an item.1 

From this dataset, you would like to find out how many “one-way” 

rentals occurred every month in the past 10 years. Perhaps you are 

thinking of imposing a surcharge for returning the item at a different 

store and you would like to find out what fraction of rentals would be 

affected. Let’s posit that wanting to know the answer to such questions 

is a frequent occurrence—it is important for you to be able to answer 

such ad hoc questions because you tend to make data-driven decisions. 

What kind of system architecture could you use? Let’s run through some 

of the options. 

Relational Database Management System 

When recording the transactions, you are probably recording them in a 

relational, online transaction processing (OLTP) database such as 

MySQL or PostgreSQL. One of the key benefits of such databases is 

that they support querying using Structured Query Language (SQL)—

your staff doesn’t need to use high-level languages like Java or Python 

to answer questions that arise. Instead, it is possible to write a query, 

such as the following, that can be submitted to the database server: 

SELECT  
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  EXTRACT(YEAR FROM starttime) AS year, 

  EXTRACT(MONTH FROM starttime) AS month, 

  COUNT(starttime) AS number_one_way 

FROM 

  mydb.return_transactions 

WHERE 

  start_station_name != end_station_name 

GROUP BY year, month 

ORDER BY year ASC, month ASC 

Ignore the details of the syntax for now; we cover SQL queries later in 

this book. Instead, let’s focus on what this tells us about the benefits and 

drawbacks of an OLTP database. 

First, notice that SQL goes beyond just being able to get the raw data in 

database columns—the preceding query parses the timestamp and 

extracts the year and month from it. It also does aggregation (counting 

the number of rows), some filtering (finding rentals where the starting 

and ending locations are different), grouping (by year and month), and 

sorting. An important benefit of SQL is the ability to specify what we 

want and let the database software figure out an optimal way to execute 

the query. 

Unfortunately, queries like this one are quite inefficient for an OLTP 

database to carry out. OLTP databases are tuned toward data 

consistency; the point is that you can read from the database even while 

data is simultaneously being written to it. This is achieved through 

careful locking to maintain data integrity. For the filtering 

on station_name to be efficient, you would need to create an index on the 

station name column. If the station name is indexed, then and only then 

does the database do special things to the storage to optimize 

searchability—this is a tradeoff, slowing writing down a bit to improve 



the speed of reading. If the station name is not indexed, filtering on it 

will be quite slow. Even if the station name is an index, this particular 

query will be quite slow because of all the aggregating, grouping, and 

ordering. OLTP databases are not built for this sort of ad hoc2 query that 

requires traversal through the entire dataset. 

MapReduce Framework 

Because OLTP databases are a poor fit for ad hoc queries and queries 

that require traversal of the entire dataset, special-purpose analyses that 

require such traversal might be coded in high-level languages like Java 

or Python. In 2003, Jeff Dean and Sanjay Ghemawat observed that they 

and their colleagues at Google were implementing hundreds of these 

special-purpose computations to process large amounts of raw data. 

Reacting to this complexity, they designed an abstraction that allowed 

these computations to be expressed in terms of two steps: a map function 

that processed a key/value pair to generate a set of intermediate 

key/value pairs, and a reduce function that merged all intermediate 

values associated with the same intermediate key.3 This paradigm, 

known as MapReduce, became hugely influential and led to the 

development of Apache Hadoop. 

Although the Hadoop ecosystem began with a library that was primarily 

built in Java, custom analysis on Hadoop clusters is now typically 

carried out using Apache Spark. Spark programs can be written in 

Python or Scala, but among the capabilities of Spark is the ability to 

execute ad hoc SQL queries on distributed datasets. 

So, to find out the number of one-way rentals, you could set up the 

following data pipeline: 

1. Periodically export transactions to comma-separated values (CSV) 

text files in the Hadoop Distributed File System (HDFS). 

2. For ad hoc analysis, write a Spark program that does the following: 

a. Loads up the data from the text files into a “DataFrame” 

b. Executes an SQL query, similar to the query in the previous 

section, except that the table name is replaced by the name of 

the DataFrame 
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c. Exports the result set back to a text file 

3. Run the Spark program on a Hadoop cluster. 

Although seemingly straightforward, this architecture imposes a couple 

of hidden costs. Saving the data in HDFS requires that the cluster be 

large enough. One underappreciated fact about the MapReduce 

architecture is that it usually requires that the compute nodes access data 

that is local to them. The HDFS must, therefore, be sharded across the 

compute nodes of the cluster. With both data sizes and analysis needs 

increasing dramatically but independently, it is often the case that 

clusters are underprovisioned or overprovisioned.4 Thus, the need to 

execute Spark programs on a Hadoop cluster means that your 

organization will need to become expert in managing, monitoring, and 

provisioning Hadoop clusters. This might not be your core business. 

BigQuery: A Serverless, Distributed SQL Engine 

What if you could run SQL queries as in a Relational Database 

Management System (RDBMS) system, obtain efficient and distributed 

traversal through the entire dataset as in MapReduce, and not need to 

manage infrastructure? That’s the third option, and it is what makes 

BigQuery so magical. BigQuery is serverless, and you can run queries 

without the need to manage infrastructure. It enables you to carry out 

analyses that process aggregations over the entire dataset in seconds to 

minutes. 

Don’t take our word for it, though. Try it out now. Navigate 

to https://console.cloud.google.com/bigquery (logging into Google 

Cloud Platform and selecting your project if necessary), copy and paste 

the following query in the window,5 and then click the “Run query” 

button: 

SELECT  

  EXTRACT(YEAR FROM starttime) AS year, 

  EXTRACT(MONTH FROM starttime) AS month, 

  COUNT(starttime) AS number_one_way 
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FROM 

  `bigquery-public-data.new_york_citibike.citibike_trips` 

WHERE 

  start_station_name != end_station_name 

GROUP BY year, month 

ORDER BY year ASC, month ASC 

When we ran it, the BigQuery user interface (UI) reported that the query 

involved processing 2.51 GB and gave us the result in about 2.7 

seconds, as illustrated in Figure 1-1. 

 

Figure 1-1. Running a query to compute the number of one-way rentals in the BigQuery web UI 

The equipment being rented out is bicycles, and so the preceding query 

totals up one-way bicycle rentals in New York month by month over the 

extent of the dataset. The dataset itself is a public dataset (meaning that 

anyone can query the data held in it) released by New York City as part 

of its Open City initiative. From this query, we learn that in July 2013, 

there were 815,324 one-way Citibike rentals in New York City. 

Note a few things about this. One is that you were able to run a query 

against a dataset that was already present in BigQuery. All that the 

owner of the project hosting the data had to do was to give you6 “view” 

access to this dataset. You didn’t need to start up a cluster or log in to 

one. Instead, you just submitted a query to the service and received your 

results. The query itself was written in SQL:2011, making the syntax 

familiar to data analysts everywhere. Although we demonstrated on 

gigabytes of data, the service scales well even when it does aggregations 

on terabytes to petabytes of data. This scalability is possible because the 

service distributes the query processing among thousands of workers 

almost instantaneously. 

Working with BigQuery 
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BigQuery is a data warehouse, implying a degree of centralization and 

ubiquity. The query we demonstrated in the previous section was 

applied to a single dataset. However, the benefits of BigQuery become 

even more apparent when we do joins of datasets from completely 

different sources or when we query against data that is stored outside 

BigQuery. 

Deriving Insights Across Datasets 

The bicycle rental data comes from New York City. How about joining 

it against weather data from the US National Oceanic and Atmospheric 

Administration (NOAA) to learn whether there are fewer bicycle rentals 

on rainy days?7 

-- Are there fewer bicycle rentals on rainy days? 

WITH bicycle_rentals AS ( 

  SELECT 

    COUNT(starttime) as num_trips, 

    EXTRACT(DATE from starttime) as trip_date 

 FROM `bigquery-public-

data.new_york_citibike.citibike_trips` 

 GROUP BY trip_date 

), 

 

rainy_days AS 

( 

SELECT 

  date, 

  (MAX(prcp) > 5) AS rainy 

FROM ( 

  SELECT 

    wx.date AS date, 

    IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp 

  FROM 

    `bigquery-public-data.ghcn_d.ghcnd_2016` AS wx 

  WHERE 

    wx.id = 'USW00094728' 

) 

GROUP BY 

 date 

) 

 

SELECT 

  ROUND(AVG(bk.num_trips)) AS num_trips, 

  wx.rainy 

FROM bicycle_rentals AS bk 
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JOIN rainy_days AS wx 

ON wx.date = bk.trip_date 

GROUP BY wx.rainy 

Ignore the specific syntax of the query. Just notice that, in the bolded 

lines, we are joining the bicycle rental dataset with a weather dataset that 

comes from a completely different source. Running the query 

satisfyingly yields that, yes, New Yorkers are wimps—they ride the 

bicycle nearly 20% fewer times when it rains:8 

Row num_trips  rainy   

 1  39107.0    false   

 2  32052.0    true 

What does being able to share and query across datasets mean in an 

enterprise context? Different parts of your company can store their 

datasets in BigQuery and quite easily share the data with other parts of 

the company and even with partner organizations. The serverless nature 

of BigQuery provides the technological means to break down 

departmental silos and streamline collaboration. 

ETL, EL, and ELT 

The traditional way to work with data warehouses is to start with an 

Extract, Transform, and Load (ETL) process, wherein raw data is 

extracted from its source location, transformed, and then loaded into the 

data warehouse. Indeed, BigQuery has a native, highly efficient 

columnar storage format9 that makes ETL an attractive methodology. 

The data pipeline, typically written in either Apache Beam or Apache 

Spark, extracts the necessary bits from the raw data (either streaming 

data or batch files), transforms what it has extracted to do any necessary 

cleanup or aggregation, and then loads it into BigQuery, as demonstrated 

in Figure 1-2. 

 

Figure 1-2. The reference architecture for ETL into BigQuery uses Apache Beam pipelines executed on Cloud Dataflow and can handle both 

streaming and batch data using the same code 
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Even though building an ETL pipeline in Apache Beam or Apache 

Spark tends to be quite common, it is possible to implement an ETL 

pipeline purely within BigQuery. Because BigQuery separates compute 

and storage, it is possible to run BigQuery SQL queries against CSV (or 

JSON or Avro) files that are stored as-is on Google Cloud Storage; 

this capability is called federated querying. You can take advantage of 

federated queries to extract the data using SQL queries against data 

stored in Google Cloud Storage, transform the data within those SQL 

queries, and then materialize the results into a BigQuery native table. 

If transformation is not necessary, BigQuery can directly ingest standard 

formats like CSV, JSON, or Avro into its native storage—an EL 

(Extract and Load) workflow, if you will. The reason to end up with the 

data loaded into the data warehouse is that having the data in native 

storage provides the most efficient querying performance. 

We strongly recommend that you design for an EL workflow if possible, 

and drop to an ETL workflow only if transformations are needed. If 

possible, do those transformations in SQL, and keep the entire ETL 

pipeline within BigQuery. If the transforms will be difficult to 

implement purely in SQL, or if the pipeline needs to stream data into 

BigQuery as it arrives, build an Apache Beam pipeline and have it 

executed in a serverless fashion using Cloud Dataflow. Another 

advantage of implementing ETL pipelines in Beam/Dataflow is that, 

because this is programmatic code, such pipelines integrate better with 

Continuous Integration (CI) and unit testing systems. 

Besides the ETL and EL workflows, BigQuery makes it possible to do 

an Extract, Load, and Transform (ELT) workflow. The idea is to extract 

and load the raw data as-is and rely on BigQuery views to transform the 

data on the fly. An ELT workflow is particularly useful if the schema of 

the raw data is in flux. For example, you might still be carrying out 

exploratory work to determine whether a particular timestamp needs to 

be corrected for the local time zone. The ELT workflow is useful in 

prototyping and allows an organization to start deriving insights from 

the data without having to make potentially irreversible decisions too 

early. 

The alphabet soup can be confusing, so we’ve prepared a quick 

summary in Table 1-1. 
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Workflow Architecture When you’d use it 

EL Extract data from files on Google 

Cloud Storage. 

Load it into BigQuery’s native 

storage. 

You can trigger this from Cloud 

Composer, Cloud Functions, or 

scheduled queries. 

Batch load of historical data. 

Scheduled periodic loads of log files (e.g., once a day). 

ETL Extract data from Pub/Sub, Google 

Cloud Storage, Cloud Spanner, 

Cloud SQL, etc. 

Transform the data using Cloud 

Dataflow. 

Have Dataflow pipeline write to 

BigQuery 

When the raw data needs to be quality controlled, 

transformed, or enriched before being loaded into 

BigQuery. 

When the data loading needs to happen continuously, i.e., if 

the use case requires streaming. 

When you want to integrate with continuous 

integration/continuous delivery (CI/CD) systems and 

perform unit testing on all components. 

ELT Extract data from files in Google 

Cloud Storage. 

Store data in close-to-raw format 

in BigQuery. 

Transform the data on the fly using 

BigQuery views. 

Experimental datasets where you are not yet sure what kinds 

of transformations are needed to make the data usable. 

Any production dataset where the transformation can be 

expressed in SQL. 

Table 1-1. Summary of workflows, sample architectures, and the scenarios in which they would be used 

The workflows in Table 1-1 are in the order that we usually recommend. 

Powerful Analytics 

The benefits of a warehouse derive from the kinds of analyses that you 

can do with the data held within it. The primary way you interact with 

BigQuery is via SQL, and because BigQuery is an SQL engine, you can 

use a wide variety of Business Intelligence (BI) tools such as Tableau, 

Looker, and Google Data Studio to create impactful analyses, 

visualizations, and reports on data held in BigQuery. By clicking the 

“Explore in Data Studio” button in the BigQuery web UI, for example, 
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we can quickly create a visualization of how our one-way bike rentals 

vary by month, as depicted in Figure 1-3. 

BigQuery provides full-featured support for SQL:2011, including 

support for arrays and complex joins. The support for arrays in particular 

makes it possible to store hierarchical data (such as JSON records) in 

BigQuery without the need to flatten the nested and repeated fields. 

Besides the support for SQL:2011, BigQuery has a few extensions that 

make it useful beyond the core set of data warehouse use cases. One of 

these extensions is support for a wide range of spatial functions that 

enable location-aware queries, including the ability to join two tables 

based on distance or overlap criteria.10 BigQuery is, therefore, a 

powerful engine to carry out descriptive analytics.  

 

Figure 1-3. Visualization in Data Studio of how one-way rentals vary by month; nearly 15% of all one-way bicycle rentals in New York happen in 

September 

Another BigQuery extension to standard SQL supports creating machine 

learning models and carrying out batch predictions. We cover the 

machine learning capability of BigQuery in detail in Chapter 9, but the 

gist is that you can train a BigQuery model and make predictions 

without ever having to export data out of BigQuery. The security and 

data locality advantages of being able to do this are enormous. BigQuery 

is, therefore, a data warehouse that supports not just descriptive analytics 

but also predictive analytics. 

A warehouse also implies being able to store different types of data. 

Indeed, BigQuery can store data of many types: numeric and textual 

columns, for sure, but also geospatial data and hierarchical data. Even 

though you can store flattened data in BigQuery, you don’t need to—

schemas can be rich and quite sophisticated. The combination of 

location-aware queries, hierarchical data, and machine learning make 

BigQuery a powerful solution that goes beyond conventional data 

warehousing and business intelligence. 

BigQuery supports the ingest both of batch data and of streaming 

data. You can stream data directly into BigQuery via a REST 

API. Often, users who want to transform the data—for example, by 

adding time-windowed computations—use Apache Beam pipelines 

executed by the Cloud Dataflow service. Even as the data is streaming 
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into BigQuery, you can query it. Having common querying 

infrastructure for both historical (batch) data and current (streaming) 

data is extremely powerful and simplifies many workflows. 

Simplicity of Management 

Part of the design consideration behind BigQuery is to encourage users 

to focus on insights rather than on infrastructure. When you ingest data 

into BigQuery, there is no need to think about different types of storage, 

or their relative speed and cost tradeoffs; the storage is fully managed. 

As of this writing, the cost of storage automatically drops to lower levels 

if a table is not updated for 90 days.11 

We have already talked about how indexing is not necessary; your SQL 

queries can filter on any column in the dataset, and BigQuery will take 

care of the necessary query planning and optimization. For the most 

part, we recommend that you write queries to be clear and readable and 

rely on BigQuery to choose a good optimization strategy. In this book, 

we talk about performance tuning, but performance tuning in BigQuery 

consists mainly of clear thinking and the appropriate choice of SQL 

functions. You will not need to do database administration tasks like 

replication, defragmentation, or disaster recovery; the BigQuery service 

takes care of all that for you. 

Queries are automatically scaled to thousands of machines and executed 

in parallel. You don’t need to do anything special to enable this massive 

parallelization. The machines themselves are transparently provisioned 

to handle the different stages of your job; you don’t need to set up those 

machines in any way. 

Not having to set up infrastructure leads to less hassle in terms of 

security. Data in BigQuery is automatically encrypted, both at rest and 

in transit. BigQuery takes care of the security considerations behind 

supporting multitenant queries and providing isolation between 

jobs. Your datasets can be shared using Google Cloud Identity and 

Access Management (IAM), and it is possible to organize the datasets 

(and the tables and views within them) to meet different security needs, 

whether you need openness or auditability or confidentiality.  
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In other systems, provisioning infrastructure for reliability, elasticity, 

security, and performance often takes a lot of time to get right. Given 

that these database administration tasks are minimized with BigQuery, 

organizations using BigQuery find that it frees their analysts’ time to 

focus on deriving insights from their data. 

How BigQuery Came About 

In late 2010, the site director of the Google Seattle office pulled several 

engineers (one of whom is an author of this book) off their projects 

and gave them a mission: to build a data marketplace. We tried to craft 

the best way to come up with a viable marketplace. The chief issue was 

data sizes, because we didn’t want to provide just a download link. A 

data marketplace is infeasible if people need to download terabytes of 

data in order to work with it. How would you build a data marketplace 

that didn’t require users to start by downloading the datasets to their own 

machines? 

Enter a principle popularized by Jim Gray, the database pioneer. When 

you have “big data,” Gray said, “you want to move the computation 

to the data, rather than move the data to the computation.” Gray 

elaborates: 

The other key issue is that as the datasets get larger, it is no longer possible 

to just FTP or grep them. A petabyte of data is very hard to FTP! So at some 

point, you need indices and you need parallel data access, and this is where 

databases can help you. For data analysis, one possibility is to move the data 

to you, but the other possibility is to move your query to the data. You can 

either move your questions or the data. Often it turns out to be more efficient 

to move the questions than to move the data.12 

In the case of the data marketplace that we were building, users would 

not need to download the datasets to their own machines if we made it 

possible for them to bring their computations to the data. We would not 

need to provide a download link, because users could work on their data 

without the need to move it around.13 

We, the Googlers who were tasked with building a data marketplace, 

made the decision to defer that project and focus on building a compute 

engine and storage system in the cloud. After ensuring that users could 

https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn17
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn18


do something with the data, we would go back and add data marketplace 

features. 

In what language should users write their computation when bringing 

computation to the data on the cloud? We chose SQL because of three 

key characteristics. First, SQL is a versatile language that allows a large 

range of people, not just developers, to ask questions and solve problems 

with their data. This ease of use was extremely important to us. Second, 

SQL is “relationally complete,” meaning that any computation over the 

data can be done using SQL. SQL is not just easy and approachable. It is 

also very powerful. Finally, and quite important for a choice of a cloud 

computation language, SQL is not “Turing complete” in a key way: it 

always terminates.14 Because it always terminates, it is ok to host SQL 

computation without worrying that someone will write an infinite loop 

and monopolize all the compute power in a datacenter. 

Next, we had to choose an SQL engine. Google had a number of internal 

SQL engines that could operate over data, including some that were very 

popular. The most advanced engine was called Dremel; it was used 

heavily at Google and could process terabytes’ worth of logs in 

seconds. Dremel was quickly winning people over from building custom 

MapReduce pipelines to ask questions of their data. 

Dremel had been created in 2006 by engineer Andrey Gubarev, who was 

tired of waiting for MapReduces to finish. Column stores were 

becoming popular in the academic literature, and he quickly came up 

with a column storage format (Figure 1-4) that could handle the Protocol 

Buffers (Protobufs) that are ubiquitous throughout Google. 

 

Figure 1-4. Column stores can reduce the amount of data being read by queries that process all rows but not all columns 

Although column stores are great in general for analytics, they are 

particularly useful for logs analysis at Google because many teams 

operate over a type of Protobuf that has hundreds of thousands of 

columns. If Andrey had used a typical record-oriented store, users would 

have needed to read the files row by row, thus reading in a huge amount 

of data in the form of fields that they were going to discard anyway. By 

storing the data column by column, Andrey made it so that if a user 

needed just a few of the thousands of fields in the log Protobufs, they 
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would need to read only a small fraction of the overall data size. This 

was one of the reasons why Dremel was able to process terabytes’ worth 

of logs in seconds. 

The other reason why Dremel was able to process data so fast was that 

its query engine used distributed computing. Dremel scaled to thousands 

of workers by structuring the computation as a tree, with the filters 

happening at the leaves and aggregation happening toward the root. 

By 2010, Google was scanning petabytes of data per day using Dremel, 

and many people in the company used it in some form or another. It was 

the perfect tool for our nascent data marketplace team to pick up and 

use. 

As the team productized Dremel, added a storage system, made it self-

tuning, and exposed it to external users, the team realized that a cloud 

version of Dremel was perhaps even more interesting than their original 

mission. The team renamed itself “BigQuery,” following the naming 

convention for “Bigtable,” Google’s NoSQL database. 

At Google, Dremel is used to query files that sit on Colossus, Google’s 

file store for storing data. BigQuery added a storage system that 

provided a table abstraction, not just a file abstraction. This storage 

system was key in making BigQuery simple to use and always fast, 

because it allowed key features like ACID (Atomicity, Consistency, 

Isolation, Durability) transactions and automatic optimization, and it 

meant that users didn’t need to manage files. 

Initially, BigQuery retained its Dremel roots and was focused on 

scanning logs. However, as more customers wanted to do data 

warehousing and more complex queries, BigQuery added improved 

support for joins and advanced SQL features like analytic functions. In 

2016, Google launched support for standard SQL in BigQuery, which 

allowed users to run queries using standards-compliant SQL rather than 

the awkward initial “DremelSQL” dialect. 

BigQuery did not start out as a data warehouse, but it has evolved into 

one over the years. There are good things and bad things about this 

evolution. On the positive side, BigQuery was designed to solve 

problems people have with their data, even if they don’t fit nicely into 

data warehousing models. In this way, BigQuery is more than just a data 



warehouse. On the downside, however, a few data warehousing features 

that people expect, like a Data Definition Language (DDL; e.g., 

CREATE statements) and a Data Manipulation Language (DML; e.g., 

INSERT statements), were missing until recently. That said, BigQuery 

has been focusing on a dual path: first, adding differentiated features that 

Google is in a unique position to provide; and second, becoming a great 

data warehouse in the cloud.  

What Makes BigQuery Possible? 

From an architectural perspective, BigQuery is fundamentally different 

from on-premises data warehouses like Teradata or Vertica as well as 

from cloud data warehouses like Redshift and Microsoft Azure Data 

Warehouse. BigQuery is the first data warehouse to be a scale-out 

solution, so the only limit on speed and scale is the amount of hardware 

in the datacenter. 

This section describes some of the components that go into making 

BigQuery successful and unique. 

Separation of Compute and Storage 

In many data warehouses, compute and storage reside together on the 

same physical hardware.  This colocation means that in order to add 

more storage, you might need to add more compute power as well. Or to 

add more compute power, you’d also need to get additional storage 

capacity. 

If everyone’s data needs were similar, this wouldn’t be a problem; there 

would be a consistent golden ratio of compute to storage that everyone 

would live by. But in practice, one or the other of the factors tends to be 

a limitation. Some data warehouses are limited by compute capacity, so 

they slow down at peak times. Other data warehouses are limited by 

storage capacity, so maintainers need to figure out what data to throw 

out. 

When you separate compute from storage as BigQuery does, it means 

that you never need to throw out data, unless you no longer want it. This 

might not sound like a big deal, but having access to full-fidelity data is 



immensely powerful. You might decide you want to calculate something 

in a different way, so you can go back to the raw data to requery it. You 

would not be able to do this if you had discarded the source data due to 

space constraints. You might decide that you want to dig into why some 

aggregate value exhibits strange behavior. You couldn’t do this if you 

had deleted the data that contributed to the aggregation. 

Scaling compute is equally powerful. BigQuery resources are 

denominated in terms of “slots,” which are, roughly speaking, about half 

of a CPU core (we cover slots in detail in Chapter 6). BigQuery 

uses slots as an abstraction to indicate how many physical compute 

resources are available. Queries running too slow? Just add more slots. 

More people want to create reports? Add more slots. Want to cut back 

on your expenses? Decrease your slots. 

Because BigQuery is a multitenant system that manages large pools of 

hardware resources, it is able to dole out the slots on a per-query or per-

user basis. It is possible to reserve hardware for your project or 

organization, or you can run your queries in the shared on-demand pool. 

By sharing resources in this way, BigQuery can devote very large 

amounts of computing power to your queries. If you need more 

computing power than is available in the on-demand pool, you can 

purchase more via the BigQuery Reservation API. 

Several BigQuery customers have reservations in the tens of thousands 

of slots, which means that if they run only one query at a time, those 

queries can consume tens of thousands of CPU cores at once. With some 

reasonable assumptions about numbers of CPU cycles per processed 

row, it is pretty easy to see that these instances can process billions or 

even trillions of rows per second. 

In BigQuery, there are some customers that have petabytes of data but 

use a relatively small amount of it on a daily basis. Other customers 

store only a few gigabytes of data but perform complex queries using 

thousands of CPUs. There isn’t a one-size-fits-all approach that works 

for all use cases. Fortunately, the separation of compute and storage 

allows BigQuery to accommodate a wide range of customer needs. 

Storage and Networking Infrastructure 

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch06.html#architecture_of_bigquery


BigQuery differs from other cloud data warehouses in that queries are 

served primarily from spinning disks in a distributed filesystem. Most 

competitor systems need to cache data within compute nodes to get good 

performance. BigQuery, on the other hand, relies on two systems unique 

to Google, the Colossus File System and Jupiter networking, to ensure 

that data can be queried quickly no matter where it physically resides in 

the compute cluster. 

Google’s Jupiter networking fabric relies on a network configuration 

where smaller (and hence cheaper) switches are arranged to provide the 

capability for which a much larger logical switch would otherwise be 

needed. This topology of switches, along with a centralized software 

stack and custom hardware and software, allows one petabit of bisection 

bandwidth within a datacenter. That is equivalent to 100,000 servers 

communicating at 10 Gb/sec, and it means that BigQuery can work 

without the need to colocate the compute and storage. If the machines 

hosting the disks are at the other end of the datacenter from the 

machines running the computation, it will effectively run just as fast as 

if the two machines were in the same rack. 

The fast networking fabric comes in handy in two ways: to read in data 

from a disk, and to shuffle between query stages. As discussed earlier, 

the separation of compute and storage in BigQuery enables any machine 

within the datacenter to ingest data from any storage disk. This requires, 

however, that the necessary input data to the queries be read over the 

network at very high speeds. The details of shuffle are described 

in Chapter 6, but it suffices for now to understand that running complex 

distributed queries usually requires moving large amounts of data 

between machines at intermediate stages. Without a fast network 

connecting the machines doing the work, shuffle would become a 

bottleneck that slows down the queries significantly. 

The networking infrastructure provides more than just speed: it also 

allows for dynamic provisioning of bandwidth. Google datacenters are 

connected through a backbone network called B4 that is software-

defined to allocate bandwidth in an elastic manner to different users, and 

to provide reliable quality of service for high-priority operations. This is 

crucial for implementing high-performing, concurrent queries. 

https://cloud.google.com/files/storage_architecture_and_challenges.pdf
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Fast networking isn’t enough, however, if the disk subsystem is slow or 

lacks enough scale. To support interactive queries, the data needs to be 

read from the disks fast enough so that they can saturate the network 

bandwidth available. Google’s distributed filesystem is called Colossus 

and can coordinate hundreds of thousands of disks by constantly 

rebalancing old, cold data and distributing newly written data evenly 

across disks.15 This means that the effective throughput is tens of 

terabytes per second. By combining this effective throughput with 

efficient data formats and storage, BigQuery provides the ability to 

query petabyte-sized tables in minutes. 

Managed Storage 

BigQuery’s storage system is built on the idea that when you’re dealing 

with structured storage, the appropriate abstraction is the table, not the 

file. Some other cloud-based and open source data processing systems 

expose the concept of the file to users, which puts users on the hook for 

managing file sizes and ensuring that the schema remains consistent. 

Even though creating files of an appropriate size for a static data store is 

possible, it is notoriously difficult to maintain optimal file sizes for data 

that is changing over time. Similarly, it is difficult to maintain a 

consistent schema when you have a large number of files with self-

describing schemas (e.g., Avro or Parquet)—typically, every software 

update to systems producing those files results in changes to the schema. 

BigQuery ensures that all the data held within a table has a consistent 

schema and enforces a proper migration path for historical data. By 

abstracting the underlying data formats and file sizes from the user, 

BigQuery can provide a seamless experience so that queries are always 

fast. 

There is another advantage to BigQuery managing its own storage: 

BigQuery can continue to become faster in a way that is transparent to 

the end user. For example, improvements in storage formats can be 

applied automatically to user data. Similarly, improvements in storage 

infrastructure become immediately available. Because BigQuery 

manages all of the storage, users don’t need to worry about backup or 

replication. Everything from upgrades and replication to backup and 

restoration are handled transparently and automatically by the storage 

management system. 
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One key advantage of working with structured storage at the abstraction 

level of a table (rather than of a file) and of providing storage 

management to these tables transparently to the end user is that tables 

allow BigQuery to support database-like features, such as DML. You 

can run a query that updates or deletes rows in a table and leave it to 

BigQuery to determine the best way to modify the storage to reflect this 

information. BigQuery operations are ACID; that is, all queries will 

commit completely or not at all. Rest assured that your queries will 

never see the intermediate state of another query, and queries started 

after another query completes will never see old data. You do have the 

ability to fine-tune the storage by specifying directives that control how 

the data is stored, but these operate at the abstraction level of tables, not 

files. For example, it is possible to control how tables are partitioned and 

clustered (we cover these features in detail in Chapter 7) and thereby 

improve the performance and/or reduce the cost of queries against those 

tables. 

Managed storage is strongly typed, which means that data is validated at 

entry to the system. Because BigQuery manages the storage and allows 

users to interact with this storage only via its APIs, it can count on the 

underlying data not being modified outside of BigQuery. Thus, 

BigQuery can guarantee to not throw a validation error at read time 

about any of the data present in its managed storage. This guarantee also 

implies an authoritative schema, which is useful when figuring out how 

to query your tables. Besides improving query performance, the 

presence of an authoritative schema helps when trying to make sense of 

what data you have because a BigQuery schema contains not just type 

information but also annotations and table descriptions about how the 

fields can be used. 

One downside of managed storage is that it is more difficult to directly 

access and process the data using other frameworks. For example, had 

the data been available at the abstraction level of files, you might have 

been able to directly run a Hadoop job over a BigQuery dataset. 

BigQuery addresses this issue by providing a structured parallel API to 

read the data. This API lets you read at full speed from Spark or Hadoop 

jobs, but it also provides extra features, like projection, filtering, and 

dynamic rebalancing. 

Integration with Google Cloud Platform 
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Google Cloud follows the design principle called “separation of 

responsibility,” wherein a small number of high-quality, highly 

focused products integrate tightly with each other. It is, therefore, 

important to consider the entire Google Cloud Platform (GCP) when 

comparing BigQuery with other database products. 

A number of different GCP products extend the usefulness of BigQuery 

or make it easier to understand how BigQuery is being used. We talk 

about many of these related products in detail in this book, but it is 

worth being aware of the general separation of responsibilities: 

 StackDriver monitoring and audit logs provide ways to understand 

BigQuery usage in your organization. 

 Cloud Dataproc provides the ability to read, process, and write to 

BigQuery tables using Apache Spark programs. 

 Federated queries allow BigQuery to query data held in Google 

Cloud Storage, Cloud SQL (a relational database), Bigtable (a 

NoSQL database), Spanner (a distributed database), or Google 

Drive (which offers spreadsheets). 

 Google Cloud Data Loss Prevention API helps you to manage 

sensitive data and provides the capability to redact or mask 

Personally Identifiable Information (PII) from your tables. 

 Other machine learning APIs extend what it is possible on data 

held in BigQuery; for example, the Cloud Natural Language API 

can identify people, places, sentiment, and more in free-form text 

(such as those of customer reviews) held in some table column. 

 AutoML Tables and AutoML Text can create high-performing 

custom machine learning models from data held in BigQuery 

tables. 

 Cloud Catalog provides the ability to discover data held across 

your organization. 

 You can use Cloud Pub/Sub to ingest streaming data and Cloud 

Dataflow to transform and load it into BigQuery. You can use 

Cloud Dataflow to carry out streaming queries as well. You can, of 

course, interactively query the streaming data within BigQuery 

itself.16 
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 Data Studio provides charts and dashboards driven from data in 

BigQuery. Third-party tools such as Tableau and Looker also 

support BigQuery as a backend. 

 Cloud AI Platform provides the ability to train sophisticated 

machine learning programs from data held in BigQuery.   

 Cloud Scheduler and Cloud Functions allow for scheduling or 

triggering of BigQuery queries as part of larger workflows. 

 Cloud Composer allows for orchestration of BigQuery jobs along 

with tasks that need to be performed in Cloud Dataflow or other 

processing frameworks, whether on Google Cloud or on-premises 

in a hybrid cloud setup. 

Taken together, BigQuery and the GCP ecosystem have features that 

span several other database products from other cloud vendors; you can 

use them as an analytics warehouse but also as an ELT system, a data 

lake (queries over files), or a source of BI. The rest of this book paints a 

broad picture of how you can use BigQuery in all of its aspects. 

Security and Compliance 

The integration with GCP goes beyond just interoperability with other 

products. Cross-cutting features provided by the platform provide 

consistent security and compliance.  

The fastest hardware and most advanced software are of little use if you 

can’t trust them with your data. BigQuery’s security model is tightly 

integrated with the rest of GCP, so it is possible to take a holistic view of 

your data security. BigQuery uses Google’s IAM access-control system 

to assign specific permissions to individual users or groups of 

users. BigQuery also ties in tightly with Google’s Virtual Private Cloud 

(VPC) policy controls, which can protect against users who try to access 

data from outside your organization, or who try to export it to third 

parties. Both IAM and VPC controls are designed to work across Google 

Cloud products, so you don’t need to worry that certain products create a 

security hole. 

BigQuery is available in every region where Google Cloud has a 

presence, enabling you to process the data in the location of your 

choosing. As of this writing, Google Cloud has more than two dozen 



datacenters around the world, and new ones are being opened at a fast 

rate. If you have business reasons for keeping data in Australia or 

Germany, it is possible to do so. Just create your dataset with the 

Australian or German region code, and all of your queries against the 

data will be done within that region. 

Some organizations have even stronger data location requirements that 

go beyond where data is stored and processed. Specifically, they want to 

ensure that their data cannot be copied or otherwise leave their physical 

region. GCP has physical region controls that apply across products; you 

can create a “VPC service controls” policy that disallows data 

movement outside of a selected region. If you have these controls 

enabled, users will not be able to copy data across regions or export to 

Google Cloud Storage buckets in another region. 

Summary 

BigQuery is a highly scalable data warehouse that provides fast SQL 

analytics over large datasets in a serverless way. Although users 

appreciate the scale and speed of BigQuery, company executives often 

appreciate the transformational benefits that come from being able to do 

ad hoc querying in a serverless way, opening up data-driven decision 

making to all parts of the company. 

To ingest data into BigQuery, you can use an EL pipeline (commonly 

used for periodic loads of log files), an ETL pipeline (commonly used 

when data needs to be enriched or quality controlled), or an ELT 

pipeline (commonly used for exploratory work). 

BigQuery is designed for data analytics (OLAP) workloads and provides 

full-featured support for SQL:2011. BigQuery can achieve its scale and 

speed because it is built on innovative engineering ideas such as the use 

of columnar storage, support for nested and repeated fields, and 

separation of compute and storage, about which Google went on to 

publish papers. BigQuery is part of the GCP ecosystem of big data 

analytics tools and integrates tightly with both the infrastructure pieces 

(such as security, monitoring, and logging) and the data processing and 

machine learning pieces (such as streaming, Cloud DLP, and AutoML) 

of the platform. 
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borrow the equipment, so that you will know whether customers have 

absconded with the equipment. However, it’s rather early in this book to 

worry about that! 

2 In this book, we use “ad hoc” query to refer to a query that is written 

without any attempt to prepare the database ahead of time by using 

features such as indexes. 

3 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data 

Processing on Large Clusters,” OSDI ’04: Sixth Symposium on 

Operating Systems Design and Implementation, San Francisco, CA 

(2004), pp. 137–150. Available 

at https://research.google.com/archive/mapreduce-osdi04.pdf. 

4 On Google Cloud Platform, Cloud Dataproc (the managed Hadoop 

offering) addresses this conundrum in a different way. Because of the 

high bisectional bandwidth available within Google datacenters, Cloud 

Dataproc clusters are able to be job specific—the data is stored on 

Google Cloud Storage and read over the wire on demand. This is 

possible only if bandwidths are high enough to approximate disk speeds. 

Don’t try this at home. 

5 For your copy and pasting convenience, you can find all of the code 

and query snippets in this book (including the query in the example) in 

the GitHub repository for this book. 

6 Not you specifically. This is a public dataset, and the owner of the 

dataset gave this permission to all authenticated users. You can be less 

permissive with your data, sharing the dataset only with those within 

your domain or within your team. 
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10 For example, to compute conversion metrics based on the distance 

that a customer would need to travel to purchase a product. 

11 We believe all mentions of price to be correct as of the writing of this 

book, but please do refer to the relevant policy and pricing sheets, as 

these are subject to change. 

12 Jim Gray on eScience: A Transformed Scientific Method”, from The 

Fourth Paradigm: Data-Intensive Scientific Discovery, ed. Tony Hey, 

Stewart Tansley, and Kristin Tolle (Microsoft, 2009), xiv. Available 

at https://oreil.ly/M6zMN. 

13 Today, BigQuery does provide the ability to export tables and results 

to Google Cloud Storage, so we did end up building the download link 

after all! But BigQuery is not just a download link—most uses of 

BigQuery involve operating on the data in place. 

14 SQL does have a RECURSIVE keyword, but like many SQL engines, 

BigQuery does not support this. Instead, BigQuery offers better ways to 

deal with hierarchical data by supporting arrays and nesting. 

15 To read more about Colossus, see http://www.pdsw.org/pdsw-

discs17/slides/PDSW-DISCS-Google-

Keynote.pdf and https://www.wired.com/2012/07/google-colossus/. 

16 The separation of responsibility here is that Cloud Dataflow is better 

for ongoing, routine processing while BigQuery is better for interactive, 

ad hoc processing. Both Cloud Dataflow and BigQuery handle batch 

data as well as streaming data, and it is possible to run SQL queries 

within Cloud Dataflow. 
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