
Chapter 1. What Is Google BigQuery?

Data Processing Architectures

Google BigQuery is a serverless, highly scalable data warehouse that

comes with a built-in query engine. The query engine is capable of

running SQL queries on terabytes of data in a matter of seconds, and

petabytes in only minutes. You get this performance without having to

manage any infrastructure and without having to create or rebuild

indexes.

BigQuery has legions of fans. Paul Lamere, a Spotify engineer, was

thrilled that he could finally talk about how his team uses BigQuery to

quickly analyze large datasets: “Google’s BigQuery is *da bomb*,”

he tweeted in February 2016. “I can start with 2.2Billion ‘things’ and

compute/summarize down to 20K in < 1 min.” The scale and speed are

just two notable features of BigQuery. What is more transformative is

not having to manage infrastructure because the simplicity inherent in

serverless, ad hoc querying can open up new ways of working.

Companies are increasingly embracing data-driven decision making and

fostering an open culture where the data is not siloed within

departments. BigQuery, by providing the technological means to enact a

cultural shift toward agility and openness, plays a big part in increasing

the pace of innovation. For example, Twitter recently reported in its

blog that it was able to democratize data analysis with BigQuery by

providing some of its most frequently used tables to Twitter employees

from a variety of teams (Engineering, Finance, and Marketing were

mentioned).

For Alpega Group, a global logistics software company, the increased

innovation and agility offered by BigQuery were key. The company

went from a situation in which real-time analytics was impossible to

being able to provide fast, customer-facing analytics in near real time.

Because Alpega Group does not need to maintain clusters and

infrastructure, its small tech team is now free to work on software

development and data capabilities. “That was a real eye opener for

us,” says the company’s lead architect, Aart Verbeke. “In a conventional

https://twitter.com/plamere/status/702168809445134336
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/democratizing-data-analysis-with-google-bigquery.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/democratizing-data-analysis-with-google-bigquery.html
https://cloud.google.com/customers/alpega

environment we would need to install, set up, deploy and host every

individual building block. Here we simply connect to a surface and use

it as required.”

Imagine that you run a chain of equipment rental stores. You charge

customers based on the length of the rental, so your records include the

following details that will allow you to properly invoice the customer:

1. Where the item was rented

2. When it was rented

3. Where the item was returned

4. When it was returned

Perhaps you record the transaction in a database every time a customer

returns an item.1

From this dataset, you would like to find out how many “one-way”

rentals occurred every month in the past 10 years. Perhaps you are

thinking of imposing a surcharge for returning the item at a different

store and you would like to find out what fraction of rentals would be

affected. Let’s posit that wanting to know the answer to such questions

is a frequent occurrence—it is important for you to be able to answer

such ad hoc questions because you tend to make data-driven decisions.

What kind of system architecture could you use? Let’s run through some

of the options.

Relational Database Management System

When recording the transactions, you are probably recording them in a

relational, online transaction processing (OLTP) database such as

MySQL or PostgreSQL. One of the key benefits of such databases is

that they support querying using Structured Query Language (SQL)—

your staff doesn’t need to use high-level languages like Java or Python

to answer questions that arise. Instead, it is possible to write a query,

such as the following, that can be submitted to the database server:

SELECT

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn4

 EXTRACT(YEAR FROM starttime) AS year,

 EXTRACT(MONTH FROM starttime) AS month,

 COUNT(starttime) AS number_one_way

FROM

 mydb.return_transactions

WHERE

 start_station_name != end_station_name

GROUP BY year, month

ORDER BY year ASC, month ASC

Ignore the details of the syntax for now; we cover SQL queries later in

this book. Instead, let’s focus on what this tells us about the benefits and

drawbacks of an OLTP database.

First, notice that SQL goes beyond just being able to get the raw data in

database columns—the preceding query parses the timestamp and

extracts the year and month from it. It also does aggregation (counting

the number of rows), some filtering (finding rentals where the starting

and ending locations are different), grouping (by year and month), and

sorting. An important benefit of SQL is the ability to specify what we

want and let the database software figure out an optimal way to execute

the query.

Unfortunately, queries like this one are quite inefficient for an OLTP

database to carry out. OLTP databases are tuned toward data

consistency; the point is that you can read from the database even while

data is simultaneously being written to it. This is achieved through

careful locking to maintain data integrity. For the filtering

on station_name to be efficient, you would need to create an index on the

station name column. If the station name is indexed, then and only then

does the database do special things to the storage to optimize

searchability—this is a tradeoff, slowing writing down a bit to improve

the speed of reading. If the station name is not indexed, filtering on it

will be quite slow. Even if the station name is an index, this particular

query will be quite slow because of all the aggregating, grouping, and

ordering. OLTP databases are not built for this sort of ad hoc2 query that

requires traversal through the entire dataset.

MapReduce Framework

Because OLTP databases are a poor fit for ad hoc queries and queries

that require traversal of the entire dataset, special-purpose analyses that

require such traversal might be coded in high-level languages like Java

or Python. In 2003, Jeff Dean and Sanjay Ghemawat observed that they

and their colleagues at Google were implementing hundreds of these

special-purpose computations to process large amounts of raw data.

Reacting to this complexity, they designed an abstraction that allowed

these computations to be expressed in terms of two steps: a map function

that processed a key/value pair to generate a set of intermediate

key/value pairs, and a reduce function that merged all intermediate

values associated with the same intermediate key.3 This paradigm,

known as MapReduce, became hugely influential and led to the

development of Apache Hadoop.

Although the Hadoop ecosystem began with a library that was primarily

built in Java, custom analysis on Hadoop clusters is now typically

carried out using Apache Spark. Spark programs can be written in

Python or Scala, but among the capabilities of Spark is the ability to

execute ad hoc SQL queries on distributed datasets.

So, to find out the number of one-way rentals, you could set up the

following data pipeline:

1. Periodically export transactions to comma-separated values (CSV)

text files in the Hadoop Distributed File System (HDFS).

2. For ad hoc analysis, write a Spark program that does the following:

a. Loads up the data from the text files into a “DataFrame”

b. Executes an SQL query, similar to the query in the previous

section, except that the table name is replaced by the name of

the DataFrame

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn5
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn6
http://spark.apache.org/

c. Exports the result set back to a text file

3. Run the Spark program on a Hadoop cluster.

Although seemingly straightforward, this architecture imposes a couple

of hidden costs. Saving the data in HDFS requires that the cluster be

large enough. One underappreciated fact about the MapReduce

architecture is that it usually requires that the compute nodes access data

that is local to them. The HDFS must, therefore, be sharded across the

compute nodes of the cluster. With both data sizes and analysis needs

increasing dramatically but independently, it is often the case that

clusters are underprovisioned or overprovisioned.4 Thus, the need to

execute Spark programs on a Hadoop cluster means that your

organization will need to become expert in managing, monitoring, and

provisioning Hadoop clusters. This might not be your core business.

BigQuery: A Serverless, Distributed SQL Engine

What if you could run SQL queries as in a Relational Database

Management System (RDBMS) system, obtain efficient and distributed

traversal through the entire dataset as in MapReduce, and not need to

manage infrastructure? That’s the third option, and it is what makes

BigQuery so magical. BigQuery is serverless, and you can run queries

without the need to manage infrastructure. It enables you to carry out

analyses that process aggregations over the entire dataset in seconds to

minutes.

Don’t take our word for it, though. Try it out now. Navigate

to https://console.cloud.google.com/bigquery (logging into Google

Cloud Platform and selecting your project if necessary), copy and paste

the following query in the window,5 and then click the “Run query”

button:

SELECT

 EXTRACT(YEAR FROM starttime) AS year,

 EXTRACT(MONTH FROM starttime) AS month,

 COUNT(starttime) AS number_one_way

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn8
https://console.cloud.google.com/bigquery
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn9

FROM

 `bigquery-public-data.new_york_citibike.citibike_trips`

WHERE

 start_station_name != end_station_name

GROUP BY year, month

ORDER BY year ASC, month ASC

When we ran it, the BigQuery user interface (UI) reported that the query

involved processing 2.51 GB and gave us the result in about 2.7

seconds, as illustrated in Figure 1-1.

Figure 1-1. Running a query to compute the number of one-way rentals in the BigQuery web UI

The equipment being rented out is bicycles, and so the preceding query

totals up one-way bicycle rentals in New York month by month over the

extent of the dataset. The dataset itself is a public dataset (meaning that

anyone can query the data held in it) released by New York City as part

of its Open City initiative. From this query, we learn that in July 2013,

there were 815,324 one-way Citibike rentals in New York City.

Note a few things about this. One is that you were able to run a query

against a dataset that was already present in BigQuery. All that the

owner of the project hosting the data had to do was to give you6 “view”

access to this dataset. You didn’t need to start up a cluster or log in to

one. Instead, you just submitted a query to the service and received your

results. The query itself was written in SQL:2011, making the syntax

familiar to data analysts everywhere. Although we demonstrated on

gigabytes of data, the service scales well even when it does aggregations

on terabytes to petabytes of data. This scalability is possible because the

service distributes the query processing among thousands of workers

almost instantaneously.

Working with BigQuery

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#running_a_query_to_compute_the_number_of
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn10

BigQuery is a data warehouse, implying a degree of centralization and

ubiquity. The query we demonstrated in the previous section was

applied to a single dataset. However, the benefits of BigQuery become

even more apparent when we do joins of datasets from completely

different sources or when we query against data that is stored outside

BigQuery.

Deriving Insights Across Datasets

The bicycle rental data comes from New York City. How about joining

it against weather data from the US National Oceanic and Atmospheric

Administration (NOAA) to learn whether there are fewer bicycle rentals

on rainy days?7

-- Are there fewer bicycle rentals on rainy days?

WITH bicycle_rentals AS (

 SELECT

 COUNT(starttime) as num_trips,

 EXTRACT(DATE from starttime) as trip_date

 FROM `bigquery-public-

data.new_york_citibike.citibike_trips`

 GROUP BY trip_date

),

rainy_days AS

(

SELECT

 date,

 (MAX(prcp) > 5) AS rainy

FROM (

 SELECT

 wx.date AS date,

 IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp

 FROM

 `bigquery-public-data.ghcn_d.ghcnd_2016` AS wx

 WHERE

 wx.id = 'USW00094728'

)

GROUP BY

 date

)

SELECT

 ROUND(AVG(bk.num_trips)) AS num_trips,

 wx.rainy

FROM bicycle_rentals AS bk

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn11

JOIN rainy_days AS wx

ON wx.date = bk.trip_date

GROUP BY wx.rainy

Ignore the specific syntax of the query. Just notice that, in the bolded

lines, we are joining the bicycle rental dataset with a weather dataset that

comes from a completely different source. Running the query

satisfyingly yields that, yes, New Yorkers are wimps—they ride the

bicycle nearly 20% fewer times when it rains:8

Row num_trips rainy

 1 39107.0 false

 2 32052.0 true

What does being able to share and query across datasets mean in an

enterprise context? Different parts of your company can store their

datasets in BigQuery and quite easily share the data with other parts of

the company and even with partner organizations. The serverless nature

of BigQuery provides the technological means to break down

departmental silos and streamline collaboration.

ETL, EL, and ELT

The traditional way to work with data warehouses is to start with an

Extract, Transform, and Load (ETL) process, wherein raw data is

extracted from its source location, transformed, and then loaded into the

data warehouse. Indeed, BigQuery has a native, highly efficient

columnar storage format9 that makes ETL an attractive methodology.

The data pipeline, typically written in either Apache Beam or Apache

Spark, extracts the necessary bits from the raw data (either streaming

data or batch files), transforms what it has extracted to do any necessary

cleanup or aggregation, and then loads it into BigQuery, as demonstrated

in Figure 1-2.

Figure 1-2. The reference architecture for ETL into BigQuery uses Apache Beam pipelines executed on Cloud Dataflow and can handle both

streaming and batch data using the same code

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn12
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn13
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#the_reference_architecture_for_etl_into

Even though building an ETL pipeline in Apache Beam or Apache

Spark tends to be quite common, it is possible to implement an ETL

pipeline purely within BigQuery. Because BigQuery separates compute

and storage, it is possible to run BigQuery SQL queries against CSV (or

JSON or Avro) files that are stored as-is on Google Cloud Storage;

this capability is called federated querying. You can take advantage of

federated queries to extract the data using SQL queries against data

stored in Google Cloud Storage, transform the data within those SQL

queries, and then materialize the results into a BigQuery native table.

If transformation is not necessary, BigQuery can directly ingest standard

formats like CSV, JSON, or Avro into its native storage—an EL

(Extract and Load) workflow, if you will. The reason to end up with the

data loaded into the data warehouse is that having the data in native

storage provides the most efficient querying performance.

We strongly recommend that you design for an EL workflow if possible,

and drop to an ETL workflow only if transformations are needed. If

possible, do those transformations in SQL, and keep the entire ETL

pipeline within BigQuery. If the transforms will be difficult to

implement purely in SQL, or if the pipeline needs to stream data into

BigQuery as it arrives, build an Apache Beam pipeline and have it

executed in a serverless fashion using Cloud Dataflow. Another

advantage of implementing ETL pipelines in Beam/Dataflow is that,

because this is programmatic code, such pipelines integrate better with

Continuous Integration (CI) and unit testing systems.

Besides the ETL and EL workflows, BigQuery makes it possible to do

an Extract, Load, and Transform (ELT) workflow. The idea is to extract

and load the raw data as-is and rely on BigQuery views to transform the

data on the fly. An ELT workflow is particularly useful if the schema of

the raw data is in flux. For example, you might still be carrying out

exploratory work to determine whether a particular timestamp needs to

be corrected for the local time zone. The ELT workflow is useful in

prototyping and allows an organization to start deriving insights from

the data without having to make potentially irreversible decisions too

early.

The alphabet soup can be confusing, so we’ve prepared a quick

summary in Table 1-1.

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#summary_of_workflowscomma_sample_archite

Workflow Architecture When you’d use it

EL Extract data from files on Google

Cloud Storage.

Load it into BigQuery’s native

storage.

You can trigger this from Cloud

Composer, Cloud Functions, or

scheduled queries.

Batch load of historical data.

Scheduled periodic loads of log files (e.g., once a day).

ETL Extract data from Pub/Sub, Google

Cloud Storage, Cloud Spanner,

Cloud SQL, etc.

Transform the data using Cloud

Dataflow.

Have Dataflow pipeline write to

BigQuery

When the raw data needs to be quality controlled,

transformed, or enriched before being loaded into

BigQuery.

When the data loading needs to happen continuously, i.e., if

the use case requires streaming.

When you want to integrate with continuous

integration/continuous delivery (CI/CD) systems and

perform unit testing on all components.

ELT Extract data from files in Google

Cloud Storage.

Store data in close-to-raw format

in BigQuery.

Transform the data on the fly using

BigQuery views.

Experimental datasets where you are not yet sure what kinds

of transformations are needed to make the data usable.

Any production dataset where the transformation can be

expressed in SQL.

Table 1-1. Summary of workflows, sample architectures, and the scenarios in which they would be used

The workflows in Table 1-1 are in the order that we usually recommend.

Powerful Analytics

The benefits of a warehouse derive from the kinds of analyses that you

can do with the data held within it. The primary way you interact with

BigQuery is via SQL, and because BigQuery is an SQL engine, you can

use a wide variety of Business Intelligence (BI) tools such as Tableau,

Looker, and Google Data Studio to create impactful analyses,

visualizations, and reports on data held in BigQuery. By clicking the

“Explore in Data Studio” button in the BigQuery web UI, for example,

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#summary_of_workflowscomma_sample_archite

we can quickly create a visualization of how our one-way bike rentals

vary by month, as depicted in Figure 1-3.

BigQuery provides full-featured support for SQL:2011, including

support for arrays and complex joins. The support for arrays in particular

makes it possible to store hierarchical data (such as JSON records) in

BigQuery without the need to flatten the nested and repeated fields.

Besides the support for SQL:2011, BigQuery has a few extensions that

make it useful beyond the core set of data warehouse use cases. One of

these extensions is support for a wide range of spatial functions that

enable location-aware queries, including the ability to join two tables

based on distance or overlap criteria.10 BigQuery is, therefore, a

powerful engine to carry out descriptive analytics.

Figure 1-3. Visualization in Data Studio of how one-way rentals vary by month; nearly 15% of all one-way bicycle rentals in New York happen in

September

Another BigQuery extension to standard SQL supports creating machine

learning models and carrying out batch predictions. We cover the

machine learning capability of BigQuery in detail in Chapter 9, but the

gist is that you can train a BigQuery model and make predictions

without ever having to export data out of BigQuery. The security and

data locality advantages of being able to do this are enormous. BigQuery

is, therefore, a data warehouse that supports not just descriptive analytics

but also predictive analytics.

A warehouse also implies being able to store different types of data.

Indeed, BigQuery can store data of many types: numeric and textual

columns, for sure, but also geospatial data and hierarchical data. Even

though you can store flattened data in BigQuery, you don’t need to—

schemas can be rich and quite sophisticated. The combination of

location-aware queries, hierarchical data, and machine learning make

BigQuery a powerful solution that goes beyond conventional data

warehousing and business intelligence.

BigQuery supports the ingest both of batch data and of streaming

data. You can stream data directly into BigQuery via a REST

API. Often, users who want to transform the data—for example, by

adding time-windowed computations—use Apache Beam pipelines

executed by the Cloud Dataflow service. Even as the data is streaming

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#visualization_in_data_studio_of_how_one
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn14
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch09.html#machine_learning_in_bigquery

into BigQuery, you can query it. Having common querying

infrastructure for both historical (batch) data and current (streaming)

data is extremely powerful and simplifies many workflows.

Simplicity of Management

Part of the design consideration behind BigQuery is to encourage users

to focus on insights rather than on infrastructure. When you ingest data

into BigQuery, there is no need to think about different types of storage,

or their relative speed and cost tradeoffs; the storage is fully managed.

As of this writing, the cost of storage automatically drops to lower levels

if a table is not updated for 90 days.11

We have already talked about how indexing is not necessary; your SQL

queries can filter on any column in the dataset, and BigQuery will take

care of the necessary query planning and optimization. For the most

part, we recommend that you write queries to be clear and readable and

rely on BigQuery to choose a good optimization strategy. In this book,

we talk about performance tuning, but performance tuning in BigQuery

consists mainly of clear thinking and the appropriate choice of SQL

functions. You will not need to do database administration tasks like

replication, defragmentation, or disaster recovery; the BigQuery service

takes care of all that for you.

Queries are automatically scaled to thousands of machines and executed

in parallel. You don’t need to do anything special to enable this massive

parallelization. The machines themselves are transparently provisioned

to handle the different stages of your job; you don’t need to set up those

machines in any way.

Not having to set up infrastructure leads to less hassle in terms of

security. Data in BigQuery is automatically encrypted, both at rest and

in transit. BigQuery takes care of the security considerations behind

supporting multitenant queries and providing isolation between

jobs. Your datasets can be shared using Google Cloud Identity and

Access Management (IAM), and it is possible to organize the datasets

(and the tables and views within them) to meet different security needs,

whether you need openness or auditability or confidentiality.

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn15

In other systems, provisioning infrastructure for reliability, elasticity,

security, and performance often takes a lot of time to get right. Given

that these database administration tasks are minimized with BigQuery,

organizations using BigQuery find that it frees their analysts’ time to

focus on deriving insights from their data.

How BigQuery Came About

In late 2010, the site director of the Google Seattle office pulled several

engineers (one of whom is an author of this book) off their projects

and gave them a mission: to build a data marketplace. We tried to craft

the best way to come up with a viable marketplace. The chief issue was

data sizes, because we didn’t want to provide just a download link. A

data marketplace is infeasible if people need to download terabytes of

data in order to work with it. How would you build a data marketplace

that didn’t require users to start by downloading the datasets to their own

machines?

Enter a principle popularized by Jim Gray, the database pioneer. When

you have “big data,” Gray said, “you want to move the computation

to the data, rather than move the data to the computation.” Gray

elaborates:

The other key issue is that as the datasets get larger, it is no longer possible

to just FTP or grep them. A petabyte of data is very hard to FTP! So at some

point, you need indices and you need parallel data access, and this is where

databases can help you. For data analysis, one possibility is to move the data

to you, but the other possibility is to move your query to the data. You can

either move your questions or the data. Often it turns out to be more efficient

to move the questions than to move the data.12

In the case of the data marketplace that we were building, users would

not need to download the datasets to their own machines if we made it

possible for them to bring their computations to the data. We would not

need to provide a download link, because users could work on their data

without the need to move it around.13

We, the Googlers who were tasked with building a data marketplace,

made the decision to defer that project and focus on building a compute

engine and storage system in the cloud. After ensuring that users could

https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn17
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn18

do something with the data, we would go back and add data marketplace

features.

In what language should users write their computation when bringing

computation to the data on the cloud? We chose SQL because of three

key characteristics. First, SQL is a versatile language that allows a large

range of people, not just developers, to ask questions and solve problems

with their data. This ease of use was extremely important to us. Second,

SQL is “relationally complete,” meaning that any computation over the

data can be done using SQL. SQL is not just easy and approachable. It is

also very powerful. Finally, and quite important for a choice of a cloud

computation language, SQL is not “Turing complete” in a key way: it

always terminates.14 Because it always terminates, it is ok to host SQL

computation without worrying that someone will write an infinite loop

and monopolize all the compute power in a datacenter.

Next, we had to choose an SQL engine. Google had a number of internal

SQL engines that could operate over data, including some that were very

popular. The most advanced engine was called Dremel; it was used

heavily at Google and could process terabytes’ worth of logs in

seconds. Dremel was quickly winning people over from building custom

MapReduce pipelines to ask questions of their data.

Dremel had been created in 2006 by engineer Andrey Gubarev, who was

tired of waiting for MapReduces to finish. Column stores were

becoming popular in the academic literature, and he quickly came up

with a column storage format (Figure 1-4) that could handle the Protocol

Buffers (Protobufs) that are ubiquitous throughout Google.

Figure 1-4. Column stores can reduce the amount of data being read by queries that process all rows but not all columns

Although column stores are great in general for analytics, they are

particularly useful for logs analysis at Google because many teams

operate over a type of Protobuf that has hundreds of thousands of

columns. If Andrey had used a typical record-oriented store, users would

have needed to read the files row by row, thus reading in a huge amount

of data in the form of fields that they were going to discard anyway. By

storing the data column by column, Andrey made it so that if a user

needed just a few of the thousands of fields in the log Protobufs, they

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn19
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#column_stores_can_reduce_the_amount_of_d

would need to read only a small fraction of the overall data size. This

was one of the reasons why Dremel was able to process terabytes’ worth

of logs in seconds.

The other reason why Dremel was able to process data so fast was that

its query engine used distributed computing. Dremel scaled to thousands

of workers by structuring the computation as a tree, with the filters

happening at the leaves and aggregation happening toward the root.

By 2010, Google was scanning petabytes of data per day using Dremel,

and many people in the company used it in some form or another. It was

the perfect tool for our nascent data marketplace team to pick up and

use.

As the team productized Dremel, added a storage system, made it self-

tuning, and exposed it to external users, the team realized that a cloud

version of Dremel was perhaps even more interesting than their original

mission. The team renamed itself “BigQuery,” following the naming

convention for “Bigtable,” Google’s NoSQL database.

At Google, Dremel is used to query files that sit on Colossus, Google’s

file store for storing data. BigQuery added a storage system that

provided a table abstraction, not just a file abstraction. This storage

system was key in making BigQuery simple to use and always fast,

because it allowed key features like ACID (Atomicity, Consistency,

Isolation, Durability) transactions and automatic optimization, and it

meant that users didn’t need to manage files.

Initially, BigQuery retained its Dremel roots and was focused on

scanning logs. However, as more customers wanted to do data

warehousing and more complex queries, BigQuery added improved

support for joins and advanced SQL features like analytic functions. In

2016, Google launched support for standard SQL in BigQuery, which

allowed users to run queries using standards-compliant SQL rather than

the awkward initial “DremelSQL” dialect.

BigQuery did not start out as a data warehouse, but it has evolved into

one over the years. There are good things and bad things about this

evolution. On the positive side, BigQuery was designed to solve

problems people have with their data, even if they don’t fit nicely into

data warehousing models. In this way, BigQuery is more than just a data

warehouse. On the downside, however, a few data warehousing features

that people expect, like a Data Definition Language (DDL; e.g.,

CREATE statements) and a Data Manipulation Language (DML; e.g.,

INSERT statements), were missing until recently. That said, BigQuery

has been focusing on a dual path: first, adding differentiated features that

Google is in a unique position to provide; and second, becoming a great

data warehouse in the cloud.

What Makes BigQuery Possible?

From an architectural perspective, BigQuery is fundamentally different

from on-premises data warehouses like Teradata or Vertica as well as

from cloud data warehouses like Redshift and Microsoft Azure Data

Warehouse. BigQuery is the first data warehouse to be a scale-out

solution, so the only limit on speed and scale is the amount of hardware

in the datacenter.

This section describes some of the components that go into making

BigQuery successful and unique.

Separation of Compute and Storage

In many data warehouses, compute and storage reside together on the

same physical hardware. This colocation means that in order to add

more storage, you might need to add more compute power as well. Or to

add more compute power, you’d also need to get additional storage

capacity.

If everyone’s data needs were similar, this wouldn’t be a problem; there

would be a consistent golden ratio of compute to storage that everyone

would live by. But in practice, one or the other of the factors tends to be

a limitation. Some data warehouses are limited by compute capacity, so

they slow down at peak times. Other data warehouses are limited by

storage capacity, so maintainers need to figure out what data to throw

out.

When you separate compute from storage as BigQuery does, it means

that you never need to throw out data, unless you no longer want it. This

might not sound like a big deal, but having access to full-fidelity data is

immensely powerful. You might decide you want to calculate something

in a different way, so you can go back to the raw data to requery it. You

would not be able to do this if you had discarded the source data due to

space constraints. You might decide that you want to dig into why some

aggregate value exhibits strange behavior. You couldn’t do this if you

had deleted the data that contributed to the aggregation.

Scaling compute is equally powerful. BigQuery resources are

denominated in terms of “slots,” which are, roughly speaking, about half

of a CPU core (we cover slots in detail in Chapter 6). BigQuery

uses slots as an abstraction to indicate how many physical compute

resources are available. Queries running too slow? Just add more slots.

More people want to create reports? Add more slots. Want to cut back

on your expenses? Decrease your slots.

Because BigQuery is a multitenant system that manages large pools of

hardware resources, it is able to dole out the slots on a per-query or per-

user basis. It is possible to reserve hardware for your project or

organization, or you can run your queries in the shared on-demand pool.

By sharing resources in this way, BigQuery can devote very large

amounts of computing power to your queries. If you need more

computing power than is available in the on-demand pool, you can

purchase more via the BigQuery Reservation API.

Several BigQuery customers have reservations in the tens of thousands

of slots, which means that if they run only one query at a time, those

queries can consume tens of thousands of CPU cores at once. With some

reasonable assumptions about numbers of CPU cycles per processed

row, it is pretty easy to see that these instances can process billions or

even trillions of rows per second.

In BigQuery, there are some customers that have petabytes of data but

use a relatively small amount of it on a daily basis. Other customers

store only a few gigabytes of data but perform complex queries using

thousands of CPUs. There isn’t a one-size-fits-all approach that works

for all use cases. Fortunately, the separation of compute and storage

allows BigQuery to accommodate a wide range of customer needs.

Storage and Networking Infrastructure

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch06.html#architecture_of_bigquery

BigQuery differs from other cloud data warehouses in that queries are

served primarily from spinning disks in a distributed filesystem. Most

competitor systems need to cache data within compute nodes to get good

performance. BigQuery, on the other hand, relies on two systems unique

to Google, the Colossus File System and Jupiter networking, to ensure

that data can be queried quickly no matter where it physically resides in

the compute cluster.

Google’s Jupiter networking fabric relies on a network configuration

where smaller (and hence cheaper) switches are arranged to provide the

capability for which a much larger logical switch would otherwise be

needed. This topology of switches, along with a centralized software

stack and custom hardware and software, allows one petabit of bisection

bandwidth within a datacenter. That is equivalent to 100,000 servers

communicating at 10 Gb/sec, and it means that BigQuery can work

without the need to colocate the compute and storage. If the machines

hosting the disks are at the other end of the datacenter from the

machines running the computation, it will effectively run just as fast as

if the two machines were in the same rack.

The fast networking fabric comes in handy in two ways: to read in data

from a disk, and to shuffle between query stages. As discussed earlier,

the separation of compute and storage in BigQuery enables any machine

within the datacenter to ingest data from any storage disk. This requires,

however, that the necessary input data to the queries be read over the

network at very high speeds. The details of shuffle are described

in Chapter 6, but it suffices for now to understand that running complex

distributed queries usually requires moving large amounts of data

between machines at intermediate stages. Without a fast network

connecting the machines doing the work, shuffle would become a

bottleneck that slows down the queries significantly.

The networking infrastructure provides more than just speed: it also

allows for dynamic provisioning of bandwidth. Google datacenters are

connected through a backbone network called B4 that is software-

defined to allocate bandwidth in an elastic manner to different users, and

to provide reliable quality of service for high-priority operations. This is

crucial for implementing high-performing, concurrent queries.

https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://cloudplatform.googleblog.com/2015/06/A-Look-Inside-Googles-Data-Center-Networks.html
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch06.html#architecture_of_bigquery
https://www.usenix.org/conference/atc15/technical-session/presentation/mandal

Fast networking isn’t enough, however, if the disk subsystem is slow or

lacks enough scale. To support interactive queries, the data needs to be

read from the disks fast enough so that they can saturate the network

bandwidth available. Google’s distributed filesystem is called Colossus

and can coordinate hundreds of thousands of disks by constantly

rebalancing old, cold data and distributing newly written data evenly

across disks.15 This means that the effective throughput is tens of

terabytes per second. By combining this effective throughput with

efficient data formats and storage, BigQuery provides the ability to

query petabyte-sized tables in minutes.

Managed Storage

BigQuery’s storage system is built on the idea that when you’re dealing

with structured storage, the appropriate abstraction is the table, not the

file. Some other cloud-based and open source data processing systems

expose the concept of the file to users, which puts users on the hook for

managing file sizes and ensuring that the schema remains consistent.

Even though creating files of an appropriate size for a static data store is

possible, it is notoriously difficult to maintain optimal file sizes for data

that is changing over time. Similarly, it is difficult to maintain a

consistent schema when you have a large number of files with self-

describing schemas (e.g., Avro or Parquet)—typically, every software

update to systems producing those files results in changes to the schema.

BigQuery ensures that all the data held within a table has a consistent

schema and enforces a proper migration path for historical data. By

abstracting the underlying data formats and file sizes from the user,

BigQuery can provide a seamless experience so that queries are always

fast.

There is another advantage to BigQuery managing its own storage:

BigQuery can continue to become faster in a way that is transparent to

the end user. For example, improvements in storage formats can be

applied automatically to user data. Similarly, improvements in storage

infrastructure become immediately available. Because BigQuery

manages all of the storage, users don’t need to worry about backup or

replication. Everything from upgrades and replication to backup and

restoration are handled transparently and automatically by the storage

management system.

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn20

One key advantage of working with structured storage at the abstraction

level of a table (rather than of a file) and of providing storage

management to these tables transparently to the end user is that tables

allow BigQuery to support database-like features, such as DML. You

can run a query that updates or deletes rows in a table and leave it to

BigQuery to determine the best way to modify the storage to reflect this

information. BigQuery operations are ACID; that is, all queries will

commit completely or not at all. Rest assured that your queries will

never see the intermediate state of another query, and queries started

after another query completes will never see old data. You do have the

ability to fine-tune the storage by specifying directives that control how

the data is stored, but these operate at the abstraction level of tables, not

files. For example, it is possible to control how tables are partitioned and

clustered (we cover these features in detail in Chapter 7) and thereby

improve the performance and/or reduce the cost of queries against those

tables.

Managed storage is strongly typed, which means that data is validated at

entry to the system. Because BigQuery manages the storage and allows

users to interact with this storage only via its APIs, it can count on the

underlying data not being modified outside of BigQuery. Thus,

BigQuery can guarantee to not throw a validation error at read time

about any of the data present in its managed storage. This guarantee also

implies an authoritative schema, which is useful when figuring out how

to query your tables. Besides improving query performance, the

presence of an authoritative schema helps when trying to make sense of

what data you have because a BigQuery schema contains not just type

information but also annotations and table descriptions about how the

fields can be used.

One downside of managed storage is that it is more difficult to directly

access and process the data using other frameworks. For example, had

the data been available at the abstraction level of files, you might have

been able to directly run a Hadoop job over a BigQuery dataset.

BigQuery addresses this issue by providing a structured parallel API to

read the data. This API lets you read at full speed from Spark or Hadoop

jobs, but it also provides extra features, like projection, filtering, and

dynamic rebalancing.

Integration with Google Cloud Platform

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch07.html#optimizing_performance_and_cost

Google Cloud follows the design principle called “separation of

responsibility,” wherein a small number of high-quality, highly

focused products integrate tightly with each other. It is, therefore,

important to consider the entire Google Cloud Platform (GCP) when

comparing BigQuery with other database products.

A number of different GCP products extend the usefulness of BigQuery

or make it easier to understand how BigQuery is being used. We talk

about many of these related products in detail in this book, but it is

worth being aware of the general separation of responsibilities:

 StackDriver monitoring and audit logs provide ways to understand

BigQuery usage in your organization.

 Cloud Dataproc provides the ability to read, process, and write to

BigQuery tables using Apache Spark programs.

 Federated queries allow BigQuery to query data held in Google

Cloud Storage, Cloud SQL (a relational database), Bigtable (a

NoSQL database), Spanner (a distributed database), or Google

Drive (which offers spreadsheets).

 Google Cloud Data Loss Prevention API helps you to manage

sensitive data and provides the capability to redact or mask

Personally Identifiable Information (PII) from your tables.

 Other machine learning APIs extend what it is possible on data

held in BigQuery; for example, the Cloud Natural Language API

can identify people, places, sentiment, and more in free-form text

(such as those of customer reviews) held in some table column.

 AutoML Tables and AutoML Text can create high-performing

custom machine learning models from data held in BigQuery

tables.

 Cloud Catalog provides the ability to discover data held across

your organization.

 You can use Cloud Pub/Sub to ingest streaming data and Cloud

Dataflow to transform and load it into BigQuery. You can use

Cloud Dataflow to carry out streaming queries as well. You can, of

course, interactively query the streaming data within BigQuery

itself.16

https://cloud.google.com/dlp
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn21

 Data Studio provides charts and dashboards driven from data in

BigQuery. Third-party tools such as Tableau and Looker also

support BigQuery as a backend.

 Cloud AI Platform provides the ability to train sophisticated

machine learning programs from data held in BigQuery.

 Cloud Scheduler and Cloud Functions allow for scheduling or

triggering of BigQuery queries as part of larger workflows.

 Cloud Composer allows for orchestration of BigQuery jobs along

with tasks that need to be performed in Cloud Dataflow or other

processing frameworks, whether on Google Cloud or on-premises

in a hybrid cloud setup.

Taken together, BigQuery and the GCP ecosystem have features that

span several other database products from other cloud vendors; you can

use them as an analytics warehouse but also as an ELT system, a data

lake (queries over files), or a source of BI. The rest of this book paints a

broad picture of how you can use BigQuery in all of its aspects.

Security and Compliance

The integration with GCP goes beyond just interoperability with other

products. Cross-cutting features provided by the platform provide

consistent security and compliance.

The fastest hardware and most advanced software are of little use if you

can’t trust them with your data. BigQuery’s security model is tightly

integrated with the rest of GCP, so it is possible to take a holistic view of

your data security. BigQuery uses Google’s IAM access-control system

to assign specific permissions to individual users or groups of

users. BigQuery also ties in tightly with Google’s Virtual Private Cloud

(VPC) policy controls, which can protect against users who try to access

data from outside your organization, or who try to export it to third

parties. Both IAM and VPC controls are designed to work across Google

Cloud products, so you don’t need to worry that certain products create a

security hole.

BigQuery is available in every region where Google Cloud has a

presence, enabling you to process the data in the location of your

choosing. As of this writing, Google Cloud has more than two dozen

datacenters around the world, and new ones are being opened at a fast

rate. If you have business reasons for keeping data in Australia or

Germany, it is possible to do so. Just create your dataset with the

Australian or German region code, and all of your queries against the

data will be done within that region.

Some organizations have even stronger data location requirements that

go beyond where data is stored and processed. Specifically, they want to

ensure that their data cannot be copied or otherwise leave their physical

region. GCP has physical region controls that apply across products; you

can create a “VPC service controls” policy that disallows data

movement outside of a selected region. If you have these controls

enabled, users will not be able to copy data across regions or export to

Google Cloud Storage buckets in another region.

Summary

BigQuery is a highly scalable data warehouse that provides fast SQL

analytics over large datasets in a serverless way. Although users

appreciate the scale and speed of BigQuery, company executives often

appreciate the transformational benefits that come from being able to do

ad hoc querying in a serverless way, opening up data-driven decision

making to all parts of the company.

To ingest data into BigQuery, you can use an EL pipeline (commonly

used for periodic loads of log files), an ETL pipeline (commonly used

when data needs to be enriched or quality controlled), or an ELT

pipeline (commonly used for exploratory work).

BigQuery is designed for data analytics (OLAP) workloads and provides

full-featured support for SQL:2011. BigQuery can achieve its scale and

speed because it is built on innovative engineering ideas such as the use

of columnar storage, support for nested and repeated fields, and

separation of compute and storage, about which Google went on to

publish papers. BigQuery is part of the GCP ecosystem of big data

analytics tools and integrates tightly with both the infrastructure pieces

(such as security, monitoring, and logging) and the data processing and

machine learning pieces (such as streaming, Cloud DLP, and AutoML)

of the platform.

1 In reality, you’ll need to start the record keeping at the time customers

borrow the equipment, so that you will know whether customers have

absconded with the equipment. However, it’s rather early in this book to

worry about that!

2 In this book, we use “ad hoc” query to refer to a query that is written

without any attempt to prepare the database ahead of time by using

features such as indexes.

3 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” OSDI ’04: Sixth Symposium on

Operating Systems Design and Implementation, San Francisco, CA

(2004), pp. 137–150. Available

at https://research.google.com/archive/mapreduce-osdi04.pdf.

4 On Google Cloud Platform, Cloud Dataproc (the managed Hadoop

offering) addresses this conundrum in a different way. Because of the

high bisectional bandwidth available within Google datacenters, Cloud

Dataproc clusters are able to be job specific—the data is stored on

Google Cloud Storage and read over the wire on demand. This is

possible only if bandwidths are high enough to approximate disk speeds.

Don’t try this at home.

5 For your copy and pasting convenience, you can find all of the code

and query snippets in this book (including the query in the example) in

the GitHub repository for this book.

6 Not you specifically. This is a public dataset, and the owner of the

dataset gave this permission to all authenticated users. You can be less

permissive with your data, sharing the dataset only with those within

your domain or within your team.

7 This code can be downloaded from the book’s GitHub repository.

8 Keep in mind that both authors live in Seattle, where it rains 150 days

each year.

9 You can find more details on the columnar storage format in “How

BigQuery Came About”.

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn4-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn5-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn6-marker
https://research.google.com/archive/mapreduce-osdi04.pdf
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn8-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn9-marker
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/01_intro/queries.txt
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn10-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn11-marker
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn12-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn13-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#how_bigquery_came_about
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#how_bigquery_came_about

10 For example, to compute conversion metrics based on the distance

that a customer would need to travel to purchase a product.

11 We believe all mentions of price to be correct as of the writing of this

book, but please do refer to the relevant policy and pricing sheets, as

these are subject to change.

12 Jim Gray on eScience: A Transformed Scientific Method”, from The

Fourth Paradigm: Data-Intensive Scientific Discovery, ed. Tony Hey,

Stewart Tansley, and Kristin Tolle (Microsoft, 2009), xiv. Available

at https://oreil.ly/M6zMN.

13 Today, BigQuery does provide the ability to export tables and results

to Google Cloud Storage, so we did end up building the download link

after all! But BigQuery is not just a download link—most uses of

BigQuery involve operating on the data in place.

14 SQL does have a RECURSIVE keyword, but like many SQL engines,

BigQuery does not support this. Instead, BigQuery offers better ways to

deal with hierarchical data by supporting arrays and nesting.

15 To read more about Colossus, see http://www.pdsw.org/pdsw-

discs17/slides/PDSW-DISCS-Google-

Keynote.pdf and https://www.wired.com/2012/07/google-colossus/.

16 The separation of responsibility here is that Cloud Dataflow is better

for ongoing, routine processing while BigQuery is better for interactive,

ad hoc processing. Both Cloud Dataflow and BigQuery handle batch

data as well as streaming data, and it is possible to run SQL queries

within Cloud Dataflow.

https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn14-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn15-marker
https://cloud.google.com/bigquery/pricing
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn17-marker
https://oreil.ly/M6zMN
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn18-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn19-marker
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn20-marker
http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-Google-Keynote.pdf
http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-Google-Keynote.pdf
http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-Google-Keynote.pdf
https://www.wired.com/2012/07/google-colossus/
https://learning.oreilly.com/library/view/google-bigquery-the/9781492044451/ch01.html#ch01fn21-marker

