
Chapter 1. Foundations 

Don’t memorize these formulas. If you understand the concepts, you can 

invent your own notation. 

John Cochrane, Investments Notes 2006 

The aim of this chapter is to explain some foundational mental models 

that are essential for understanding how neural networks work. 

Specifically, we’ll cover nested mathematical functions and their 

derivatives. We’ll work our way up from the simplest possible building 

blocks to show that we can build complicated functions made up of a 

“chain” of constituent functions and, even when one of these functions is 

a matrix multiplication that takes in multiple inputs, compute the 

derivative of the functions’ outputs with respect to their inputs. 

Understanding how this process works will be essential to understanding 

neural networks, which we technically won’t begin to cover 

until Chapter 2. 

As we’re getting our bearings around these foundational building blocks 

of neural networks, we’ll systematically describe each concept we 

introduce from three perspectives: 

 Math, in the form of an equation or equations 

 Code, with as little extra syntax as possible (making Python an 

ideal choice) 

 A diagram explaining what is going on, of the kind you would 

draw on a whiteboard during a coding interview 

As mentioned in the preface, one of the challenges of understanding 

neural networks is that it requires multiple mental models. We’ll get a 

sense of that in this chapter: each of these three perspectives excludes 

certain essential features of the concepts we’ll cover, and only when 

taken together do they provide a full picture of both how and why nested 

mathematical functions work the way they do. In fact, I take the 

uniquely strong view that any attempt to explain the building blocks of 

neural networks that excludes one of these three perspectives is 

incomplete. 
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With that out of the way, it’s time to take our first steps. We’re going to 

start with some extremely simple building blocks to illustrate how we 

can understand different concepts in terms of these three perspectives. 

Our first building block will be a simple but critical concept: the 

function. 

Functions 

What is a function, and how do we describe it? As with neural nets, 

there are several ways to describe functions, none of which individually 

paints a complete picture. Rather than trying to give a pithy one-

sentence description, let’s simply walk through the three mental models 

one by one, playing the role of the blind men feeling different parts of 

the elephant. 

Math 

Here are two examples of functions, described in mathematical notation: 

 f1(x) = x2 

 f2(x) = max(x, 0) 

This notation says that the functions, which we arbitrarily call f1 and f2, 

take in a number x as input and transform it into either x2 (in the first 

case) or max(x, 0) (in the second case). 

Diagrams 

One way of depicting functions is to: 

1. Draw an x-y plane (where x refers to the horizontal axis 

and y refers to the vertical axis). 

2. Plot a bunch of points, where the x-coordinates of the points are 

(usually evenly spaced) inputs of the function over some range, 

and the y-coordinates are the outputs of the function over that 

range. 

3. Connect these plotted points. 



This was first done by the French philosopher René Descartes, and it is 

extremely useful in many areas of mathematics, in particular 

calculus. Figure 1-1 shows the plot of these two functions. 

 
Figure 1-1. Two continuous, mostly differentiable functions 

However, there is another way to depict functions that isn’t as useful 

when learning calculus but that will be very useful for us when thinking 

about deep learning models. We can think of functions as boxes that 

take in numbers as input and produce numbers as output, like 

minifactories that have their own internal rules for what happens to the 

input. Figure 1-2 shows both these functions described as general rules 

and how they operate on specific inputs. 

 
Figure 1-2. Another way of looking at these functions 

Code 

Finally, we can describe these functions using code. Before we do, we 

should say a bit about the Python library on top of which we’ll be 

writing our functions: NumPy. 

CODE CAVEAT #1: NUMPY 

NumPy is a widely used Python library for fast numeric computation, 

the internals of which are mostly written in C. Simply put: the data we 

deal with in neural networks will always be held in a multidimensional 

array that is almost always either one-, two-, three-, or four-

dimensional, but especially two- or three-dimensional. The ndarray class 

from the NumPy library allows us to operate on these arrays in ways that 

are both (a) intuitive and (b) fast. To take the simplest possible example: 

if we were storing our data in Python lists (or lists of lists), adding or 

multiplying the lists elementwise using normal syntax wouldn’t work, 

whereas it does work for ndarrays: 

print("Python list operations:") 
a = [1,2,3] 
b = [4,5,6] 
print("a+b:", a+b) 
try: 
    print(a*b) 
except TypeError: 
    print("a*b has no meaning for Python lists") 
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print() 
print("numpy array operations:") 

a = np.array([1,2,3]) 
b = np.array([4,5,6]) 
print("a+b:", a+b) 
print("a*b:", a*b) 

Python list operations: 

a+b: [1, 2, 3, 4, 5, 6] 

a*b has no meaning for Python lists 

 

numpy array operations: 

a+b: [5 7 9] 

a*b: [ 4 10 18] 

ndarrays also have several features you’d expect from an n-dimensional 

array; each ndarray has n axes, indexed from 0, so that the first axis is 0, 

the second is 1, and so on. In particular, since we deal with 2D ndarrays 

often, we can think of axis = 0 as the rows and axis = 1 as the columns—

see Figure 1-3. 

 
Figure 1-3. A 2D NumPy array, with axis = 0 as the rows and axis = 1 as the columns 

NumPy’s ndarrays also support applying functions along these axes in 

intuitive ways. For example, summing along axis 0 (the rows for a 2D 

array) essentially “collapses the array” along that axis, returning an array 

with one less dimension than the original array; for a 2D array, this is 

equivalent to summing each column: 

print('a:') 
print(a) 
print('a.sum(axis=0):', a.sum(axis=0)) 
print('a.sum(axis=1):', a.sum(axis=1)) 

a: 

[[1 2] 
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 [3 4]] 

a.sum(axis=0): [4 6] 

a.sum(axis=1): [3 7] 

Finally, NumPy ndarrays support adding a 1D array to the last axis; for a 

2D array a with R rows and C columns, this means we can add a 1D 

array b of length C and NumPy will do the addition in the intuitive way, 

adding the elements to each row of a:1 

a = np.array([[1,2,3], 
              [4,5,6]]) 

 

b = np.array([10,20,30]) 

 

print("a+b:\n", a+b) 

a+b: 

[[11 22 33] 

 [14 25 36]] 

CODE CAVEAT #2: TYPE-CHECKED FUNCTIONS 

As I’ve mentioned, the primary goal of the code we write in this book is 

to make the concepts I’m explaining precise and clear. This will get 

more challenging as the book goes on, as we’ll be writing functions with 

many arguments as part of complicated classes. To combat this, we’ll 

use functions with type signatures throughout; for example, 

in Chapter 3, we’ll initialize our neural networks as follows: 

def __init__(self, 

             layers: List[Layer], 
             loss: Loss, 
             learning_rate: float = 0.01) -> None: 

This type signature alone gives you some idea of what the class is used 

for. By contrast, consider the following type signature that we could use 

to define an operation: 

def operation(x1, x2): 
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This type signature by itself gives you no hint as to what is going on; 

only by printing out each object’s type, seeing what operations get 

performed on each object, or guessing based on the 

names x1 and x2 could we understand what is going on in this function. I 

can instead define a function with a type signature as follows: 

def operation(x1: ndarray, x2: ndarray) -> ndarray: 

You know right away that this is a function that takes in two ndarrays, 

probably combines them in some way, and outputs the result of that 

combination. Because of the increased clarity they provide, we’ll use 

type-checked functions throughout this book. 

BASIC FUNCTIONS IN NUMPY 

With these preliminaries in mind, let’s write up the functions we defined 

earlier in NumPy: 

def square(x: ndarray) -> ndarray: 
    ''' 
    Square each element in the input ndarray. 
    ''' 
    return np.power(x, 2) 

 

def leaky_relu(x: ndarray) -> ndarray: 
    ''' 
    Apply "Leaky ReLU" function to each element in ndarray. 
    ''' 
    return np.maximum(0.2 * x, x) 

NOTE 

One of NumPy’s quirks is that many functions can be applied to ndarrays 

either by writing np.function_name(ndarray) or by 

writing ndarray.function_name. For example, the preceding relu function 

could be written as: x.clip(min=0). We’ll try to be consistent and use 

the np.function_name(ndarray) convention throughout—in particular, we’ll 

avoid tricks such as ndarray.T for transposing a two-dimensional ndarray, 

instead writing np.transpose(ndarray, (1, 0)). 

If you can wrap your mind around the fact that math, a diagram, and 

code are three different ways of representing the same underlying 

concept, then you are well on your way to displaying the kind of flexible 

thinking you’ll need to truly understand deep learning. 



Derivatives 

Derivatives, like functions, are an extremely important concept for 

understanding deep learning that many of you are probably familiar 

with. Also like functions, they can be depicted in multiple ways. We’ll 

start by simply saying at a high level that the derivative of a function at a 

point is the “rate of change” of the output of the function with respect to 

its input at that point. Let’s now walk through the same three 

perspectives on derivatives that we covered for functions to gain a better 

mental model for how derivatives work. 

Math 

First, we’ll get mathematically precise: we can describe this number—

how much the output of f changes as we change its input at a particular 

value a of the input—as a limit: 

dfdu(a)=limΔ→0f(a+Δ)−f(a−Δ)2×Δdfdu(a)=limΔ→0fa+Δ-fa-Δ2×Δ 

This limit can be approximated numerically by setting a very small 

value for Δ, such as 0.001, so we can compute the derivative as: 

dfdu(a)=f(a+0.001)−f(a−0.001)0.002dfdu(a)=f(a+0.001)-f(a-

0.001)0.002 

While accurate, this is only one part of a full mental model of 

derivatives. Let’s look at them from another perspective: a diagram. 

Diagrams 

First, the familiar way: if we simply draw a tangent line to the Cartesian 

representation of the function f, the derivative of f at a point a is just the 

slope of this line at a. As with the mathematical descriptions in the prior 

subsection, there are two ways we can actually calculate the slope of this 

line. The first would be to use calculus to actually calculate the limit. 

The second would be to just take the slope of the line connecting f at a – 

0.001 and a + 0.001. The latter method is depicted in Figure 1-4 and 

should be familiar to anyone who has taken calculus. 

 
Figure 1-4. Derivatives as slopes 
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As we saw in the prior section, another way of thinking of functions is 

as mini-factories. Now think of the inputs to those factories being 

connected to the outputs by a string. The derivative is equal to the 

answer to this question: if we pull up on the input to the function a by 

some very small amount—or, to account for the fact that the function 

may be asymmetric at a, pull down on a by some small amount—by 

what multiple of this small amount will the output change, given the 

inner workings of the factory? This is depicted in Figure 1-5. 

 
Figure 1-5. Another way of visualizing derivatives 

This second representation will turn out to be more important than the 

first one for understanding deep learning. 

Code 

Finally, we can code up the approximation to the derivative that we saw 

previously: 

from typing import Callable 

 

def deriv(func: Callable[[ndarray], ndarray], 

          input_: ndarray, 
          delta: float = 0.001) -> ndarray: 
    ''' 
    Evaluates the derivative of a function "func" at every element in the 
    "input_" array. 
    ''' 
    return (func(input_ + delta) - func(input_ - delta)) / (2 * delta) 

NOTE 

When we say that “something is a function of something else”—for 

example, that P is a function of E (letters chosen randomly on purpose), 

what we mean is that there is some function f such that f(E) = P—or 

equivalently, there is a function f that takes in E objects and 

produces P objects. We might also think of this as meaning that P is 

defined as whatever results when we apply the function f to E: 

 

And we would code this up as: 

def f(input_: ndarray) -> ndarray: 
    # Some transformation(s) 
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    return output 

 

P = f(E) 

Nested Functions 

Now we’ll cover a concept that will turn out to be fundamental to 

understanding neural networks: functions can be “nested” to form 

“composite” functions. What exactly do I mean by “nested”? I mean that 

if we have two functions that by mathematical convention we 

call f1 and f2, the output of one of the functions becomes the input to the 

next one, so that we can “string them together.” 

Diagram 

The most natural way to represent a nested function is with the 

“minifactory” or “box” representation (the second representation 

from “Functions”). 

As Figure 1-6 shows, an input goes into the first function, gets 

transformed, and comes out; then it goes into the second function and 

gets transformed again, and we get our final output. 

 
Figure 1-6. Nested functions, naturally 

Math 

We should also include the less intuitive mathematical representation: 

f2(f1(x))=yf2(f1(x))=y 

This is less intuitive because of the quirk that nested functions are read 

“from the outside in” but the operations are in fact performed “from the 

inside out.” For example, though f2(f1(x))=yf2(f1(x))=y is read “f 2 of f 

1 of x,” what it really means is to “first apply f1 to x, and then apply f2 to 

the result of applying f1 to x.” 

Code 
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Finally, in keeping with my promise to explain every concept from three 

perspectives, we’ll code this up. First, we’ll define a data type for nested 

functions: 

from typing import List 

 
# A Function takes in an ndarray as an argument and produces an ndarray 
Array_Function = Callable[[ndarray], ndarray] 

 
# A Chain is a list of functions 
Chain = List[Array_Function] 

Then we’ll define how data goes through a chain, first of length 2: 

def chain_length_2(chain: Chain, 
                   a: ndarray) -> ndarray: 
    ''' 
    Evaluates two functions in a row, in a "Chain". 
    ''' 

    assert len(chain) == 2, \ 
    "Length of input 'chain' should be 2" 

 

    f1 = chain[0] 
    f2 = chain[1] 

 

    return f2(f1(x)) 

Another Diagram 

Depicting the nested function using the box representation shows us that 

this composite function is really just a single function. Thus, we can 

represent this function as simply f1 f2, as shown in Figure 1-7. 

 
Figure 1-7. Another way to think of nested functions 

Moreover, a theorem from calculus tells us that a composite 

function made up of “mostly differentiable” functions is itself mostly 

differentiable! Thus, we can think of f1f2 as just another function that we 

can compute derivatives of—and computing derivatives of composite 

functions will turn out to be essential for training deep learning models. 

However, we need a formula to be able to compute this composite 

function’s derivative in terms of the derivatives of its constituent 

functions. That’s what we’ll cover next. 
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The Chain Rule 

The chain rule is a mathematical theorem that lets us compute 

derivatives of composite functions. Deep learning models are, 

mathematically, composite functions, and reasoning about their 

derivatives is essential to training them, as we’ll see in the next couple 

of chapters. 

Math 

Mathematically, the theorem states—in a rather nonintuitive form—that, 

for a given value x, 

df2du(x)=df2du(f1(x))×df1du(x)df2du(x)=df2du(f1(x))×df1du(x) 

where u is simply a dummy variable representing the input to a function. 

NOTE 

When describing the derivative of a function f with one input and output, 

we can denote the function that represents the derivative of this function 

as dfdudfdu. We could use a different dummy variable in place of u—it 

doesn’t matter, just as f(x) = x2 and f(y) = y2 mean the same thing. 

On the other hand, later on we’ll deal with functions that take 

in multiple inputs, say, both x and y. Once we get there, it will make 

sense to write dfdxdfdx and have it mean something different 

than dfdydfdy. 

This is why in the preceding formula we denote all the derivatives with 

a u on the bottom: both f1 and f2 are functions that take in one input and 

produce one output, and in such cases (of functions with one input and 

one output) we’ll use u in the derivative notation. 

DIAGRAM 

The preceding formula does not give much intuition into the chain rule. 

For that, the box representation is much more helpful. Let’s reason 

through what the derivative “should” be in the simple case of f1 f2. 

 
Figure 1-8. An illustration of the chain rule 



Intuitively, using the diagram in Figure 1-8, the derivative of the 

composite function should be a sort of product of the derivatives of its 

constituent functions. Let’s say we feed the value 5 into the first 

function, and let’s say further that computing the derivative of the first 

function at u = 5 gives us a value of 3—that is, df1du(5)=3df1du(5)=3. 

Let’s say that we then take the value of the function that comes out of 

the first box—let’s suppose it is 1, so that f1(5) = 1—and compute the 

derivative of the second function f2 at this value: that is, df2du(1)df2du(1). 

We find that this value is –2. 

If we think about these functions as being literally strung together, then 

if changing the input to box two by 1 unit yields a change of –2 units in 

the output of box two, changing the input to box two by 3 units should 

change the output to box two by –2 × 3 = –6 units. This is why in the 

formula for the chain rule, the final result is ultimately a 

product: df2du(f1(x))df2du(f1(x)) times df1du(x)df1du(x). 

So by considering the diagram and the math, we can reason through 

what the derivative of the output of a nested function with respect to its 

input ought to be, using the chain rule. What might the code instructions 

for the computation of this derivative look like? 
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