
Chapter 1. Foundations

Don’t memorize these formulas. If you understand the concepts, you can

invent your own notation.

John Cochrane, Investments Notes 2006

The aim of this chapter is to explain some foundational mental models

that are essential for understanding how neural networks work.

Specifically, we’ll cover nested mathematical functions and their

derivatives. We’ll work our way up from the simplest possible building

blocks to show that we can build complicated functions made up of a

“chain” of constituent functions and, even when one of these functions is

a matrix multiplication that takes in multiple inputs, compute the

derivative of the functions’ outputs with respect to their inputs.

Understanding how this process works will be essential to understanding

neural networks, which we technically won’t begin to cover

until Chapter 2.

As we’re getting our bearings around these foundational building blocks

of neural networks, we’ll systematically describe each concept we

introduce from three perspectives:

 Math, in the form of an equation or equations

 Code, with as little extra syntax as possible (making Python an

ideal choice)

 A diagram explaining what is going on, of the kind you would

draw on a whiteboard during a coding interview

As mentioned in the preface, one of the challenges of understanding

neural networks is that it requires multiple mental models. We’ll get a

sense of that in this chapter: each of these three perspectives excludes

certain essential features of the concepts we’ll cover, and only when

taken together do they provide a full picture of both how and why nested

mathematical functions work the way they do. In fact, I take the

uniquely strong view that any attempt to explain the building blocks of

neural networks that excludes one of these three perspectives is

incomplete.

https://oreil.ly/33CVXjg
https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch02.html#fundamentals

With that out of the way, it’s time to take our first steps. We’re going to

start with some extremely simple building blocks to illustrate how we

can understand different concepts in terms of these three perspectives.

Our first building block will be a simple but critical concept: the

function.

Functions

What is a function, and how do we describe it? As with neural nets,

there are several ways to describe functions, none of which individually

paints a complete picture. Rather than trying to give a pithy one-

sentence description, let’s simply walk through the three mental models

one by one, playing the role of the blind men feeling different parts of

the elephant.

Math

Here are two examples of functions, described in mathematical notation:

 f1(x) = x2

 f2(x) = max(x, 0)

This notation says that the functions, which we arbitrarily call f1 and f2,

take in a number x as input and transform it into either x2 (in the first

case) or max(x, 0) (in the second case).

Diagrams

One way of depicting functions is to:

1. Draw an x-y plane (where x refers to the horizontal axis

and y refers to the vertical axis).

2. Plot a bunch of points, where the x-coordinates of the points are

(usually evenly spaced) inputs of the function over some range,

and the y-coordinates are the outputs of the function over that

range.

3. Connect these plotted points.

This was first done by the French philosopher René Descartes, and it is

extremely useful in many areas of mathematics, in particular

calculus. Figure 1-1 shows the plot of these two functions.

Figure 1-1. Two continuous, mostly differentiable functions

However, there is another way to depict functions that isn’t as useful

when learning calculus but that will be very useful for us when thinking

about deep learning models. We can think of functions as boxes that

take in numbers as input and produce numbers as output, like

minifactories that have their own internal rules for what happens to the

input. Figure 1-2 shows both these functions described as general rules

and how they operate on specific inputs.

Figure 1-2. Another way of looking at these functions

Code

Finally, we can describe these functions using code. Before we do, we

should say a bit about the Python library on top of which we’ll be

writing our functions: NumPy.

CODE CAVEAT #1: NUMPY

NumPy is a widely used Python library for fast numeric computation,

the internals of which are mostly written in C. Simply put: the data we

deal with in neural networks will always be held in a multidimensional

array that is almost always either one-, two-, three-, or four-

dimensional, but especially two- or three-dimensional. The ndarray class

from the NumPy library allows us to operate on these arrays in ways that

are both (a) intuitive and (b) fast. To take the simplest possible example:

if we were storing our data in Python lists (or lists of lists), adding or

multiplying the lists elementwise using normal syntax wouldn’t work,

whereas it does work for ndarrays:

print("Python list operations:")
a = [1,2,3]
b = [4,5,6]
print("a+b:", a+b)
try:
 print(a*b)
except TypeError:
 print("a*b has no meaning for Python lists")

https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#fig_01-01
https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#fig_01-02

print()
print("numpy array operations:")

a = np.array([1,2,3])
b = np.array([4,5,6])
print("a+b:", a+b)
print("a*b:", a*b)

Python list operations:

a+b: [1, 2, 3, 4, 5, 6]

a*b has no meaning for Python lists

numpy array operations:

a+b: [5 7 9]

a*b: [4 10 18]

ndarrays also have several features you’d expect from an n-dimensional

array; each ndarray has n axes, indexed from 0, so that the first axis is 0,

the second is 1, and so on. In particular, since we deal with 2D ndarrays

often, we can think of axis = 0 as the rows and axis = 1 as the columns—

see Figure 1-3.

Figure 1-3. A 2D NumPy array, with axis = 0 as the rows and axis = 1 as the columns

NumPy’s ndarrays also support applying functions along these axes in

intuitive ways. For example, summing along axis 0 (the rows for a 2D

array) essentially “collapses the array” along that axis, returning an array

with one less dimension than the original array; for a 2D array, this is

equivalent to summing each column:

print('a:')
print(a)
print('a.sum(axis=0):', a.sum(axis=0))
print('a.sum(axis=1):', a.sum(axis=1))

a:

[[1 2]

https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#fig_01-03

 [3 4]]

a.sum(axis=0): [4 6]

a.sum(axis=1): [3 7]

Finally, NumPy ndarrays support adding a 1D array to the last axis; for a

2D array a with R rows and C columns, this means we can add a 1D

array b of length C and NumPy will do the addition in the intuitive way,

adding the elements to each row of a:1

a = np.array([[1,2,3],
 [4,5,6]])

b = np.array([10,20,30])

print("a+b:\n", a+b)

a+b:

[[11 22 33]

 [14 25 36]]

CODE CAVEAT #2: TYPE-CHECKED FUNCTIONS

As I’ve mentioned, the primary goal of the code we write in this book is

to make the concepts I’m explaining precise and clear. This will get

more challenging as the book goes on, as we’ll be writing functions with

many arguments as part of complicated classes. To combat this, we’ll

use functions with type signatures throughout; for example,

in Chapter 3, we’ll initialize our neural networks as follows:

def __init__(self,

 layers: List[Layer],
 loss: Loss,
 learning_rate: float = 0.01) -> None:

This type signature alone gives you some idea of what the class is used

for. By contrast, consider the following type signature that we could use

to define an operation:

def operation(x1, x2):

https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#idm45732632700344
https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch03.html#deep_learning_from_scratch

This type signature by itself gives you no hint as to what is going on;

only by printing out each object’s type, seeing what operations get

performed on each object, or guessing based on the

names x1 and x2 could we understand what is going on in this function. I

can instead define a function with a type signature as follows:

def operation(x1: ndarray, x2: ndarray) -> ndarray:

You know right away that this is a function that takes in two ndarrays,

probably combines them in some way, and outputs the result of that

combination. Because of the increased clarity they provide, we’ll use

type-checked functions throughout this book.

BASIC FUNCTIONS IN NUMPY

With these preliminaries in mind, let’s write up the functions we defined

earlier in NumPy:

def square(x: ndarray) -> ndarray:
 '''
 Square each element in the input ndarray.
 '''
 return np.power(x, 2)

def leaky_relu(x: ndarray) -> ndarray:
 '''
 Apply "Leaky ReLU" function to each element in ndarray.
 '''
 return np.maximum(0.2 * x, x)

NOTE

One of NumPy’s quirks is that many functions can be applied to ndarrays

either by writing np.function_name(ndarray) or by

writing ndarray.function_name. For example, the preceding relu function

could be written as: x.clip(min=0). We’ll try to be consistent and use

the np.function_name(ndarray) convention throughout—in particular, we’ll

avoid tricks such as ndarray.T for transposing a two-dimensional ndarray,

instead writing np.transpose(ndarray, (1, 0)).

If you can wrap your mind around the fact that math, a diagram, and

code are three different ways of representing the same underlying

concept, then you are well on your way to displaying the kind of flexible

thinking you’ll need to truly understand deep learning.

Derivatives

Derivatives, like functions, are an extremely important concept for

understanding deep learning that many of you are probably familiar

with. Also like functions, they can be depicted in multiple ways. We’ll

start by simply saying at a high level that the derivative of a function at a

point is the “rate of change” of the output of the function with respect to

its input at that point. Let’s now walk through the same three

perspectives on derivatives that we covered for functions to gain a better

mental model for how derivatives work.

Math

First, we’ll get mathematically precise: we can describe this number—

how much the output of f changes as we change its input at a particular

value a of the input—as a limit:

dfdu(a)=limΔ→0f(a+Δ)−f(a−Δ)2×Δdfdu(a)=limΔ→0fa+Δ-fa-Δ2×Δ

This limit can be approximated numerically by setting a very small

value for Δ, such as 0.001, so we can compute the derivative as:

dfdu(a)=f(a+0.001)−f(a−0.001)0.002dfdu(a)=f(a+0.001)-f(a-

0.001)0.002

While accurate, this is only one part of a full mental model of

derivatives. Let’s look at them from another perspective: a diagram.

Diagrams

First, the familiar way: if we simply draw a tangent line to the Cartesian

representation of the function f, the derivative of f at a point a is just the

slope of this line at a. As with the mathematical descriptions in the prior

subsection, there are two ways we can actually calculate the slope of this

line. The first would be to use calculus to actually calculate the limit.

The second would be to just take the slope of the line connecting f at a –

0.001 and a + 0.001. The latter method is depicted in Figure 1-4 and

should be familiar to anyone who has taken calculus.

Figure 1-4. Derivatives as slopes

https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#fig_01-04

As we saw in the prior section, another way of thinking of functions is

as mini-factories. Now think of the inputs to those factories being

connected to the outputs by a string. The derivative is equal to the

answer to this question: if we pull up on the input to the function a by

some very small amount—or, to account for the fact that the function

may be asymmetric at a, pull down on a by some small amount—by

what multiple of this small amount will the output change, given the

inner workings of the factory? This is depicted in Figure 1-5.

Figure 1-5. Another way of visualizing derivatives

This second representation will turn out to be more important than the

first one for understanding deep learning.

Code

Finally, we can code up the approximation to the derivative that we saw

previously:

from typing import Callable

def deriv(func: Callable[[ndarray], ndarray],

 input_: ndarray,
 delta: float = 0.001) -> ndarray:
 '''
 Evaluates the derivative of a function "func" at every element in the
 "input_" array.
 '''
 return (func(input_ + delta) - func(input_ - delta)) / (2 * delta)

NOTE

When we say that “something is a function of something else”—for

example, that P is a function of E (letters chosen randomly on purpose),

what we mean is that there is some function f such that f(E) = P—or

equivalently, there is a function f that takes in E objects and

produces P objects. We might also think of this as meaning that P is

defined as whatever results when we apply the function f to E:

And we would code this up as:

def f(input_: ndarray) -> ndarray:
 # Some transformation(s)

https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#fig_01-05

 return output

P = f(E)

Nested Functions

Now we’ll cover a concept that will turn out to be fundamental to

understanding neural networks: functions can be “nested” to form

“composite” functions. What exactly do I mean by “nested”? I mean that

if we have two functions that by mathematical convention we

call f1 and f2, the output of one of the functions becomes the input to the

next one, so that we can “string them together.”

Diagram

The most natural way to represent a nested function is with the

“minifactory” or “box” representation (the second representation

from “Functions”).

As Figure 1-6 shows, an input goes into the first function, gets

transformed, and comes out; then it goes into the second function and

gets transformed again, and we get our final output.

Figure 1-6. Nested functions, naturally

Math

We should also include the less intuitive mathematical representation:

f2(f1(x))=yf2(f1(x))=y

This is less intuitive because of the quirk that nested functions are read

“from the outside in” but the operations are in fact performed “from the

inside out.” For example, though f2(f1(x))=yf2(f1(x))=y is read “f 2 of f

1 of x,” what it really means is to “first apply f1 to x, and then apply f2 to

the result of applying f1 to x.”

Code

https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#functions-section-01
https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#fig_01-07

Finally, in keeping with my promise to explain every concept from three

perspectives, we’ll code this up. First, we’ll define a data type for nested

functions:

from typing import List

A Function takes in an ndarray as an argument and produces an ndarray
Array_Function = Callable[[ndarray], ndarray]

A Chain is a list of functions
Chain = List[Array_Function]

Then we’ll define how data goes through a chain, first of length 2:

def chain_length_2(chain: Chain,
 a: ndarray) -> ndarray:
 '''
 Evaluates two functions in a row, in a "Chain".
 '''

 assert len(chain) == 2, \
 "Length of input 'chain' should be 2"

 f1 = chain[0]
 f2 = chain[1]

 return f2(f1(x))

Another Diagram

Depicting the nested function using the box representation shows us that

this composite function is really just a single function. Thus, we can

represent this function as simply f1 f2, as shown in Figure 1-7.

Figure 1-7. Another way to think of nested functions

Moreover, a theorem from calculus tells us that a composite

function made up of “mostly differentiable” functions is itself mostly

differentiable! Thus, we can think of f1f2 as just another function that we

can compute derivatives of—and computing derivatives of composite

functions will turn out to be essential for training deep learning models.

However, we need a formula to be able to compute this composite

function’s derivative in terms of the derivatives of its constituent

functions. That’s what we’ll cover next.

https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#fig_01-08

The Chain Rule

The chain rule is a mathematical theorem that lets us compute

derivatives of composite functions. Deep learning models are,

mathematically, composite functions, and reasoning about their

derivatives is essential to training them, as we’ll see in the next couple

of chapters.

Math

Mathematically, the theorem states—in a rather nonintuitive form—that,

for a given value x,

df2du(x)=df2du(f1(x))×df1du(x)df2du(x)=df2du(f1(x))×df1du(x)

where u is simply a dummy variable representing the input to a function.

NOTE

When describing the derivative of a function f with one input and output,

we can denote the function that represents the derivative of this function

as dfdudfdu. We could use a different dummy variable in place of u—it

doesn’t matter, just as f(x) = x2 and f(y) = y2 mean the same thing.

On the other hand, later on we’ll deal with functions that take

in multiple inputs, say, both x and y. Once we get there, it will make

sense to write dfdxdfdx and have it mean something different

than dfdydfdy.

This is why in the preceding formula we denote all the derivatives with

a u on the bottom: both f1 and f2 are functions that take in one input and

produce one output, and in such cases (of functions with one input and

one output) we’ll use u in the derivative notation.

DIAGRAM

The preceding formula does not give much intuition into the chain rule.

For that, the box representation is much more helpful. Let’s reason

through what the derivative “should” be in the simple case of f1 f2.

Figure 1-8. An illustration of the chain rule

Intuitively, using the diagram in Figure 1-8, the derivative of the

composite function should be a sort of product of the derivatives of its

constituent functions. Let’s say we feed the value 5 into the first

function, and let’s say further that computing the derivative of the first

function at u = 5 gives us a value of 3—that is, df1du(5)=3df1du(5)=3.

Let’s say that we then take the value of the function that comes out of

the first box—let’s suppose it is 1, so that f1(5) = 1—and compute the

derivative of the second function f2 at this value: that is, df2du(1)df2du(1).

We find that this value is –2.

If we think about these functions as being literally strung together, then

if changing the input to box two by 1 unit yields a change of –2 units in

the output of box two, changing the input to box two by 3 units should

change the output to box two by –2 × 3 = –6 units. This is why in the

formula for the chain rule, the final result is ultimately a

product: df2du(f1(x))df2du(f1(x)) times df1du(x)df1du(x).

So by considering the diagram and the math, we can reason through

what the derivative of the output of a nested function with respect to its

input ought to be, using the chain rule. What might the code instructions

for the computation of this derivative look like?

https://learning.oreilly.com/library/view/deep-learning-from/9781492041405/ch01.html#fig_01-09

