
Chapter 1. Why Terraform

Software isn’t done when the code is working on your computer. It’s not

done when the tests pass. And it’s not done when someone gives you a

“ship it” on a code review. Software isn’t done until you deliver it to the

user.

Software delivery consists of all of the work you need to do to make the

code available to a customer, such as running that code on production

servers, making the code resilient to outages and traffic spikes, and

protecting the code from attackers. Before you dive into the details of

Terraform, it’s worth taking a step back to see where Terraform fits into

the bigger picture of software delivery.

In this chapter, you’ll dive into the following topics:

 The rise of DevOps

 What is infrastructure as code?

 The benefits of infrastructure as code

 How Terraform works

 How Terraform compares to other infrastructure as code tools

The Rise of DevOps

In the not-so-distant past, if you wanted to build a software company,

you also needed to manage a lot of hardware. You would set up cabinets

and racks, load them up with servers, hook up wiring, install cooling,

build redundant power systems, and so on. It made sense to have one

team, typically called Developers (“Devs”), dedicated to writing the

software, and a separate team, typically called Operations (“Ops”),

dedicated to managing this hardware.

The typical Dev team would build an application and “toss it over the

wall” to the Ops team. It was then up to Ops to figure out how to deploy

and run that application. Most of this was done manually. In part, that

was unavoidable, because much of the work had to do with physically

hooking up hardware (e.g., racking servers, hooking up network cables).

But even the work Ops did in software, such as installing the application

and its dependencies, was often done by manually executing commands

on a server.

This works well for a while, but as the company grows, you eventually

run into problems. It typically plays out like this: because releases are

done manually, as the number of servers increases, releases become

slow, painful, and unpredictable. The Ops team occasionally makes

mistakes, so you end up with snowflake servers, wherein each one has a

subtly different configuration from all the others (a problem known

as configuration drift). As a result, the number of bugs increases.

Developers shrug and say, “It works on my machine!” Outages and

downtime become more frequent.

The Ops team, tired from their pagers going off at 3 a.m. after every

release, reduce the release cadence to once per week. Then to once per

month. Then once every six months. Weeks before the biannual release,

teams begin trying to merge all of their projects together, leading to a

huge mess of merge conflicts. No one can stabilize the release branch.

Teams begin blaming one another. Silos form. The company grinds to a

halt.

Nowadays, a profound shift is taking place. Instead of managing their

own datacenters, many companies are moving to the cloud, taking

advantage of services such as Amazon Web Services (AWS), Microsoft

Azure, and Google Cloud Platform (GCP). Instead of investing heavily

in hardware, many Ops teams are spending all their time working on

software, using tools such as Chef, Puppet, Terraform, and Docker.

Instead of racking servers and plugging in network cables, many

sysadmins are writing code.

As a result, both Dev and Ops spend most of their time working on

software, and the distinction between the two teams is blurring. It might

still make sense to have a separate Dev team responsible for the

application code and an Ops team responsible for the operational code,

but it’s clear that Dev and Ops need to work more closely together. This

is where the DevOps movement comes from.

DevOps isn’t the name of a team or a job title or a particular technology.

Instead, it’s a set of processes, ideas, and techniques. Everyone has a

slightly different definition of DevOps, but for this book, I’m going to

go with the following:

The goal of DevOps is to make software delivery vastly more efficient.

Instead of multiday merge nightmares, you integrate code continuously

and always keep it in a deployable state. Instead of deploying code once

per month, you can deploy code dozens of times per day, or even after

every single commit. And instead of constant outages and downtime,

you build resilient, self-healing systems and use monitoring and alerting

to catch problems that can’t be resolved automatically.

The results from companies that have undergone DevOps

transformations are astounding. For example, Nordstrom found that after

applying DevOps practices to its organization, it was able to increase the

number of features it delivered per month by 100%, reduce defects by

50%, reduce lead times (the time from coming up with an idea to

running code in production) by 60%, and reduce the number of

production incidents by 60% to 90%. After HP’s LaserJet Firmware

division began using DevOps practices, the amount of time its

developers spent on developing new features went from 5% to 40% and

overall development costs were reduced by 40%. Etsy used DevOps

practices to go from stressful, infrequent deployments that caused

numerous outages to deploying 25 to 50 times per day, with far fewer

outages.1

There are four core values in the DevOps movement: culture,

automation, measurement, and sharing (sometimes abbreviated as the

acronym CAMS). This book is not meant as a comprehensive overview

of DevOps (check out Appendix A for recommended reading), so I will

just focus on one of these values: automation.

The goal is to automate as much of the software delivery process as

possible. That means that you manage your infrastructure not by

clicking around a web page or manually executing shell commands, but

through code. This is a concept that is typically called infrastructure as

code.

What Is Infrastructure as Code?

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487545470216
http://bit.ly/2GS3CR3
https://learning.oreilly.com/library/view/terraform-up/9781492046899/app01.html#recommended_reading

The idea behind infrastructure as code (IAC) is that you write and

execute code to define, deploy, update, and destroy your

infrastructure. This represents an important shift in mindset in which

you treat all aspects of operations as software—even those aspects that

represent hardware (e.g., setting up physical servers). In fact, a key

insight of DevOps is that you can manage almost everything in code,

including servers, databases, networks, log files, application

configuration, documentation, automated tests, deployment processes,

and so on.

There are five broad categories of IAC tools:

 Ad hoc scripts

 Configuration management tools

 Server templating tools

 Orchestration tools

 Provisioning tools

Let’s look at these one at a time.

Ad Hoc Scripts

The most straightforward approach to automating anything is to write

an ad hoc script. You take whatever task you were doing manually,

break it down into discrete steps, use your favorite scripting language

(e.g., Bash, Ruby, Python) to define each of those steps in code, and

execute that script on your server, as shown in Figure 1-1.

Figure 1-1. Running an ad hoc script on your server

For example, here is a Bash script called setup-webserver.sh that

configures a web server by installing dependencies, checking out some

code from a Git repo, and firing up an Apache web server:

Update the apt-get cache

sudo apt-get update

Install PHP and Apache

sudo apt-get install -y php apache2

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#ad_hoc_script

Copy the code from the repository

sudo git clone https://github.com/brikis98/php-app.git

/var/www/html/app

Start Apache

sudo service apache2 start

The great thing about ad hoc scripts is that you can use popular, general-

purpose programming languages and you can write the code however

you want. The terrible thing about ad hoc scripts is that you can use

popular, general-purpose programming languages and you can write the

code however you want.

Whereas tools that are purpose-built for IAC provide concise APIs for

accomplishing complicated tasks, if you’re using a general-purpose

programming language, you need to write completely custom code for

every task. Moreover, tools designed for IAC usually enforce a

particular structure for your code, whereas with a general-purpose

programming language, each developer will use their own style and do

something different. Neither of these problems is a big deal for an eight-

line script that installs Apache, but it gets messy if you try to use ad hoc

scripts to manage dozens of servers, databases, load balancers, network

configurations, and so on.

If you’ve ever had to maintain a large repository of Bash scripts, you

know that it almost always devolves into a mess of unmaintainable

spaghetti code. Ad hoc scripts are great for small, one-off tasks, but if

you’re going to be managing all of your infrastructure as code, then you

should use an IaC tool that is purpose-built for the job.

Configuration Management Tools

Chef, Puppet, Ansible, and SaltStack are all configuration management

tools, which means that they are designed to install and manage software

on existing servers. For example, here is an Ansible Role called web-

server.yml that configures the same Apache web server as the setup-

webserver.sh script:

- name: Update the apt-get cache
 apt:
 update_cache: yes

- name: Install PHP
 apt:

 name: php

- name: Install Apache
 apt:
 name: apache2

- name: Copy the code from the repository
 git: repo=https://github.com/brikis98/php-app.git dest=/var/www/html/app

- name: Start Apache
 service: name=apache2 state=started enabled=yes

The code looks similar to the Bash script, but using a tool like Ansible

offers a number of advantages:

Coding conventions

Ansible enforces a consistent, predictable structure, including

documentation, file layout, clearly named parameters, secrets

management, and so on. While every developer organizes their ad

hoc scripts in a different way, most configuration management

tools come with a set of conventions that makes it easier to

navigate the code.

Idempotence

Writing an ad hoc script that works once isn’t too difficult; writing

an ad hoc script that works correctly even if you run it over and

over again is a lot more difficult. Every time you go to create a

folder in your script, you need to remember to check whether that

folder already exists; every time you add a line of configuration to

a file, you need to check that line doesn’t already exist; every time

you want to run an app, you need to check that the app isn’t

already running.

Code that works correctly no matter how many times you run it is

called idempotent code. To make the Bash script from the previous

section idempotent, you’d need to add many lines of code,

including lots of if-statements. Most Ansible functions, on the

other hand, are idempotent by default. For example, the web-

server.yml Ansible role will install Apache only if it isn’t installed

already and will try to start the Apache web server only if it isn’t

running already.

Distribution

Ad hoc scripts are designed to run on a single, local

machine. Ansible and other configuration management tools are

designed specifically for managing large numbers of remote

servers, as shown in Figure 1-2.

Figure 1-2. A configuration management tool like Ansible can execute your code across a large number of servers

For example, to apply the web-server.yml role to five servers, you

first create a file called hosts that contains the IP addresses of those

servers:

[webservers]

11.11.11.11

11.11.11.12

11.11.11.13

11.11.11.14

11.11.11.15

Next, you define the following Ansible playbook:
- hosts: webservers
 roles:
 - webserver

Finally, you execute the playbook as follows:

ansible-playbook playbook.yml

This instructs Ansible to configure all five servers in parallel.

Alternatively, by setting a parameter called serial in the playbook,

you can do a rolling deployment, which updates the servers in

batches. For example, setting serial to 2 directs Ansible to update

two of the servers at a time, until all five are done. Duplicating any

of this logic in an ad hoc script would take dozens or even

hundreds of lines of code.

Server Templating Tools

An alternative to configuration management that has been growing in

popularity recently are server templating tools such as Docker, Packer,

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#configuration_management

and Vagrant. Instead of launching a bunch of servers and configuring

them by running the same code on each one, the idea behind server

templating tools is to create an image of a server that captures a

fully self-contained “snapshot” of the operating system (OS), the

software, the files, and all other relevant details. You can then use some

other IaC tool to install that image on all of your servers, as shown

in Figure 1-3.

Figure 1-3. You can use a server templating tool like Packer to create a self-contained image of a server. You can then use other tools, such as Ansible,

to install that image across all of your servers.

As shown in Figure 1-4, there are two broad categories of tools for

working with images:

Virtual machines

A virtual machine (VM) emulates an entire computer system,

including the hardware. You run a hypervisor, such as VMWare,

VirtualBox, or Parallels, to virtualize (i.e., simulate) the underlying

CPU, memory, hard drive, and networking. The benefit of this is

that any VM image that you run on top of the hypervisor can see

only the virtualized hardware, so it’s fully isolated from the host

machine and any other VM images, and it will run exactly the

same way in all environments (e.g., your computer, a QA server, a

production server). The drawback is that virtualizing all this

hardware and running a totally separate OS for each VM incurs a

lot of overhead in terms of CPU usage, memory usage, and startup

time. You can define VM images as code using tools such as

Packer and Vagrant.

Containers

A container emulates the user space of an OS.2 You run

a container engine, such as Docker, CoreOS rkt, or cri-o, to create

isolated processes, memory, mount points, and networking. The

benefit of this is that any container you run on top of the container

engine can see only its own user space, so it’s isolated from the

host machine and other containers and will run exactly the same

way in all environments (your computer, a QA server, a production

server, etc.). The drawback is that all of the containers running on

a single server share that server’s OS kernel and hardware, so it’s

much more difficult to achieve the level of isolation and security

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#sever_templating
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#vm_versus_container
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541859176

you get with a VM.3 However, because the kernel and hardware

are shared, your containers can boot up in milliseconds and have

virtually no CPU or memory overhead. You can define container

images as code using tools such as Docker and CoreOS rkt.

Figure 1-4. The two main types of images: VMs, on the left, and containers, on the right. VMs virtualize the hardware, whereas containers virtualize

only user space.

For example, here is a Packer template called web-server.json that

creates an Amazon Machine Image (AMI), which is a VM image that

you can run on AWS:

{

 "builders": [{
 "ami_name": "packer-example",
 "instance_type": "t2.micro",
 "region": "us-east-2",
 "type": "amazon-ebs",
 "source_ami": "ami-0c55b159cbfafe1f0",
 "ssh_username": "ubuntu"
 }],
 "provisioners": [{
 "type": "shell",
 "inline": [

 "sudo apt-get update",
 "sudo apt-get install -y php apache2",
 "sudo git clone https://github.com/brikis98/php-app.git
/var/www/html/app"
],
 "environment_vars": [
 "DEBIAN_FRONTEND=noninteractive"
]
 }]
}

This Packer template configures the same Apache web server that you

saw in setup-webserver.sh using the same Bash code.4 The only

difference between the preceding code and previous examples is that this

Packer template does not start the Apache web server (e.g., by

calling sudo service apache2 start). That’s because server templates are

typically used to install software in images, but it’s only when you run

the image—for example, by deploying it on a server—that you should

actually run that software.

You can build an AMI from this template by running packer build

webserver.json, and after the build completes, you can install that AMI on

all of your AWS servers, configure each server to run Apache when the

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541851272
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541837656

server is booting (you’ll see an example of this in the next section), and

they will all run exactly the same way.

Note that the different server templating tools have slightly different

purposes. Packer is typically used to create images that you run directly

on top of production servers, such as an AMI that you run in your

production AWS account. Vagrant is typically used to create images that

you run on your development computers, such as a VirtualBox image

that you run on your Mac or Windows laptop. Docker is typically used

to create images of individual applications. You can run the Docker

images on production or development computers, as long as some other

tool has configured that computer with the Docker Engine. For example,

a common pattern is to use Packer to create an AMI that has the Docker

Engine installed, deploy that AMI on a cluster of servers in your AWS

account, and then deploy individual Docker containers across that

cluster to run your applications.

Server templating is a key component of the shift to immutable

infrastructure. This idea is inspired by functional programming and

entails variables that are immutable, so after you’ve set a variable to a

value, you can never change that variable again. If you need to update

something, you create a new variable. Because variables never change,

it’s a lot easier to reason about your code.

The idea behind immutable infrastructure is similar: once you’ve

deployed a server, you never make changes to it again. If you need to

update something, such as deploy a new version of your code, you create

a new image from your server template and you deploy it on a new

server. Because servers never change, it’s a lot easier to reason about

what’s deployed.

Orchestration Tools

Server templating tools are great for creating VMs and containers, but

how do you actually manage them? For most real-world use cases,

you’ll need a way to do the following:

 Deploy VMs and containers, making efficient use of your

hardware.

 Roll out updates to an existing fleet of VMs and containers using

strategies such as rolling deployment, blue-green deployment, and

canary deployment.

 Monitor the health of your VMs and containers and automatically

replace unhealthy ones (auto healing).

 Scale the number of VMs and containers up or down in response to

load (auto scaling).

 Distribute traffic across your VMs and containers (load

balancing).

 Allow your VMs and containers to find and talk to one another

over the network (service discovery).

Handling these tasks is the realm of orchestration tools such as

Kubernetes, Marathon/Mesos, Amazon Elastic Container Service

(Amazon ECS), Docker Swarm, and Nomad. For example, Kubernetes

allows you to define how to manage your Docker containers as

code. You first deploy a Kubernetes cluster, which is a group of servers

that Kubernetes will manage and use to run your Docker

containers. Most major cloud providers have native support for

deploying managed Kubernetes clusters, such as Amazon Elastic

Container Service for Kubernetes (Amazon EKS), Google Kubernetes

Engine (GKE), and Azure Kubernetes Service (AKS).

Once you have a working cluster, you can define how to run your

Docker container as code in a YAML file:

apiVersion: apps/v1

Use a Deployment to deploy multiple replicas of your Docker
container(s) and to declaratively roll out updates to them
kind: Deployment

Metadata about this Deployment, including its name
metadata:
 name: example-app

The specification that configures this Deployment
spec:
 # This tells the Deployment how to find your container(s)
 selector:
 matchLabels:
 app: example-app

 # This tells the Deployment to run three replicas of your
 # Docker container(s)
 replicas: 3

 # Specifies how to update the Deployment. Here, we
 # configure a rolling update.
 strategy:
 rollingUpdate:
 maxSurge: 3
 maxUnavailable: 0
 type: RollingUpdate

 # This is the template for what container(s) to deploy
 template:

 # The metadata for these container(s), including labels
 metadata:
 labels:
 app: example-app

 # The specification for your container(s)
 spec:
 containers:

 # Run Apache listening on port 80
 - name: example-app
 image: httpd:2.4.39
 ports:
 - containerPort: 80

This file instructs Kubernetes to create a Deployment, which is a

declarative way to define:

 One or more Docker containers to run together. This group of

containers is called a Pod. The Pod defined in the preceding code

contains a single Docker container that runs Apache.

 The settings for each Docker container in the Pod. The Pod in the

preceding code configures Apache to listen on port 80.

 How many copies (aka replicas) of the Pod to run in your cluster.

The preceding code configures three replicas. Kubernetes

automatically figures out where in your cluster to deploy each Pod,

using a scheduling algorithm to pick the optimal servers in terms

of high availability (e.g., try to run each Pod on a separate server

so a single server crash doesn’t take down your app), resources

(e.g., pick servers that have available the ports, CPU, memory, and

other resources required by your containers), performance (e.g., try

to pick servers with the least load and fewest containers on them),

and so on. Kubernetes also constantly monitors the cluster to

ensure that there are always three replicas running, automatically

replacing any Pods that crash or stop responding.

 How to deploy updates. When deploying a new version of the

Docker container, the preceding code rolls out three new replicas,

waits for them to be healthy, and then undeploys the three old

replicas.

That’s a lot of power in just a few lines of YAML! You run kubectl apply

-f example-app.yml to instruct Kubernetes to deploy your app. You can

then make changes to the YAML file and run kubectl apply again to roll

out the updates.

Provisioning Tools

Whereas configuration management, server templating, and

orchestration tools define the code that runs on each server, provisioning

tools such as Terraform, CloudFormation, and OpenStack Heat are

responsible for creating the servers themselves. In fact, you can use

provisioning tools to not only create servers, but also databases, caches,

load balancers, queues, monitoring, subnet configurations, firewall

settings, routing rules, Secure Sockets Layer (SSL) certificates, and

almost every other aspect of your infrastructure, as shown in Figure 1-5.

For example, the following code deploys a web server using Terraform:

resource "aws_instance" "app" {
 instance_type = "t2.micro"
 availability_zone = "us-east-2a"
 ami = "ami-0c55b159cbfafe1f0"

 user_data = <<-EOF
 #!/bin/bash
 sudo service apache2 start
 EOF
}

Don’t worry if you’re not yet familiar with some of the syntax. For now,

just focus on two parameters:

ami
This parameter specifies the ID of an AMI to deploy on the

server. You could set this parameter to the ID of an AMI built

from the web-server.json Packer template in the previous section,

which has PHP, Apache, and the application source code.
user_data

This is a Bash script that executes when the web server is booting.

The preceding code uses this script to boot up Apache.

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#provisioning

In other words, this code shows you provisioning and server templating

working together, which is a common pattern in immutable

infrastructure.

Figure 1-5. You can use provisioning tools with your cloud provider to create servers, databases, load balancers, and all other parts of your

infrastructure

The Benefits of Infrastructure as Code

Now that you’ve seen all the different flavors of IaC, a good question to

ask is, why bother? Why learn a bunch of new languages and tools and

encumber yourself with yet more code to manage?

The answer is that code is powerful. In exchange for the upfront

investment of converting your manual practices to code, you get

dramatic improvements in your ability to deliver software. According to

the 2016 State of DevOps Report, organizations that use DevOps

practices, such as IaC, deploy 200 times more frequently, recover from

failures 24 times faster, and have lead times that are 2,555 times lower.

When your infrastructure is defined as code, you are able to use a wide

variety of software engineering practices to dramatically improve your

software delivery process, including the following:

Self-service

Most teams that deploy code manually have a small number of

sysadmins (often, just one) who are the only ones who know all the

magic incantations to make the deployment work and are the only

ones with access to production. This becomes a major bottleneck

as the company grows. If your infrastructure is defined in code, the

entire deployment process can be automated, and developers can

kick off their own deployments whenever necessary.

Speed and safety

If the deployment process is automated, it will be significantly

faster, since a computer can carry out the deployment steps far

faster than a person; and safer, given that an automated process

will be more consistent, more repeatable, and not prone to manual

error.

http://bit.ly/31kCUYX

Documentation

Instead of the state of your infrastructure being locked away in a

single sysadmin’s head, you can represent the state of your

infrastructure in source files that anyone can read. In other words,

IaC acts as documentation, allowing everyone in the organization

to understand how things work, even if the sysadmin goes on

vacation.

Version control

You can store your IaC source files in version control, which

means that the entire history of your infrastructure is now captured

in the commit log. This becomes a powerful tool for debugging

issues, because any time a problem pops up, your first step will be

to check the commit log and find out what changed in your

infrastructure, and your second step might be to resolve the

problem by simply reverting back to a previous, known-good

version of your IaC code.

Validation

If the state of your infrastructure is defined in code, for every

single change, you can perform a code review, run a suite of

automated tests, and pass the code through static analysis tools—

all practices that are known to significantly reduce the chance of

defects.

Reuse

You can package your infrastructure into reusable modules, so that

instead of doing every deployment for every product in every

environment from scratch, you can build on top of known,

documented, battle-tested pieces.5

Happiness

There is one other very important, and often overlooked, reason for

why you should use IaC: happiness. Deploying code and managing

infrastructure manually is repetitive and tedious. Developers and

sysadmins resent this type of work, since it involves no creativity,

no challenge, and no recognition. You could deploy code perfectly

for months, and no one will take notice—until that one day when

you mess it up. That creates a stressful and unpleasant

environment. IaC offers a better alternative that allows computers

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541525656

to do what they do best (automation) and developers to do what

they do best (coding).

Now that you have a sense of why IaC is important, the next question is

whether Terraform is the best IaC tool for you. To answer that, I’m first

going to do a very quick primer on how Terraform works, and then I’ll

compare it to the other popular IaC options out there, such as Chef,

Puppet, and Ansible.

How Terraform Works

Here is a high-level and somewhat simplified view of how Terraform

works. Terraform is an open source tool created by HashiCorp and

written in the Go programming language. The Go code compiles down

into a single binary (or rather, one binary for each of the supported

operating systems) called, not surprisingly, terraform.

You can use this binary to deploy infrastructure from your laptop or a

build server or just about any other computer, and you don’t need to run

any extra infrastructure to make that happen. That’s because under the

hood, the terraform binary makes API calls on your behalf to one or

more providers, such as AWS, Azure, Google Cloud, DigitalOcean,

OpenStack, and more. This means that Terraform gets to leverage the

infrastructure those providers are already running for their API servers,

as well as the authentication mechanisms you’re already using with

those providers (e.g., the API keys you already have for AWS).

How does Terraform know what API calls to make? The answer is that

you create Terraform configurations, which are text files that specify

what infrastructure you want to create. These configurations are the

“code” in “infrastructure as code.” Here’s an example Terraform

configuration:

resource "aws_instance" "example" {
 ami = "ami-0c55b159cbfafe1f0"
 instance_type = "t2.micro"
}

resource "google_dns_record_set" "a" {
 name = "demo.google-example.com"
 managed_zone = "example-zone"
 type = "A"
 ttl = 300

 rrdatas = [aws_instance.example.public_ip]
}

Even if you’ve never seen Terraform code before, you shouldn’t have

too much trouble reading it. This snippet instructs Terraform to make

API calls to AWS to deploy a server and then make API calls to Google

Cloud to create a DNS entry pointing to the AWS server’s IP address. In

just a single, simple syntax (which you’ll learn in Chapter 2), Terraform

allows you to deploy interconnected resources across multiple cloud

providers.

You can define your entire infrastructure—servers, databases, load

balancers, network topology, and so on—in Terraform configuration

files and commit those files to version control. You then run certain

Terraform commands, such as terraform apply, to deploy that

infrastructure. The terraform binary parses your code, translates it into a

series of API calls to the cloud providers specified in the code, and

makes those API calls as efficiently as possible on your behalf, as shown

in Figure 1-6.

Figure 1-6. Terraform is a binary that translates the contents of your configurations into API calls to cloud providers

When someone on your team needs to make changes to the

infrastructure, instead of updating the infrastructure manually and

directly on the servers, they make their changes in the Terraform

configuration files, validate those changes through automated tests and

code reviews, commit the updated code to version control, and then run

the terraform apply command to have Terraform make the necessary API

calls to deploy the changes.

TRANSPARENT PORTABILITY BETWEEN CLOUD

PROVIDERS

Because Terraform supports many different cloud providers, a common

question that arises is whether it supports transparent

portability between them. For example, if you used Terraform to define

a bunch of servers, databases, load balancers, and other infrastructure in

AWS, could you instruct Terraform to deploy exactly the same

infrastructure in another cloud provider, such as Azure or Google Cloud,

in just a few clicks?

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch02.html#an_intro_to_terraform_syntax
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#terraform_api_calls

This question turns out to be a bit of a red herring. The reality is that you

can’t deploy “exactly the same infrastructure” in a different cloud

provider because the cloud providers don’t offer the same types of

infrastructure! The servers, load balancers, and databases offered by

AWS are very different from those in Azure and Google Cloud in terms

of features, configuration, management, security, scalability,

availability, observability, and so on. There is no easy way to

“transparently” paper over these differences, especially as functionality

in one cloud provider often doesn’t exist at all in the others.

Terraform’s approach is to allow you to write code that is specific to

each provider, taking advantage of that provider’s unique functionality,

but to use the same language, toolset, and IaC practices under the hood

for all providers.

How Terraform Compares to Other IaC Tools

Infrastructure as code is wonderful, but the process of picking an IaC

tool is not. Many of the IaC tools overlap in what they do. Many of them

are open source. Many of them offer commercial support. Unless you’ve

used each one yourself, it’s not clear what criteria you should use to pick

one or the other.

What makes this even more difficult is that most of the comparisons you

find between these tools do little more than list the general properties of

each one and make it sound as if you could be equally successful with

any of them. And although that’s technically true, it’s not helpful. It’s a

bit like telling a programming newbie that you could be equally

successful building a website with PHP, C, or assembly—a statement

that’s technically true, but one that omits a huge amount of information

that is essential for making a good decision.

In the following sections, I’m going to do a detailed comparison

between the most popular configuration management and provisioning

tools: Terraform, Chef, Puppet, Ansible, SaltStack, CloudFormation,

and OpenStack Heat. My goal is to help you decide whether Terraform

is a good choice by explaining why my company, Gruntwork, picked

Terraform as our IaC tool of choice and, in some sense, why I wrote this

book.6 As with all technology decisions, it’s a question of trade-offs and

http://www.gruntwork.io/
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541396568

priorities, and even though your particular priorities might be different

than mine, my hope is that sharing this thought process will help you to

make your own decision.

Here are the main trade-offs to consider:

 Configuration management versus provisioning

 Mutable infrastructure versus immutable infrastructure

 Procedural language versus declarative language

 Master versus masterless

 Agent versus agentless

 Large community versus small community

 Mature versus cutting-edge

 Using multiple tools together

Configuration Management Versus Provisioning

As you saw earlier, Chef, Puppet, Ansible, and SaltStack are all

configuration management tools, whereas CloudFormation, Terraform,

and OpenStack Heat are all provisioning tools. Although the distinction

is not entirely clear cut, given that configuration management tools can

typically do some degree of provisioning (e.g., you can deploy a server

with Ansible) and provisioning tools can typically do some degree of

configuration (e.g., you can run configuration scripts on each server you

provision with Terraform), you typically want to pick the tool that’s the

best fit for your use case.7

In particular, if you use server templating tools such as Docker or

Packer, the vast majority of your configuration management needs are

already taken care of. Once you have an image created from a

Dockerfile or Packer template, all that’s left to do is provision the

infrastructure for running those images. And when it comes to

provisioning, a provisioning tool is going to be your best choice.

That said, if you’re not using server templating tools, a good alternative

is to use a configuration management and provisioning tool together. For

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541381480

example, you might use Terraform to provision your servers and run

Chef to configure each one.

Mutable Infrastructure Versus Immutable Infrastructure

Configuration management tools such as Chef, Puppet, Ansible, and

SaltStack typically default to a mutable infrastructure paradigm. For

example, if you instruct Chef to install a new version of OpenSSL, it

will run the software update on your existing servers and the changes

will happen in place. Over time, as you apply more and more updates,

each server builds up a unique history of changes. As a result, each

server becomes slightly different than all the others, leading to subtle

configuration bugs that are difficult to diagnose and reproduce (this is

the same configuration drift problem that happens when you manage

servers manually, although it’s much less problematic when using a

configuration management tool). Even with automated tests these bugs

are difficult to catch; a configuration management change might work

just fine on a test server, but that same change might behave differently

on a production server because the production server has accumulated

months of changes that aren’t reflected in the test environment.

If you’re using a provisioning tool such as Terraform to deploy machine

images created by Docker or Packer, most “changes” are actually

deployments of a completely new server. For example, to deploy a new

version of OpenSSL, you would use Packer to create a new image with

the new version of OpenSSL, deploy that image across a set of new

servers, and then terminate the old servers. Because every deployment

uses immutable images on fresh servers, this approach reduces the

likelihood of configuration drift bugs, makes it easier to know exactly

what software is running on each server, and allows you to easily deploy

any previous version of the software (any previous image) at any time. It

also makes your automated testing more effective, because an

immutable image that passes your tests in the test environment is likely

to behave exactly the same way in the production environment.

Of course, it’s possible to force configuration management tools to do

immutable deployments, too, but it’s not the idiomatic approach for

those tools, whereas it’s a natural way to use provisioning tools. It’s also

worth mentioning that the immutable approach has downsides of its

own. For example, rebuilding an image from a server template and

redeploying all your servers for a trivial change can take a long time.

Moreover, immutability lasts only until you actually run the image.

After a server is up and running, it will begin making changes on the

hard drive and experiencing some degree of configuration drift

(although this is mitigated if you deploy frequently).

Procedural Language Versus Declarative Language

Chef and Ansible encourage a procedural style in which you write code

that specifies, step by step, how to achieve some desired end

state. Terraform, CloudFormation, SaltStack, Puppet, and Open Stack

Heat all encourage a more declarative style in which you write code that

specifies your desired end state, and the IaC tool itself is responsible for

figuring out how to achieve that state.

To demonstrate the difference, let’s go through an example. Imagine that

you want to deploy 10 servers (EC2 Instances in AWS lingo) to run an

AMI with ID ami-0c55b159cbfafe1f0 (Ubuntu 18.04). Here is a simplified

example of an Ansible template that does this using a procedural

approach:

- ec2:
 count: 10
 image: ami-0c55b159cbfafe1f0
 instance_type: t2.micro

And here is a simplified example of a Terraform configuration that does

the same thing using a declarative approach:

resource "aws_instance" "example" {
 count = 10
 ami = "ami-0c55b159cbfafe1f0"
 instance_type = "t2.micro"
}

On the surface, these two approaches might look similar, and when you

initially execute them with Ansible or Terraform, they will produce

similar results. The interesting thing is what happens when you want to

make a change.

For example, imagine traffic has gone up and you want to increase the

number of servers to 15. With Ansible, the procedural code you wrote

earlier is no longer useful; if you just updated the number of servers to

15 and reran that code, it would deploy 15 new servers, giving you 25

total! So instead, you need to be aware of what is already deployed and

write a totally new procedural script to add the five new servers:

- ec2:
 count: 5
 image: ami-0c55b159cbfafe1f0
 instance_type: t2.micro

With declarative code, because all you do is declare the end state that

you want, and Terraform figures out how to get to that end state,

Terraform will also be aware of any state it created in the past.

Therefore, to deploy five more servers, all you need to do is go back to

the same Terraform configuration and update the count from 10 to 15:

resource "aws_instance" "example" {
 count = 15
 ami = "ami-0c55b159cbfafe1f0"
 instance_type = "t2.micro"
}

If you applied this configuration, Terraform would realize it had already

created 10 servers and therefore all it needs to do is create five new

servers. In fact, before applying this configuration, you can use

Terraform’s plan command to preview what changes it would make:

$ terraform plan

aws_instance.example[11] will be created

+ resource "aws_instance" "example" {

 + ami = "ami-0c55b159cbfafe1f0"

 + instance_type = "t2.micro"

 + (...)

 }

aws_instance.example[12] will be created

+ resource "aws_instance" "example" {

 + ami = "ami-0c55b159cbfafe1f0"

 + instance_type = "t2.micro"

 + (...)

 }

aws_instance.example[13] will be created

+ resource "aws_instance" "example" {

 + ami = "ami-0c55b159cbfafe1f0"

 + instance_type = "t2.micro"

 + (...)

 }

aws_instance.example[14] will be created

+ resource "aws_instance" "example" {

 + ami = "ami-0c55b159cbfafe1f0"

 + instance_type = "t2.micro"

 + (...)

 }

Plan: 5 to add, 0 to change, 0 to destroy.

Now what happens when you want to deploy a different version of the

app, such as AMI ID ami-02bcbb802e03574ba? With the procedural

approach, both of your previous Ansible templates are again not useful,

so you need to write yet another template to track down the 10 servers

you deployed previously (or was it 15 now?) and carefully update each

one to the new version. With the declarative approach of Terraform, you

go back to the exact same configuration file again and simply change

the ami parameter to ami-02bcbb802e03574ba:

resource "aws_instance" "example" {
 count = 15
 ami = "ami-02bcbb802e03574ba"
 instance_type = "t2.micro"
}

Obviously, these examples are simplified. Ansible does allow you to use

tags to search for existing EC2 Instances before deploying new ones

(e.g., using the instance_tags and count_tag parameters), but having to

manually figure out this sort of logic for every single resource you

manage with Ansible, based on each resource’s past history, can be

surprisingly complicated—finding existing Instances not only by tag,

but also image version, Availability Zone. This highlights two major

problems with procedural IAC tools:

Procedural code does not fully capture the state of the infrastructure

Reading through the three preceding Ansible templates is not

enough to know what’s deployed. You’d also need to know

the order in which those templates were applied. Had you applied

them in a different order, you might have ended up with different

infrastructure, and that’s not something you can see in the

codebase itself. In other words, to reason about an Ansible or Chef

codebase, you need to know the full history of every change that

has ever happened.

Procedural code limits reusability

The reusability of procedural code is inherently limited because

you must manually take into account the current state of the

infrastructure. Because that state is constantly changing, code you

used a week ago might no longer be usable because it was

designed to modify a state of your infrastructure that no longer

exists. As a result, procedural codebases tend to grow large and

complicated over time.

With Terraform’s declarative approach, the code always represents the

latest state of your infrastructure. At a glance, you can determine what’s

currently deployed and how it’s configured, without having to worry

about history or timing. This also makes it easy to create reusable code,

since you don’t need to manually account for the current state of the

world. Instead, you just focus on describing your desired state, and

Terraform figures out how to get from one state to the other

automatically. As a result, Terraform codebases tend to stay small and

easy to understand.

Of course, there are downsides to declarative languages, too. Without

access to a full programming language, your expressive power is

limited. For example, some types of infrastructure changes, such as a

zero-downtime deployment, are difficult to express in purely declarative

terms (but not impossible, as you’ll see in Chapter 5). Similarly, with

limited ability to do “logic” (e.g., if-statements, loops), creating generic,

reusable code can be tricky. Fortunately, Terraform provides a number

of powerful primitives—such as input variables, output variables,

modules, create_before_destroy, count, ternary syntax, and built-in

functions—that make it possible to create clean, configurable, modular

code even in a declarative language. I’ll revisit these topics in

Chapters 4 and 5.

Master Versus Masterless

By default, Chef, Puppet, and SaltStack all require that you run a master

server for storing the state of your infrastructure and distributing

updates. Every time you want to update something in your

infrastructure, you use a client (e.g., a command-line tool) to issue new

commands to the master server, and the master server either pushes the

updates out to all of the other servers, or those servers pull the latest

updates down from the master server on a regular basis.

A master server offers a few advantages. First, it’s a single, central place

where you can see and manage the status of your infrastructure. Many

configuration management tools even provide a web interface (e.g., the

Chef Console, Puppet Enterprise Console) for the master server to make

it easier to see what’s going on. Second, some master servers can run

continuously in the background, and enforce your configuration. That

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch05.html#terraform_tips_tricks
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch04.html#how_to_create_reusable_infrastructure
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch05.html#terraform_tips_tricks

way, if someone makes a manual change on a server, the master server

can revert that change to prevent configuration drift.

However, having to run a master server has some serious drawbacks:

Extra infrastructure

You need to deploy an extra server, or even a cluster of extra

servers (for high availability and scalability), just to run the master.

Maintenance

You need to maintain, upgrade, back up, monitor, and scale the

master server(s).

Security

You need to provide a way for the client to communicate to the

master server(s) and a way for the master server(s) to communicate

with all the other servers, which typically means opening extra

ports and configuring extra authentication systems, all of which

increases your surface area to attackers.

Chef, Puppet, and SaltStack do have varying levels of support for

masterless modes where you run just their agent software on each of

your servers, typically on a periodic schedule (e.g., a cron job that runs

every five minutes), and use that to pull down the latest updates from

version control (rather than from a master server). This significantly

reduces the number of moving parts, but, as I discuss in the next section,

this still leaves a number of unanswered questions, especially about how

to provision the servers and install the agent software on them in the first

place.

Ansible, CloudFormation, Heat, and Terraform are all masterless by

default. Or, to be more accurate, some of them might rely on a master

server, but it’s already part of the infrastructure you’re using and not an

extra piece that you need to manage. For example, Terraform

communicates with cloud providers using the cloud provider’s APIs, so

in some sense, the API servers are master servers, except that they don’t

require any extra infrastructure or any extra authentication mechanisms

(i.e., just use your API keys). Ansible works by connecting directly to

each server over SSH, so again, you don’t need to run any extra

infrastructure or manage extra authentication mechanisms (i.e., just use

your SSH keys).

Agent Versus Agentless

Chef, Puppet, and SaltStack all require you to install agent

software (e.g., Chef Client, Puppet Agent, Salt Minion) on each server

that you want to configure. The agent typically runs in the background

on each server and is responsible for installing the latest configuration

management updates.

This has a few drawbacks:

Bootstrapping

How do you provision your servers and install the agent software

on them in the first place? Some configuration management tools

kick the can down the road, assuming that some external process

will take care of this for them (e.g., you first use Terraform to

deploy a bunch of servers with an AMI that has the agent already

installed); other configuration management tools have a special

bootstrapping process in which you run one-off commands to

provision the servers using the cloud provider APIs and install the

agent software on those servers over SSH.

Maintenance

You need to carefully update the agent software on a periodic

basis, being careful to keep it synchronized with the master server

if there is one. You also need to monitor the agent software and

restart it if it crashes.

Security

If the agent software pulls down configuration from a master

server (or some other server if you’re not using a master), you need

to open outbound ports on every server. If the master server pushes

configuration to the agent, you need to open inbound ports on

every server. In either case, you must figure out how to

authenticate the agent to the server to which it’s communicating.

All of this increases your surface area to attackers.

Once again, Chef, Puppet, and SaltStack do have varying levels of

support for agentless modes (e.g., salt-ssh), but these feel like they were

tacked on as an afterthought and don’t support the full feature set of the

configuration management tool. That’s why in the wild, the default or

idiomatic configuration for Chef, Puppet, and SaltStack almost always

includes an agent and usually a master, too, as shown in Figure 1-7.

Figure 1-7. The typical architecture for Chef, Puppet, and SaltStack involves many moving parts. For example, the default setup for Chef is to run the

Chef client on your computer, which talks to a Chef master server, which deploys changes by communicates with Chef clients running on all your

other servers.

All of these extra moving parts introduce a large number of new failure

modes into your infrastructure. Each time you get a bug report at 3 a.m.,

you’ll need to figure out whether it’s a bug in your application code, or

your IaC code, or the configuration management client, or the master

server(s), or the way the client communicates the master server(s), or the

way other servers communicates the master server(s), or…

Ansible, CloudFormation, Heat, and Terraform do not require you to

install any extra agents. Or, to be more accurate, some of them require

agents, but these are typically already installed as part of the

infrastructure you’re using. For example, AWS, Azure, Google Cloud,

and all of the other cloud providers take care of installing, managing,

and authenticating agent software on each of their physical servers. As a

user of Terraform, you don’t need to worry about any of that: you just

issue commands and the cloud provider’s agents execute them for you

on all of your servers, as shown in Figure 1-8. With Ansible, your

servers need to run the SSH Daemon, which is common to run on most

servers anyway.

Figure 1-8. Terraform uses a masterless, agent-only architecture. All you need to run is the Terraform client and it takes care of the rest by using the

APIs of cloud providers, such as AWS.

Large Community Versus Small Community

Whenever you pick a technology, you are also picking a community. In

many cases, the ecosystem around the project can have a bigger impact

on your experience than the inherent quality of the technology itself. The

community determines how many people contribute to the project, how

many plug-ins, integrations, and extensions are available, how easy it is

to find help online (e.g., blog posts, questions on StackOverflow), and

how easy it is to hire someone to help you (e.g., an employee,

consultant, or support company).

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#client_server_architecture
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#client_only_architecture

It’s difficult to do an accurate comparison between communities, but

you can spot some trends by searching online. Table 1-1 shows a

comparison of popular IaC tools, with data I gathered during May 2019,

including whether the IaC tool is open source or closed source, what

cloud providers it supports, the total number of contributors and stars on

GitHub, how many commits and active issues there were over a one-

month period from mid-April to mid-May, how many open source

libraries are available for the tool, the number of questions listed for that

tool on StackOverflow, and the number of jobs that mention the tool on

Indeed.com.8

Source Cloud Contributors Stars

Commits

(30 days)

Bugs

(30

days) Libraries StackOverflow Jobs

Chef Open All 562 5,794 435 86 3,832a 5,982 4,378b

Puppet Open All 515 5,299 94 314c 6,110d 3,585 4,200e

Ansible Open All 4,386 37,161 506 523 20,677f 11,746 8,787

SaltStack Open All 2,237 9,901 608 441 318g 1,062 1,622

CloudFormation Closed AWS ? ? ? ? 377h 3,315 2,318

Heat Open All 361 349 12 600i 0j 88 2,201k

Terraform Open All 1,261 16,837 173 204 1,462l 2,730 3,641

a This is the number of cookbooks in the Chef Supermarket.

b To avoid false positives for the term “chef,” I searched for “chef devops.”

c Based on the Puppet Labs JIRA account.

d This is the number of modules in Puppet Forge.

e To avoid false positives for the term “puppet,” I searched for “puppet devops.”

f This is the number of reusable roles in Ansible Galaxy.

g This is the number of formulas in the Salt Stack Formulas GitHub account.

h This is the number of templates in the awslabs GitHub account.

i Based on the OpenStack bug tracker.

j I could not find any collections of community Heat templates.

k To avoid false positives for the term “heat,” I searched for “openstack.”

l This is the number of modules in the Terraform Registry.

Table 1-1. A comparison of IaC communities

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#iac_communities_comparison
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541080792
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541067528
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541065128
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541060120
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541058296
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541055832
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541050120
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541042600
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541035080
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541028104
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541026248
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541024568
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541018984
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541067528-marker
http://bit.ly/2MNXWuS
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541065128-marker
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541060120-marker
http://bit.ly/2ZN3ppq
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541058296-marker
https://forge.puppet.com/
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541055832-marker
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541050120-marker
https://galaxy.ansible.com/
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541042600-marker
http://bit.ly/2YK0PiJ
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541035080-marker
http://bit.ly/2M39LxW
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541028104-marker
http://bit.ly/31jeDCH
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541026248-marker
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541024568-marker
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541018984-marker
https://registry.terraform.io/

Obviously, this is not a perfect apples-to-apples comparison. For

example, some of the tools have more than one repository, and some use

other methods for bug tracking and questions; searching for jobs with

common words like “chef” or “puppet” is tricky; Terraform split the

provider code out into separate repos in 2017, so measuring activity on

solely the core repo dramatically understates activity (by at least 10

times); and so on.

That said, a few trends are obvious. First, all of the IaC tools in this

comparison are open source and work with many cloud providers,

except for CloudFormation, which is closed source, and works only with

AWS. Second, Ansible leads the pack in terms of popularity, with Salt

and Terraform not too far behind.

Another interesting trend to note is how these numbers have changed

since the first edition of the book. Table 1-2 shows the percent change in

each of the numbers from the values I gathered back in September 2016.

Source Cloud Contributors Stars

Commits

(30 days)

Issues (30

days) Libraries StackOverflow Jobs

Chef Open All +18% +31% +139% +48% +26% +43% -22%

Puppet Open All +19% +27% +19% +42% +38% +36% -19%

Ansible Open All +195% +97% +49% +66% +157% +223% +125%

SaltStack Open All +40% +44% +79% +27% +33% +73% +257%

CloudFormation Closed AWS ? ? ? ? +57% +441% +249%

Heat Open All +28% +23% -85% +1,566% 0 +69% +2,957%

Terraform Open All +93% +194% -61% -58% +3,555% +1,984% +8,288%

Table 1-2. How the IaC communities have changed between September 2016 and May 2019

Again, the data here is not perfect, but it’s good enough to spot a clear

trend: Terraform and Ansible are experiencing explosive growth. The

increase in the number of contributors, stars, open source libraries,

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#iac_communities_growth

StackOverflow posts, and jobs is through the roof.9 Both of these tools

have large, active communities today, and judging by these trends, it’s

likely that they will become even larger in the future.

Mature Versus Cutting Edge

Another key factor to consider when picking any technology is maturity.

Table 1-3 shows the initial release dates and current version number (as

of May 2019) for each of the IaC tools.

 Initial release Current version

Puppet 2005 6.0.9

Chef 2009 12.19.31

CloudFormation 2011 ???

SaltStack 2011 2019.2.0

Ansible 2012 2.5.5

Heat 2012 12.0.0

Terraform 2014 0.12.0

Table 1-3. A comparison of IaC maturity as of May 2019

Again, this is not an apples-to-apples comparison, because different

tools have different versioning schemes, but some trends are clear.

Terraform is, by far, the youngest IaC tool in this comparison. It’s still

pre-1.0.0, so there is no guarantee of a stable or backward compatible

API, and bugs are relatively common (although most of them are

minor). This is Terraform’s biggest weakness: although it has become

extremely popular in a short time, the price you pay for using this new,

cutting-edge tool is that it is not as mature as some of the other IaC

options.

Using Multiple Tools Together

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487540961720
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#iac_maturity_comparison

Although I’ve been comparing IaC tools this entire chapter, the reality is

that you will likely need to use multiple tools to build your

infrastructure. Each of the tools you’ve seen has strengths and

weaknesses, so it’s your job to pick the right tool for the right job.

Following are three common combinations I’ve seen work well at a

number of companies.

PROVISIONING PLUS CONFIGURATION MANAGEMENT

Example: Terraform and Ansible. You use Terraform to deploy all the

underlying infrastructure, including the network topology (i.e., virtual

private clouds [VPCs], subnets, route tables), data stores (e.g., MySQL,

Redis), load balancers, and servers. You then use Ansible to deploy your

apps on top of those servers, as depicted in Figure 1-9.

Figure 1-9. Using Terraform and Ansible together

This is an easy approach to get started with, because there is no extra

infrastructure to run (Terraform and Ansible are both client-only

applications) and there are many ways to get Ansible and Terraform to

work together (e.g., Terraform adds special tags to your servers and

Ansible uses those tags to find the server and configure them). The

major downside is that using Ansible typically means that you’re writing

a lot of procedural code, with mutable servers, so as your codebase,

infrastructure, and team grow, maintenance can become more difficult.

PROVISIONING PLUS SERVER TEMPLATING

Example: Terraform and Packer. You use Packer to package your apps

as VM images. You then use Terraform to deploy (a) servers with these

VM images and (b) the rest of your infrastructure, including the network

topology (i.e., VPCs, subnets, route tables), data stores (e.g., MySQL,

Redis), and load balancers, as illustrated in Figure 1-10.

Figure 1-10. Using Terraform and Packer together

This is also an easy approach to get started with, because there is no

extra infrastructure to run (Terraform and Packer are both client-only

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#terraform_and_ansible
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#terraform_and_packer

applications), and you’ll get plenty of practice deploying VM images

using Terraform later in this book. Moreover, this is an immutable

infrastructure approach, which will make maintenance easier. However,

there are two major drawbacks. First, VMs can take a long time to build

and deploy, which will slow down your iteration speed. Second, as

you’ll see in later chapters, the deployment strategies you can implement

with Terraform are limited (e.g., you can’t implement blue-green

deployment natively in Terraform), so you either end up writing lots of

complicated deployment scripts, or you turn to orchestration tools, as

described next.

PROVISIONING PLUS SERVER TEMPLATING PLUS
ORCHESTRATION

Example: Terraform, Packer, Docker, and Kubernetes. You use Packer

to create a VM image that has Docker and Kubernetes installed. You

then use Terraform to deploy (a) a cluster of servers, each of which runs

this VM image, and (b) the rest of your infrastructure, including the

network topology (i.e., VPCs, subnets, route tables), data stores (e.g.,

MySQL, Redis), and load balancers. Finally, when the cluster of servers

boots up, it forms a Kubernetes cluster that you use to run and manage

your Dockerized applications, as shown in Figure 1-11.

Figure 1-11. Using Terraform, Packer, Docker, and Kubernetes together

The advantage of this approach is that Docker images build fairly

quickly, you can run and test them on your local computer, and you can

take advantage of all of the built-in functionality of Kubernetes,

including various deployment strategies, auto healing, auto scaling, and

so on. The drawback is the added complexity, both in terms of extra

infrastructure to run (Kubernetes clusters are difficult and expensive to

deploy and operate, though most major cloud providers now provide

managed Kubernetes services, which can offload some of this work),

and in terms of several extra layers of abstraction (Kubernetes, Docker,

Packer) to learn, manage, and debug.

Conclusion

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#terraform_and_packer_and_kubernetes_and_docker

Putting it all together, Table 1-4 shows how the most popular IaC tools

stack up. Note that this table shows the default or most common way the

various IaC tools are used, though as discussed earlier in this chapter,

these IaC tools are flexible enough to be used in other configurations,

too (e.g., you can use Chef without a master, you can use Salt to do

immutable infrastructure).

Source Cloud Type Infrastructure Language Agent Master Community Maturity

Chef Open All Config Mgmt Mutable Procedural Yes Yes Large High

Puppet Open All Config Mgmt Mutable Declarative Yes Yes Large High

Ansible Open All Config Mgmt Mutable Procedural No No Huge Medium

SaltStack Open All Config Mgmt Mutable Declarative Yes Yes Large Medium

CloudFormation Closed AWS Provisioning Immutable Declarative No No Small Medium

Heat Open All Provisioning Immutable Declarative No No Small Low

Terraform Open All Provisioning Immutable Declarative No No Huge Low

Table 1-4. A comparison of the most common way to use the most popular IaC tools

At Gruntwork, what we wanted was an open source, cloud-agnostic

provisioning tool that supported immutable infrastructure, a declarative

language, a masterless and agentless architecture, and had a large

community and a mature codebase. Table 1-4 shows that Terraform,

although not perfect, comes the closest to meeting all of our criteria.

Does Terraform fit your criteria, too? If so, head over to Chapter 2 to

learn how to use it.

1 From The DevOps Handbook: How to Create World-Class Agility,

Reliability, & Security in Technology Organizations (IT Revolution

Press, 2016) by Gene Kim, Jez Humble, Patrick Debois, and John

Willis.

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#iac_overall_comparison
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#iac_overall_comparison
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch02.html#an_intro_to_terraform_syntax
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487545470216-marker

2 On most modern operating systems, code runs in one of two

“spaces”: kernel space and user space. Code running in kernel space has

direct, unrestricted access to all of the hardware. There are no security

restrictions (i.e., you can execute any CPU instruction, access any part

of the hard drive, write to any address in memory) or safety restrictions

(e.g., a crash in kernel space will typically crash the entire computer), so

kernel space is generally reserved for the lowest-level, most trusted

functions of the OS (typically called the kernel). Code running in user

space does not have any direct access to the hardware and must use APIs

exposed by the OS kernel, instead. These APIs can enforce security

restrictions (e.g., user permissions) and safety (e.g., a crash in a user

space app typically affects only that app), so just about all application

code runs in user space.

3 As a general rule, containers provide isolation that’s good enough to

run your own code, but if you need to run third-party code (e.g., you’re

building your own cloud provider) that might actively be performing

malicious actions, you’ll want the increased isolation guarantees of a

VM.

4 As an alternative to Bash, Packer also allows you to configure your

images using configuration management tools such as Ansible or Chef.

5 Check out the Gruntwork Infrastructure as Code Library for an

example.

6 Docker, Packer, and Kubernetes are not part of the comparison,

because they can be used with any of the configuration management or

provisioning tools.

7 The distinction between configuration management and provisioning is

less clear cut these days, because some of the major configuration

management tools have gradually improved their support for

provisioning, such as Chef Provisioning and the Puppet AWS Module.

8 Most of this data, including the number of contributors, stars, changes,

and issues, comes from the open source repositories and bug trackers

(mostly GitHub) for each tool. Because CloudFormation is closed

source, some of this information is not available.

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541859176-marker
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541851272-marker
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541837656-marker
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541525656-marker
http://bit.ly/2H3Y7yT
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541396568-marker
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541381480-marker
http://bit.ly/2OIDLS0
http://bit.ly/2YIQIuN
https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487541080792-marker

9 The decline in Terraform’s commits and issues is solely due to the fact

that I’m only measuring the core Terraform repo, whereas in 2017, all

the provider code was extracted into separate repos, so the vast amount

of activity across the more than 100 provider repos is not being counted.

https://learning.oreilly.com/library/view/terraform-up/9781492046899/ch01.html#idm46487540961720-marker

