
Chapter 1. Introduction to Cloud Native

What are cloud native applications? What makes them so appealing that

the cloud native model is now considered not only for the cloud, but also

for the edge? And, finally, how do you design and develop cloud native

applications? These are all questions that will be answered throughout

this book. But before we dive into the details on the what, why, and

how, we want to provide a brief introduction to the cloud native world

and some of the fundamental concepts and assumptions that are building

the foundation for modern cloud native applications and environments.

Distributed Systems

One of the biggest hurdles that developers face when they build cloud

native applications for the first time is that they must deal with services

that are not on the same machine, and they need to deal with patterns

that consider a network between the machines. Without even knowing it,

they have entered the world of distributed systems. A distributed

system is a system in which individual computers are connected through

a network and appear as a single computer. Being able to distribute

computing power across a bunch of machines is a great way to

accomplish scalability, reliability, and better economics. For example,

most cloud providers are using cheaper commodity hardware and

solving common problems such as high availability and reliability

through software-based solutions.

Fallacies of Distributed Systems

There are couple of incorrect or unfounded assumptions most developers

and architects make when they enter the world of distributed

systems. Peter Deutsch, a Fellow at Sun Microsystems, was identifying

fallacies of distributed computing back in 1994, at a time when nobody

thought about cloud computing. Because cloud native applications are,

at their core, distributed systems, these fallacies still have validity today.

Following is the list of the fallacies that Deutsch described, with their

meanings applied to cloud native applications:

The network is reliable

Even in the cloud you cannot assume that the network is

reliable. Because services are typically placed on different

machines, you need to develop your software in a way that it

accounts for potential network failures, which we discuss later in

this book.

Latency is zero

Latency and bandwidth are often confused, but it is important to

understand the difference. Latency is how much time goes by until

data is received, whereas bandwidth indicates how much data can

be transferred in a given window of time. Because latency has a

big impact on user experience and performance, you should take

care to do the following:

 Avoid frequent network calls and introducing chattiness to

the network.

 Design your cloud native application in a way that the data is

closest to your client by using caching, content delivery

networks (CDNs), and multiregion deployments.

 Use publication/subscription (pub/sub) mechanisms to be

notified that there is new data and store it locally to be

immediately available. Chapter 3 covers messaging patterns

such as pub/sub in more detail.

There is infinite bandwidth

Nowadays, network bandwidth does not seem to be a big issue, but

new technologies and areas such as edge computing open up new

scenarios that demand far more bandwidth. For example, it is

predicted that a self-driving car will produce around 50 terabytes

(TB) of data per day. This volume of data requires you to design

your cloudnative application with bandwidth usage in

mind. Domain-Driven Design (DDD) and data patterns such as

Command Query Responsibility Segregation (CQRS) are very

useful under such bandwidth-demanding

circumstances. Chapter 4 and Chapter 6 cover how to work with

data in cloud native applications in more detail.

The network is secure

Two things are often an afterthought for developers: diagnostics

and security. The assumption that networks are secure can be fatal.

As a developer or architect, you need to make security a priority of

https://learning.oreilly.com/library/view/cloud-native/9781492053811/ch03.html#designing_cloud-native_applications
https://learning.oreilly.com/library/view/cloud-native/9781492053811/ch04.html#working_with_data
https://learning.oreilly.com/library/view/cloud-native/9781492053811/ch06.html#best_practices

your design; for example, by embracing a defense-in-depth

approach.

The topology does not change

Pets versus cattle is a meme that gained popularity with the advent

of containers. It means that you do not treat any machine as a

known entity (pet) with its own set of properties, such as static IPs

and so on. Instead, you treat machines as a member of a herd that

has no special attributes. This concept is very important with cloud

native applications. Because cloud environments are meant to

provide elasticity, machines can be added and removed based on

criteria such as resource consumption or requests per second.

There is one administrator

In traditional software development, it was quite common to have

one person responsible for the environment, installing and

upgrading the application, and so forth. Modern cloud

architectures and DevOps methods have shifted the way software

is built. A modern cloud native application is a composite of many

services that need to work together in concert and that are

developed by different teams. This makes it practically impossible

for a single person to know and understand the application in its

entirety, not to mention trying to fix a problem. Thus, you need to

ensure that you have governance in place that makes it easy to

troubleshoot issues. Throughout this book, we introduce you to

important concepts such as release management, decoupling,

and logging and monitoring. Chapter 5 provides a detailed look at

common DevOps practices for cloud native applications.

Transport cost is zero

From a cloud native perspective, there are two ways to look at this

one. First, transport happens over a network and network costs are

not free with most cloud providers. Most cloud providers, for

example, do not charge for data ingress, but do charge for data

egress. The second way to look at this fallacy is that the cost for

translating any payload into objects is not free. For example,

serialization and deserialization are usually fairly expensive

operations that you need to consider in addition to the latency of

network calls.

The network is homogeneous

https://learning.oreilly.com/library/view/cloud-native/9781492053811/ch05.html#devops

This is almost not worth listing given that pretty much every

developer and architect understands that there are different

protocols that they must consider when building their applications.

As mentioned before, although these fallacies were documented a long

time ago, they are still a good reminder of the incorrect assumptions

people make when entering the cloud native world. Throughout this

book, we teach you patterns and best practices that take all of the

fallacies of distributed computing into account.

CAP Theorem

The CAP theorem is often mentioned in combination with distributed

systems. The CAP theorem states that any networked shared-data system

can have at most two of the following three desirable properties:

 Consistency (C) equivalent to having a single up-to-date copy of

the data

 High availability (A) of that data (for updates)

 Tolerance to network partitions (P)

The reality is that you will always have network partitions (remember,

“the network is reliable” is one of the fallacies of distributed

computing). That leaves you with only two choices—you can optimize

either for consistency or high availability. Many NoSQL databases such

as Cassandra optimize for availability, whereas SQL-based systems that

adhere to the principles of ACID (atomicity, consistency, isolation, and

durability) optimize for consistency.

The Twelve-Factor App

In the early days of Infrastructure as a Service (IaaS) and Platform as a

Service (PaaS), it quickly became obvious that the cloud required a new

way of developing applications. For example, on-premises scaling was

often done by scaling vertically, meaning adding more resources to a

machine. Scaling in the cloud, on the other hand, is usually done

horizontally, meaning adding more machines to distribute the load. This

type of scaling requires stateless applications, and this is one of the

factors described by the Twelve-Factor App manifesto. The Twelve-

Factor App methodology can be considered the foundation for cloud

native applications and was first introduced by engineers at Heroku,

derived from best practices for application development in the cloud.

Cloud development has evolved since the introduction of the Twelve-

Factor manifesto, but the principles still apply. Following are the 12

factors and their meaning for cloud native applications:

1. Codebase

One codebase tracked in revision control; many deploys.

There is only one codebase per application, but it can be deployed

into many environments such as Dev, Test, and Prod. In cloud

native architecture, this translates directly into one codebase per

service or function, each having its own Continuous

Integration/Continuous Deployment (CI/CD) flow.

2. Dependencies

Explicitly declare and isolate dependencies.

Declaring and isolating dependencies is an important aspect of

cloud native development. Many issues arise due to missing

dependencies or version mismatch of dependencies, which stem

from environmental differences between the on-premises and

cloud environments. In general, you should always use

dependency managers for languages such as Maven or npm.

Containers have drastically reduced dependency-based issues

because all dependencies are packaged inside a container, and as

such should be declared in the Dockerfile. Chef, Puppet, Ansible,

and Terraform are great tools to manage and install system

dependencies.

3. Configuration

Store configuration in the environment.

Configuration should be strictly separated from code. This allows

you to easily apply configurations per environment. For example,

you can have a test configuration file that stores all the connection

strings and other information used in a test environment. If you

want to deploy the same application to a production environment,

you need only to replace the configuration. Many modern

platforms support external configuration, whether it is

configuration maps with Kubernetes or managed configuration

services in cloud environments.

4. Backing Services

Treat backing services as attached resources.

A backing service is defined as “any service the app consumed

over the network as part of its normal operation.” In the case of

cloud native applications, this might be a managed caching service

or a Database as a Service (DbaaS) implementation. The

recommendation here is to access those services through

configuration settings stored in external configuration systems,

which allows loose coupling, one of the principles that is also valid

for cloud native applications.

5. Build, Release, Run

Strictly separate build and run stages.

As you will see in Chapter 5 on DevOps, it is recommended to aim

for fully automated build and release stages using CI/CD practices.

6. Processes

Execute the app in one or more stateless processes.

As mentioned earlier, compute in the cloud should be stateless,

meaning that data should only be saved outside the processes. This

enables elasticity, which is one of the promises of cloud

computing.

7. Data Isolation

Each service manages its own data.

This is one of the key tenets of microservices

architectures, which is a common pattern in cloud native

applications. Each service manages its own data, which can be

accessed only through APIs, meaning that other services that are

part of the application are not allowed to directly access the data of

another service.

8. Concurrency

Scale out via the process model.

Improved scale and resource usage are two of the key benefits of

cloud native applications, meaning that you can scale each service

https://learning.oreilly.com/library/view/cloud-native/9781492053811/ch05.html#devops

or function independently and horizontally; thus, you’ll achieve

better resource usage.

9. Disposability

Maximize robustness with fast startup and graceful shutdown.

Containers and functions already satisfy this factor given that both

provide fast startup times. One thing that is often neglected is to

design for a crash or scale in scenario, meaning that the instance

count of a function or a container is decreased, which is also

captured in this factor.

10. Dev/Prod Parity

Keep development, staging, and production as similar as possible.

Containers allow you to package all of the dependencies of your

service, which limits the issues with environment

inconsistencies. There are scenarios that are a bit trickier,

especially when you use managed services that are not available

on-premises in your Dev environment. Chapter 5 looks at methods

and techniques to keep your environments as consistent as

possible.

11. Logs

Treat logs as event streams.

Logging is one of the most important tasks in a distributed system.

There are so many moving parts and without a good logging

strategy, you would be “flying blind” when the application is not

behaving as expected. The Twelve-Factor manifesto states that you

should treat logs as streams, routed to external systems.

12. Admin Processes

Run admin and management tasks as one-off processes.

This basically means that you should execute administrative and

management tasks as short-lived processes. Both functions and

containers are great tools for that.

Throughout the book you will recognize many of these factors because

they are still very relevant for cloud native applications.

Availability and Service-Level Agreements

https://learning.oreilly.com/library/view/cloud-native/9781492053811/ch05.html#devops

Most of the time, cloud native applications are composite applications

that use compute, such as containers and functions, but also managed

cloud services such as DbaaS, caching services, and/or identity

services. What is not obvious is that your compound Service-Level

Agreement (SLA) will never be as high as the highest availability of an

individual service. SLAs are typically measured in uptime in a year,

more commonly referred to as “number of nines.” Table 1-1 shows a list

of common availability percentages for cloud services and their

corresponding downtimes.

Availability % Downtime per year Downtime per month Downtime per week

99% 3.65 days 7.20 hours 1.68 hours

99.9% 8.76 hours 43.2 minutes 10.1 minutes

99.99% 52.56 minutes 4.32 minutes 1.01 minutes

99.999% 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% 31.5 seconds 2.59 seconds 0.605 seconds

Table 1-1. Uptime percentages and service downtime

Following is an example of a compound SLA:

 Service 1 (99.95%) + Service 2 (99.90%): 0.9995 × 0.9990 =

0.9985005

The compound SLA is 99.85%.

Summary

Many developers struggle when starting to develop for the cloud. In a

nutshell, developers are facing three major challenges: first, they need to

understand distributed systems; second, they need to understand new

technologies such as containers and functions; and third, they need to

understand what patterns to use when building cloud native applications.

Having some familiarity with the fundamentals, such as the fallacies of

https://learning.oreilly.com/library/view/cloud-native/9781492053811/ch01.html#uptime_percentages_and_service_downtime

distributed systems, the Twelve-Factor manifesto, and compound SLAs,

will make the transition easier. This chapter introduced some of the

fundamental concepts of cloud native, which enables you to better

understand some of the architectural considerations and patterns

discussed throughout the book.

