
Chapter 1. Introduction 

Graphs are one of the unifying themes of computer science—an abstract 

representation that describes the organization of transportation systems, 

human interactions, and telecommunication networks. That so many different 

structures can be modeled using a single formalism is a source of great 

power to the educated programmer. 

The Algorithm Design Manual, by Steven S. Skiena (Springer), 

Distinguished Teaching Professor of Computer Science at Stony Brook 

University 

Today’s most pressing data challenges center around relationships, not 

just tabulating discrete data. Graph technologies and analytics provide 

powerful tools for connected data that are used in research, social 

initiatives, and business solutions such as: 

 Modeling dynamic environments from financial markets to IT 

services 

 Forecasting the spread of epidemics as well as rippling service 

delays and outages 

 Finding predictive features for machine learning to combat 

financial crimes 

 Uncovering patterns for personalized experiences and 

recommendations 

As data becomes increasingly interconnected and systems increasingly 

sophisticated, it’s essential to make use of the rich and evolving 

relationships within our data. 

This chapter provides an introduction to graph analysis and graph 

algorithms. We’ll start with a brief refresher about the origin of graphs 

before introducing graph algorithms and explaining the difference 

between graph databases and graph processing. We’ll explore the nature 

of modern data itself, and how the information contained in connections 

is far more sophisticated than what we can uncover with basic statistical 

methods. The chapter will conclude with a look at use cases where graph 

algorithms can be employed. 



What Are Graphs? 

Graphs have a history dating back to 1736, when Leonhard Euler solved 

the “Seven Bridges of   nigsberg  problem. The problem asked 

whether it was possible to visit all four areas of a city connected by 

seven bridges, while only crossing each bridge once. It wasn’t. 

With the insight that only the connections themselves were relevant, 

Euler set the groundwork for graph theory and its 

mathematics. Figure 1-1 depicts Euler’s progression with one of his 

original sketches, from the paper “Solutio problematis ad geometriam 

situs pertinentis . 

 

Figure 1-1. The origins of graph theory. The city of Königsberg included two large islands connected to each other and the two mainland portions of 

the city by seven bridges. The puzzle was to create a walk through the city, crossing each bridge once and only once. 

While graphs originated in mathematics, they are also a pragmatic and 

high fidelity way of modeling and analyzing data. The objects that make 

up a graph are called nodes or vertices and the links between them are 

known as relationships, links, or edges. We use the 

terms nodes and relationships in this book: you can think of nodes as the 

nouns in sentences, and relationships as verbs giving context to the 

nodes. To avoid any confusion, the graphs we talk about in this book 

have nothing to do with graphing equations or charts as in Figure 1-2. 

Looking at the person graph in Figure 1-2, we can easily construct 

several sentences which describe it. For example, person A lives with 

person B who owns a car, and person A drives a car that person B owns. 

This modeling approach is compelling because it maps easily to the real 

world and is very “whiteboard friendly.  This helps align data modeling 

and analysis. 

But modeling graphs is only half the story. We might also want to 

process them to reveal insight that isn’t immediately obvious. This is the 

domain of graph algorithms. 

 

Figure 1-2. A graph is a representation of a network, often illustrated with circles to represent entities which we call nodes, and lines to represent 

relationships. 
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What Are Graph Analytics and Algorithms? 

Graph algorithms are a subset of tools for graph analytics. Graph 

analytics is something we do—it’s the use of any graph-based approach 

to analyze connected data. There are various methods we could use: we 

might query the graph data, use basic statistics, visually explore the 

graphs, or incorporate graphs into our machine learning tasks. Graph 

pattern–based querying is often used for local data analysis, whereas 

graph computational algorithms usually refer to more global and 

iterative analysis. Although there is overlap in how these types of 

analysis can be employed, we use the term graph algorithms to refer to 

the latter, more computational analytics and data science uses. 

NETWORK SCIENCE 

Network science is an academic field strongly rooted in graph theory that is 

concerned with mathematical models of the relationships between objects. 

Network scientists rely on graph algorithms and database management systems 

because of the size, connectedness, and complexity of their data. 

There are many fantastic resources for complexity and network science. Here are a 

few references for you to explore. 

 Network Science, by Albert-László Barabási, is an introductory ebook 

 Complexity Explorer offers online courses 

 The New England Complex Systems Institute provides various resources 

and papers 

Graph algorithms provide one of the most potent approaches to 

analyzing connected data because their mathematical calculations are 

specifically built to operate on relationships. They describe steps to be 

taken to process a graph to discover its general qualities or specific 

quantities. Based on the mathematics of graph theory, graph algorithms 

use the relationships between nodes to infer the organization and 

dynamics of complex systems. Network scientists use these algorithms 

to uncover hidden information, test hypotheses, and make predictions 

about behavior. 

Graph algorithms have widespread potential, from preventing fraud and 

optimizing call routing to predicting the spread of the flu. For instance, 

we might want to score particular nodes that could correspond to 

overload conditions in a power system. Or we might like to discover 
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groupings in the graph which correspond to congestion in a transport 

system. 

In fact, in 2010 US air travel systems experienced two serious events 

involving multiple congested airports that were later studied using graph 

analytics. Network scientists P. Fleurquin, J. J. Ramasco, and V. M. 

Eguíluz used graph algorithms to confirm the events as part of 

systematic cascading delays and use this information for corrective 

advice, as described in their paper, “Systemic Delay Propagation in the 

US Airport Network . 

To visualize the network underpinning air transportation Figure 1-3 was 

created by Martin Grandjean for his article, “Connected World: 

Untangling the Air Traffic Network . This illustration clearly shows the 

highly connected structure of air transportation clusters. Many 

transportation systems exhibit a concentrated distribution of links with 

clear hub-and-spoke patterns that influence delays. 

 

Figure 1-3. Air transportation networks illustrate hub-and-spoke structures that evolve over multiple scales. These structures contribute to how travel 

flows.  

Graphs also help uncover how very small interactions and dynamics lead 

to global mutations. They tie together the micro and macro scales by 

representing exactly which things are interacting within global 

structures. These associations are used to forecast behavior and 

determine missing links. Figure 1-4 is a foodweb of grassland species 

interactions that used graph analysis to evaluate the hierarchical 

organization and species interactions and then predict missing 

relationships, as detailed in the paper by A. Clauset, C. Moore, and M. 

E. J. Newman, “Hierarchical Structure and the Prediction of Missing 

Links in Network . 

 

Figure 1-4. This foodweb of grassland species uses graphs to correlate small-scale interactions to larger structure formation. 

Graph Processing, Databases, Queries, and 
Algorithms 
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Graph processing includes the methods by which graph workloads and 

tasks are carried out. Most graph queries consider specific parts of the 

graph (e.g., a starting node), and the work is usually focused in the 

surrounding subgraph. We term this type of work graph local, and it 

implies declaratively querying a graph’s structure, as explained in the 

book Graph Databases, by Ian Robinson, Jim Webber, and Emil Eifrem 

(O’Reilly). This type of graph-local processing is often utilized for real-

time transactions and pattern-based queries. 

When speaking about graph algorithms, we are typically looking 

for global patterns and structures. The input to the algorithm is usually 

the whole graph, and the output can be an enriched graph or some 

aggregate value such as a score. We categorize such processing as graph 

global, and it implies processing a graph’s structure using computational 

algorithms (often iteratively). This approach sheds light on the overall 

nature of a network through its connections. Organizations tend to use 

graph algorithms to model systems and predict behavior based on how 

things disseminate, important components, group identification, and the 

overall robustness of the system. 

There may be some overlap in these definitions—sometimes we can use 

processing of an algorithm to answer a local query, or vice versa—but 

simplistically speaking whole-graph operations are processed by 

computational algorithms and subgraph operations are queried in 

databases. 

Traditionally, transaction processing and analysis have been siloed. This 

was an unnatural split based on technology limitations. Our view is that 

graph analytics drives smarter transactions, which creates new data and 

opportunities for further analysis. More recently there’s been a trend to 

integrate these silos for more real-time decision making. 

OLTP and OLAP 

Online transaction processing (OLTP) operations are typically short 

activities like booking a ticket, crediting an account, booking a sale, and 

so forth. OLTP implies voluminous low-latency query processing and 

high data integrity. Although OLTP may involve only a small number of 

records per transaction, systems process many transactions concurrently. 

http://shop.oreilly.com/product/0636920041832.do


Online analytical processing (OLAP) facilitates more complex queries 

and analysis over historical data. These analyses may include multiple 

data sources, formats, and types. Detecting trends, conducting “what-if  

scenarios, making predictions, and uncovering structural patterns are 

typical OLAP use cases. Compared to OLTP, OLAP systems process 

fewer but longer-running transactions over many records. OLAP 

systems are biased toward faster reading without the expectation of 

transactional updates found in OLTP, and batch-oriented operation is 

common. 

Recently, however, the line between OLTP and OLAP has begun to 

blur. Modern data-intensive applications now combine real-time 

transactional operations with analytics. This merging of processing has 

been spurred by several advances in software, such as more scalable 

transaction management and incremental stream processing, and by 

lower-cost, large-memory hardware. 

Bringing together analytics and transactions enables continual analysis 

as a natural part of regular operations. As data is gathered—from point-

of-sale (POS) machines, manufacturing systems, or internet of things 

(IoT) devices—analytics now supports the ability to make real-time 

recommendations and decisions while processing. This trend was 

observed several years ago, and terms to describe this merging 

include translytics and hybrid transactional and analytical 

processing (HTAP). Figure 1-5 illustrates how read-only replicas can be 

used to bring together these different types of processing. 

According to Gartner: 

[HTAP] could potentially redefine the way some business processes are 

executed, as real-time advanced analytics (for example, planning, forecasting 

and what-if analysis) becomes an integral part of the process itself, rather 

than a separate activity performed after the fact. This would enable new 

forms of real-time business-driven decision-making process. Ultimately, 

HTAP will become a key enabling architecture for intelligent business 

operations. 

 

Figure 1-5. A hybrid platform supports the low latency query processing and high data integrity required for transactions while integrating complex 

analytics over large amounts of data. 
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As OLTP and OLAP become more integrated and begin to support 

functionality previously offered in only one silo, it’s no longer necessary 

to use different data products or systems for these workloads—we can 

simplify our architecture by using the same platform for both. This 

means our analytical queries can take advantage of real-time data and 

we can streamline the iterative process of analysis. 

Why Should We Care About Graph 
Algorithms? 

Graph algorithms are used to help make sense of connected data. We see 

relationships within real-world systems from protein interactions to 

social networks, from communication systems to power grids, and from 

retail experiences to Mars mission planning. Understanding networks 

and the connections within them offers incredible potential for insight 

and innovation. 

Graph algorithms are uniquely suited to understanding structures and 

revealing patterns in datasets that are highly connected. Nowhere is the 

connectivity and interactivity so apparent than in big data. The amount 

of information that has been brought together, commingled, and 

dynamically updated is impressive. This is where graph algorithms can 

help make sense of our volumes of data, with more sophisticated 

analytics that leverage relationships and enhance artificial intelligence 

contextual information. 

As our data becomes more connected, it’s increasingly important to 

understand its relationships and interdependencies. Scientists that study 

the growth of networks have noted that connectivity increases over time, 

but not uniformly. Preferential attachment is one theory on how the 

dynamics of growth impact structure. This idea, illustrated in Figure 1-6, 

describes the tendency of a node to link to other nodes that already have 

a lot of connections. 

 

Figure 1-6. Preferential attachment is the phenomenon where the more connected a node is, the more likely it is to receive new links. This leads to 

uneven concentrations and hubs. 
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In his book, Sync: How Order Emerges from Chaos in the Universe, 

Nature, and Daily Life (Hachette), Steven Strogatz provides examples 

and explains different ways that real-life systems self-organize. 

Regardless of the underlying causes, many researchers believe that how 

networks grow is inseparable from their resulting shapes and hierarchies. 

Highly dense groups and lumpy data networks tend to develop, with 

complexity growing along with data size. We see this clustering of 

relationships in most real-world networks today, from the internet to 

social networks like the gaming community shown in Figure 1-7. 

The network analysis shown in Figure 1-7 was created by Francesco 

D’Orazio of Pulsar to help predict the virality of content and inform 

distribution strategies. D’Orazio found a correlation between the 

concentration of a community’s distribution and the speed of diffusion 

of a piece of content. 

 

Figure 1-7. This gaming community analysis shows a concentration of connections around just 5 of 382 communities. 

This is significantly different than what an average distribution model 

would predict, where most nodes would have the same number of 

connections. For instance, if the World Wide Web had an average 

distribution of connections, all pages would have about the same number 

of links coming in and going out. Average distribution models assert that 

most nodes are equally connected, but many types of graphs and many 

real networks exhibit concentrations. The web, in common with graphs 

like travel and social networks, has a power-law distribution with a few 

nodes being highly connected and most nodes being modestly 

connected. 

POWER LAW 

A power law (also called a scaling law) describes the relationship between two 

quantities where one quantity varies as a power of another. For instance, the area 

of a cube is related to the length of its sides by a power of 3. A well-known 

example is the Pareto distribution or “80/20 rule,  originally used to describe the 

situation where 20% of a population controlled 80% of the wealth. We see various 

power laws in the natural world and networks. 

Trying to “average out  a network generally won’t work well for 

investigating relationships or forecasting, because real-world networks 
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have uneven distributions of nodes and relationships. We can readily see 

in Figure 1-8 how using an average of characteristics for data that is 

uneven would lead to incorrect results. 

 

Figure 1-8. Real-world networks have uneven distributions of nodes and relationships represented in the extreme by a power-law distribution. An 

average distribution assumes most nodes have the same number of relationships and results in a random network. 

Because highly connected data does not adhere to an average 

distribution, network scientists use graph analytics to search for and 

interpret structures and relationship distributions in real-world data. 

There is no network in nature that we know of that would be described by the 

random network model. 

Albert-László Barabási, Director, Center for Complex Network Research, 

Northeastern University, and author of numerous network science books 

The challenge for most users is that densely and unevenly connected 

data is troublesome to analyze with traditional analytical tools. There 

might be a structure there, but it’s hard to find. It’s tempting to take an 

averages approach to messy data, but doing so will conceal patterns and 

ensure our results are not representing any real groups. For instance, if 

you average the demographic information of all your customers and 

offer an experience based solely on averages, you’ll be guaranteed to 

miss most communities: communities tend to cluster around related 

factors like age and occupation or marital status and location. 

Furthermore, dynamic behavior, particularly around sudden events and 

bursts, can’t be seen with a snapshot. To illustrate, if you imagine a 

social group with increasing relationships, you’d also expect more 

communications. This could lead to a tipping point of coordination and a 

subsequent coalition or, alternatively, subgroup formation and 

polarization in, for example, elections. Sophisticated methods are 

required to forecast a network’s evolution over time, but we can infer 

behavior if we understand the structures and interactions within our data. 

Graph analytics is used to predict group resiliency because of the focus 

on relationships. 

Graph Analytics Use Cases 
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At the most abstract level, graph analytics is applied to forecast behavior 

and prescribe action for dynamic groups. Doing this requires 

understanding the relationships and structure within the group. Graph 

algorithms accomplish this by examining the overall nature of networks 

through their connections. With this approach, you can understand the 

topology of connected systems and model their processes. 

There are three general buckets of questions that indicate whether graph 

analytics and algorithms are warranted, as shown in Figure 1-9. 

 

Figure 1-9. The types of questions graph analytics answer 

Here are a few types of challenges where graph algorithms are 

employed. Are your challenges similar? 

 Investigate the route of a disease or a cascading transport failure. 

 Uncover the most vulnerable, or damaging, components in a 

network attack. 

 Identify the least costly or fastest way to route information or 

resources. 

 Predict missing links in your data. 

 Locate direct and indirect influence in a complex system. 

 Discover unseen hierarchies and dependencies. 

 Forecast whether groups will merge or break apart. 

 Find bottlenecks or who has the power to deny/provide more 

resources. 

 Reveal communities based on behavior for personalized 

recommendations. 

 Reduce false positives in fraud and anomaly detection. 

 Extract more predictive features for machine learning. 

Conclusion 

https://learning.oreilly.com/library/view/graph-algorithms/9781492047674/ch01.html#graphconceptsquestiontypes


In this chapter, we’ve looked at how data today is extremely connected, 

and the implications of this. Robust scientific practices exist for analysis 

of group dynamics and relationships, yet those tools are not always 

commonplace in businesses. As we evaluate advanced analytics 

techniques, we should consider the nature of our data and whether we 

need to understand community attributes or predict complex behavior. If 

our data represents a network, we should avoid the temptation to reduce 

factors to an average. Instead, we should use tools that match our data 

and the insights we’re seeking. 

In the next chapter, we’ll cover graph concepts and terminology. 

 


