
Chapter 1. Why Laravel?

In the early days of the dynamic web, writing a web application looked a

lot different than it does today. Developers then were responsible for

writing the code for not just the unique business logic of our

applications, but also each of the components that are so common across

sites—user authentication, input validation, database access, templating,

and more.

Today, programmers have dozens of application development

frameworks and thousands of components and libraries easily

accessible. It’s a common refrain among programmers that, by the time

you learn one framework, three newer (and purportedly better)

frameworks have popped up intending to replace it.

“Just because it’s there” might be a valid justification for climbing a

mountain, but there are better reasons to choose to use a specific

framework—or to use a framework at all. It’s worth asking the question,

why frameworks? More specifically, why Laravel?

Why Use a Framework?

It’s easy to see why it’s beneficial to use the individual components, or

packages, that are available to PHP developers. With packages, someone

else is responsible for developing and maintaining an isolated piece of

code that has a well-defined job, and in theory that person has a deeper

understanding of this single component than you have time to have.

Frameworks like Laravel—and Symfony, Lumen, and Slim—

prepackage a collection of third-party components together with custom

framework “glue” like configuration files, service providers, prescribed

directory structures, and application bootstraps. So, the benefit of using

a framework in general is that someone has made decisions not just

about individual components for you, but also about how those

components should fit together.

“I’ll Just Build It Myself”

Let’s say you start a new web app without the benefit of a framework.

Where do you begin? Well, it should probably route HTTP requests, so

you now need to evaluate all of the HTTP request and response libraries

available and pick one. Then you’ll have to pick a router. Oh, and you’ll

probably need to set up some form of routes configuration file. What

syntax should it use? Where should it go? What about controllers?

Where do they live, and how are they loaded? Well, you probably need a

dependency injection container to resolve the controllers and their

dependencies. But which one?

Furthermore, if you do take the time to answer all those questions and

successfully create your application, what’s the impact on the next

developer? What about when you have four such custom framework–

based applications, or a dozen, and you have to remember where the

controllers live in each, or what the routing syntax is?

Consistency and Flexibility

Frameworks address this issue by providing a carefully considered

answer to the question “Which component should we use here?” and

ensuring that the particular components chosen work well together.

Additionally, frameworks provide conventions that reduce the amount of

code a developer new to the project has to understand—if you

understand how routing works in one Laravel project, for example, you

understand how it works in all Laravel projects.

When someone prescribes rolling your own framework for each new

project, what they’re really advocating is the ability to control what does

and doesn’t go into your application’s foundation. That means the best

frameworks will not only provide you with a solid foundation, but also

give you the freedom to customize to your heart’s content. And this, as

I’ll show you in the rest of this book, is part of what makes Laravel so

special.

A Short History of Web and PHP Frameworks

An important part of being able to answer the question “Why Laravel?”

is understanding Laravel’s history—and understanding what came

before it. Prior to Laravel’s rise in popularity, there were a variety of

frameworks and other movements in PHP and other web development

spaces.

Ruby on Rails

David Heinemeier Hansson released the first version of Ruby on Rails in

2004, and it’s been hard to find a web application framework since then

that hasn’t been influenced by Rails in some way.

Rails popularized MVC, RESTful JSON APIs, convention over

configuration, ActiveRecord, and many more tools and conventions that

had a profound influence on the way web developers approached their

applications—especially with regard to rapid application development.

The Influx of PHP Frameworks

It was clear to most developers that Rails and similar web application

frameworks were the wave of the future, and PHP frameworks,

including those admittedly imitating Rails, started popping up quickly.

CakePHP was the first in 2005, and it was soon followed by Symfony,

CodeIgniter, Zend Framework, and Kohana (a CodeIgniter fork). Yii

arrived in 2008, and Aura and Slim in 2010. 2011 brought FuelPHP and

Laravel, both of which were not quite CodeIgniter offshoots, but instead

proposed as alternatives.

Some of these frameworks were more Rails-y, focusing on database

object-relational mappers (ORMs), MVC structures, and other tools

targeting rapid development. Others, like Symfony and Zend, focused

more on enterprise design patterns and ecommerce.

The Good and the Bad of CodeIgniter

CakePHP and CodeIgniter were the two early PHP frameworks that

were most open about how much their inspiration was drawn from Rails.

CodeIgniter quickly rose to fame and by 2010 was arguably the most

popular of the independent PHP frameworks.

CodeIgniter was simple, easy to use, and boasted amazing

documentation and a strong community. But its use of modern

technology and patterns advanced slowly; and as the framework world

grew and PHP’s tooling advanced, CodeIgniter started falling behind in

terms of both technological advances and out-of-the-box features.

Unlike many other frameworks, CodeIgniter was managed by a

company, and it was slow to catch up with PHP 5.3’s newer features like

namespaces and the moves to GitHub and later Composer. It was in

2010 that Taylor Otwell, Laravel’s creator, became dissatisfied enough

with CodeIgniter that he set off to write his own framework.

Laravel 1, 2, and 3

The first beta of Laravel 1 was released in June 2011, and it was written

completely from scratch. It featured a custom ORM (Eloquent); closure-

based routing (inspired by Ruby Sinatra); a module system for

extension; and helpers for forms, validation, authentication, and more.

Early Laravel development moved quickly, and Laravel 2 and 3 were

released in November 2011 and February 2012, respectively. They

introduced controllers, unit testing, a command-line tool, an inversion of

control (IoC) container, Eloquent relationships, and migrations.

Laravel 4

With Laravel 4, Taylor rewrote the entire framework from the ground

up. By this point Composer, PHP’s now-ubiquitous package manager,

was showing signs of becoming an industry standard, and Taylor saw

the value of rewriting the framework as a collection of components,

distributed and bundled together by Composer.

Taylor developed a set of components under the code

name Illuminate and, in May 2013, released Laravel 4 with an entirely

new structure. Instead of bundling the majority of its code as a

download, Laravel now pulled in the majority of its components

from Symfony (another framework that released its components for use

by others) and the Illuminate components through Composer.

Laravel 4 also introduced queues, a mail component, facades, and

database seeding. And because Laravel was now relying on Symfony

components, it was announced that Laravel would be mirroring (not

exactly, but soon after) the six-monthly release schedule Symfony

follows.

Laravel 5

Laravel 4.3 was scheduled to release in November 2014, but as

development progressed it became clear that the significance of its

changes merited a major release, and Laravel 5 was released in February

2015.

Laravel 5 featured a revamped directory structure, removal of the form

and HTML helpers, the introduction of the contract interfaces, a spate of

new views, Socialite for social media authentication, Elixir for asset

compilation, Scheduler to simplify cron, dotenv for simplified

environment management, form requests, and a brand new REPL (read–

evaluate–print loop). Since then it’s grown in features and maturity, but

there have been no major changes like in previous versions.

What’s So Special About Laravel?

So what is it that sets Laravel apart? Why is it worth having more than

one PHP framework at any time? They all use components from

Symfony anyway, right? Let’s talk a bit about what makes Laravel

“tick.”

The Philosophy of Laravel

You only need to read through the Laravel marketing materials and

READMEs to start seeing its values. Taylor uses light-related words like

“Illuminate” and “Spark.” And then there are these: “Artisans.”

“Elegant.” Also, these: “Breath of fresh air.” “Fresh start.” And finally:

“Rapid.” “Warp speed.”

The two most strongly communicated values of the framework are to

increase developer speed and developer happiness. Taylor has described

the “Artisan” language as intentionally contrasting against more

utilitarian values. You can see the genesis of this sort of thinking in his

2011 question on StackExchange in which he stated, “Sometimes I

spend ridiculous amounts of time (hours) agonizing over making code

‘look pretty’”—just for the sake of a better experience of looking at the

code itself. And he’s often talked about the value of making it easier and

http://bit.ly/2dT5kmS
http://bit.ly/2dT5kmS

quicker for developers to take their ideas to fruition, getting rid of

unnecessary barriers to creating great products.

Laravel is, at its core, about equipping and enabling developers. Its goal

is to provide clear, simple, and beautiful code and features that help

developers quickly learn, start, and develop, and write code that’s

simple, clear, and lasting.

The concept of targeting developers is clear across Laravel materials.

“Happy developers make the best code” is written in the documentation.

“Developer happiness from download to deploy” was the unofficial

slogan for a while. Of course, any tool or framework will say it wants

developers to be happy. But having developer happiness as

a primary concern, rather than secondary, has had a huge impact on

Laravel’s style and decision-making progress. Where other frameworks

may target architectural purity as their primary goal, or compatibility

with the goals and values of enterprise development teams, Laravel’s

primary focus is on serving the individual developer. That doesn’t mean

you can’t write architecturally pure or enterprise-ready applications in

Laravel, but it won’t have to be at the expense of the readability and

comprehensibility of your codebase.

How Laravel Achieves Developer Happiness

Just saying you want to make developers happy is one thing. Doing it is

another, and it requires you to question what in a framework is most

likely to make developers unhappy and what is most likely to make them

happy. There are a few ways Laravel tries to make developers’ lives

easier.

First, Laravel is a rapid application development framework. That means

it focuses on a shallow (easy) learning curve and on minimizing the

steps between starting a new app and publishing it. All of the most

common tasks in building web applications, from database interactions

to authentication to queues to email to caching, are made simpler by the

components Laravel provides. But Laravel’s components aren’t just

great on their own; they provide a consistent API and predictable

structures across the entire framework. That means that, when you’re

trying something new in Laravel, you’re more than likely going to end

up saying, “… and it just works.”

This doesn’t end with the framework itself, either. Laravel provides an

entire ecosystem of tools for building and launching applications. You

have Homestead and Valet for local development, Forge for server

management, and Envoyer for advanced deployment. And there’s a suite

of add-on packages: Cashier for payments and subscriptions, Echo for

WebSockets, Scout for search, Passport for API authentication, Dusk for

frontend testing, Socialite for social login, Horizon for monitoring

queues, Nova for building admin panels, and Spark to bootstrap your

SaaS. Laravel is trying to take the repetitive work out of developers’

jobs so they can do something unique.

Next, Laravel focuses on “convention over configuration”—meaning

that if you’re willing to use Laravel’s defaults, you’ll have to do much

less work than with other frameworks that require you to declare all of

your settings even if you’re using the recommended configuration.

Projects built on Laravel take less time than those built on most other

PHP frameworks.

Laravel also focuses deeply on simplicity. It’s possible to use

dependency injection and mocking and the Data Mapper pattern and

repositories and Command Query Responsibility Segregation and all

sorts of other more complex architectural patterns with Laravel, if you

want. But while other frameworks might suggest using those tools and

structures on every project, Laravel and its documentation and

community lean toward starting with the simplest possible

implementation—a global function here, a facade there, ActiveRecord

over there. This allows developers to create the simplest possible

application to solve for their needs, without limiting its usefulness in

complex environments.

An interesting source of how Laravel is different from other PHP

frameworks is that its creator and its community are more connected to

and inspired by Ruby and Rails and functional programming languages

than by Java. There’s a strong current in modern PHP to lean toward

verbosity and complexity, embracing the more Java-esque aspects of

PHP. But Laravel tends to be on the other side, embracing expressive,

dynamic, and simple coding practices and language features.

The Laravel Community

If this book is your first exposure to the Laravel community, you have

something special to look forward to. One of the distinguishing elements

of Laravel, which has contributed to its growth and success, is the

welcoming, teaching community that surrounds it. From Jeffrey

Way’s Laracasts video tutorials to Laravel News to Slack and IRC and

Discord channels, from Twitter friends to bloggers to podcasts to the

Laracon conferences, Laravel has a rich and vibrant community full of

folks who’ve been around since day one and folks who are just starting

their own “day one.” And this isn’t an accident:

From the very beginning of Laravel, I’ve had this idea that all people want to

feel like they are part of something. It’s a natural human instinct to want to

belong and be accepted into a group of other like-minded people. So, by

injecting personality into a web framework and being really active with the

community, that type of feeling can grow in the community.

Taylor Otwell, Product and Support interview

Taylor understood from the early days of Laravel that a successful open

source project needed two things: good documentation and a welcoming

community. And those two things are now hallmarks of Laravel.

How It Works

Up until now, everything I’ve shared here has been entirely abstract.

What about the code, you ask? Let’s dig into a simple application

(Example 1-1) so you can see what working with Laravel day to day is

actually like.

Example 1-1. “Hello, World” in routes/web.php

<?php

Route::get('/', function () {
 return 'Hello, World!';
});

The simplest possible action you can take in a Laravel application is to

define a route and return a result any time someone visits that route. If

you initialize a brand new Laravel application on your machine, define

the route in Example 1-1, and then serve the site from

the public directory, you’ll have a fully functioning “Hello, World”

example (see Figure 1-1).

https://laracasts.com/
https://laravel-news.com/
https://learning.oreilly.com/library/view/laravel-up/9781492041207/ch01.html#EX1
https://learning.oreilly.com/library/view/laravel-up/9781492041207/ch01.html#EX1
https://learning.oreilly.com/library/view/laravel-up/9781492041207/ch01.html#FIG101

Figure 1-1. Returning “Hello, World!” with Laravel

It looks very similar with controllers, as you can see in Example 1-2.

Example 1-2. “Hello, World” with controllers

// File: routes/web.php
<?php

Route::get('/', 'WelcomeController@index');
// File: app/Http/Controllers/WelcomeController.php
<?php

namespace App\Http\Controllers;

class WelcomeController extends Controller
{
 public function index()
 {
 return 'Hello, World!';
 }
}

And if you’re storing your greetings in a database, it’ll also look pretty

similar (see Example 1-3).

Example 1-3. Multigreeting “Hello, World” with database access

// File: routes/web.php
<?php

use App\Greeting;

Route::get('create-greeting', function () {
 $greeting = new Greeting;

 $greeting->body = 'Hello, World!';

https://learning.oreilly.com/library/view/laravel-up/9781492041207/ch01.html#EX2
https://learning.oreilly.com/library/view/laravel-up/9781492041207/ch01.html#EX3

 $greeting->save();
});

Route::get('first-greeting', function () {
 return Greeting::first()->body;
});
// File: app/Greeting.php
<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Greeting extends Model
{
 //
}
// File: database/migrations/2015_07_19_010000_create_greetings_table.php
<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateGreetingsTable extends Migration
{
 public function up()
 {
 Schema::create('greetings', function (Blueprint $table) {

 $table->bigIncrements('id');
 $table->string('body');
 $table->timestamps();
 });
 }

 public function down()
 {
 Schema::dropIfExists('greetings');
 }
}

Example 1-3 might be a bit overwhelming, and if so, just skip over it.

You’ll learn about everything that’s happening here in later chapters, but

you can already see that with just a few lines of code, you can set up

database migrations and models and pull records out. It’s just that

simple.

Why Laravel?

So—why Laravel?

https://learning.oreilly.com/library/view/laravel-up/9781492041207/ch01.html#EX3

Because Laravel helps you bring your ideas to reality with no wasted

code, using modern coding standards, surrounded by a vibrant

community, with an empowering ecosystem of tools.

And because you, dear developer, deserve to be happy.

