
Chapter 1. Laying Out a Game

Games are software, and the best software has had some thought put into

it regarding how it’s going to work. When you’re writing a game, you

need to keep in mind how you’re going to handle the individual tasks

that the game needs to perform, such as rendering graphics, updating

artificial intelligence (AI), handling input, and the hundreds of other

small tasks that your game will need to deal with.

In this chapter, you’ll learn about ways you can lay out the structure of

your game that will make development easier. You’ll also learn how to

organize the contents of your game so that adding more content and

gameplay elements is easier, and find out how to make your game do

multiple things at once.

1.1 Laying Out Your Engine

Problem

You want to determine the best way to lay out the architecture of your

game.

Solution

The biggest thing to consider when you’re thinking about how to best

lay out your game is how the game state will be updated. There are three

main things that can cause the state of the game to change:

Input from the user

The game may change state when the user provides some input,

such as tapping a button or typing some text. Turn-based games

are often driven by user input (e.g., in a game of chess, the game

state might only be updated when the user finishes moving a

piece).

Timers

The game state may change every time a timer goes off. The delay

between timer updates might be very long (some web-based

strategy games have turns that update only once a day), or very

short (such as going off every time the screen finishes drawing).

Most real-time games, like shooters or real-time strategy games,

use very short-duration timers.

Input from outside

The game state may change when information from outside the

game arrives. The most common example of this is some

information arriving from the network, but it can also include data

arriving from built-in sensors, such as the accelerometer.

Sometimes, this kind of updating is actually a specific type of

timer-based update, because some networks or sensors need to be

periodically checked to see if new information has arrived.

Discussion

None of these methods are mutually exclusive. You can, for example,

run your game on a timer to animate content, and await user input to

move from one state to the next.

Updating every frame is the least efficient option, but it lets you change

state often, which makes the game look smooth.

1.2 Creating an Inheritance-Based Game
Layout

Problem

You want to use an inheritance-based (i.e., a hierarchy-based)

architecture for your game, which is simpler to implement.

Solution

First, define a class called GameObject:

class GameObject {
 func update(deltaTime : Float) {

 // 'deltaTime' is the number of seconds since
 // this was last called.

 // This method is overriden by subclasses to update

 // the object's state - position, direction, and so on.
 }
}

When you want to create a new kind of game object, you create a

subclass of the GameObject class, which inherits all of the behavior of its

parent class and can be customized:

class Monster: GameObject {

 var hitPoints : Int = 10 // how much health we have
 var target : GameObject? // the game object we're attacking

 override func update(deltaTime: Float) {

 super.update(deltaTime: deltaTime)

 // Do some monster-specific updating

 }

}

Discussion

In an inheritance-based layout, as shown in Figure 1-1, you define a

single base class for your game object (often called GameObject), which

knows about general tasks like being updated, and then create subclasses

for each specific type of game object. This hierarchy of subclasses can

be multiple levels deep (e.g., you might subclass the GameObject class to

make the Monster subclass, and then subclass that to create

the Goblin and Dragon classes, each of which has its own different kinds of

monster-like behavior).

Figure 1-1. An inheritance-based layout

The advantage of a hierarchy-based layout is that each object is able to

stand alone: if you have a Dragon object, you know that all of its behavior

is contained inside that single object, and it doesn’t rely on other objects

to work. The downside is that you can often end up with a very deep

hierarchy of different game object types, which can be tricky to keep in

your head as you program.

https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch01.html#fig1-1

1.3 Creating a Component-Based Game
Layout

Problem

You want to use a component-based architecture for your game, which

allows for greater flexibility.

Solution

TIP

This recipe walks you through how you’d construct your own entity-

component system, which is something worth knowing. However,

Apple’s GameplayKit framework provides a set of classes for you that do

the same work. To get the most out of this particular recipe, read it for

your own education, and then use the next recipe’s solution in your own

projects.

First, define a Component class. This class represents components that are

attached to game objects—it is a very simple class that, at least initially,

only has a single method and a single property:

class Component {

 // The game object this component is attached to
 var gameObject : GameObject?

 func update(deltaTime : Float) {
 // Update this component
 }

}

Next, define a GameObject class. This class represents game objects:

class GameObject {

 // The collection of Component objects attached to us
 var components : [Component] = []

 // Add a component to this gameobject
 func add(component : Component) {

 components.append(component)
 component.gameObject = self
 }

 // Remove a component from this game object, if we have it
 func remove(component : Component) {

 // Figure out the index at which this component exists

 // Note the use of the === (three equals) operator,
 // which checks to see if two variables refer to the same object
 // (as opposed to "==", which checks to see if two variables
 // have the same value, which means different things for
 // different types of data)

 if let index = components.index(where: { $0 === component}) {
 component.gameObject = nil

 components.remove(at: index)
 }
 }

 // Update this object by updating all components
 func update(deltaTime : Float) {

 for component in self.components {

 component.update(deltaTime: deltaTime)
 }

 }

 // Returns the first component of type T attached to this
 // game object
 func findComponent<T: Component>() -> T?{

 for component in self.components {
 if let theComponent = component as? T {
 return theComponent
 }
 }

 return nil;
 }

 // Returns an array of all components of type T
 // (this returned array might be empty)
 func findComponents<T: Component>() -> [T] {

 var foundComponents : [T] = []

 for component in self.components {
 if let theComponent = component as? T {

 foundComponents.append(theComponent)
 }
 }

 return foundComponents
 }

}

Using these objects looks like this:

// Define a type of component
class DamageTaking : Component {
 var hitpoints : Int = 10

 func takeDamage(amount : Int) {
 hitpoints -= amount
 }
}

// Make an object - no need to subclass GameObject,
// because its behavior is determined by which
// components it has
let monster = GameObject()

// Add a new Damageable component
monster.add(component: DamageTaking())

// Get a reference to the first Damageable component
let damage : DamageTaking? = monster.findComponent()

damage?.takeDamage(amount: 5)

// When the game needs to update, send all game
// objects the "update" message.
// This makes all components run their update logic.
monster.update(deltaTime: 0.33)

Discussion

In a component-based architecture, as shown in Figure 1-2, each game

object is made up of multiple components. Compare this to an

inheritance-based architecture, where each game object is a subclass of

some more general class (see Recipe 1.2).

A component-based layout means you can be more flexible with your

design and not worry about inheritance issues. For example, if you’ve

got a bunch of monsters, and you want one specific monster to have

some new behavior (such as, say, exploding every five seconds), you

just write a new component and add it to that monster. If you later

decide that you want other monsters to also have that behavior, you can

add that behavior to them, too.

In a component-based architecture, each game object has a list of

components. When something happens to an object—for example, the

game updates, or the object is added to or removed from the game—the

object goes through all of its components and notifies them. This gives

them the opportunity to respond in their own way.

Figure 1-2. A component-based layout

https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch01.html#fig1-2
https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch01.html#inheritance-based-layout

The main problem with component-based architectures is that it’s more

laborious to create multiple copies of an object, because you have to

create and add the same set of components every time you want a new

copy.

NOTE

The findComponent and findComponents methods are worth a little

explanation. These functions are designed to let you get a reference to a

component, or an array of components, attached to the game object. The

functions use generics to make them return an array of the type of

component you expect. This means that you don’t need to do any type

casting in your code—you’re guaranteed to receive objects that are the

right type.

1.4 Creating a Component-Based Game
Layout Using GameplayKit

Problem

You want to use a component-based layout in your game (see Recipe

1.3), but you don’t want to have to write your own component system.

Solution

You can use the GameplayKit framework’s GKEntity and GKComponent classes

to implement an entity-component based layout to your game.

To begin using these classes, you import the GameplayKit framework in

your code:

import GameplayKit

Next, you subclass the GKComponent class, and implement the behavior

needed for each type of component, such as its visual representation:

// Two example components
class GraphicsComponent : GKComponent {
 override func update(deltaTime seconds: TimeInterval) {
 print("Drawing graphics!")
 }
}

https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch01.html#component-based-layout
https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch01.html#component-based-layout

class PhysicsComponent : GKComponent {
 override func update(deltaTime seconds: TimeInterval) {

 print("Simulating physics!")
 }
}

When you’ve defined your component types, you can construct entities

and attach components to them. You typically don’t subclass GKEntity;

instead, they just act as containers for your GKComponent subclasses:

// Create an entity, and attach some components
let entity = GKEntity()

entity.addComponent(GraphicsComponent())
entity.addComponent(PhysicsComponent())

To update all of the components on an entity, call the

entity’s update method, and provide the delta time—that is, the number of

seconds since the last update was run:

// Update all components in each object
for entity in entities {

 entity.update(deltaTime: 0.033)
}

Discussion

Using the built-in GameplayKit classes for entities and components can

save you having to write and debug your own systems.

In addition to calling update on your GKEntity objects, you can also group

components together, and update them all at once. This can be useful

when you want to ensure that, for example, all physics calculations for

all objects have been performed before any rendering is done.

To do this, use the GKComponentSystem class. For each type of component

you’re working with, define a GKComponentSystem and specify the type of

component it should handle:

let graphicsComponentSystem =
 GKComponentSystem(componentClass: GraphicsComponent.self)
let physicsComponentSystem =
 GKComponentSystem(componentClass: PhysicsComponent.self)

After you’ve created an instance of a GKEntity, you can add any

components present on it by passing that entity to the

system’s addComponent(foundIn:) method. Because component systems are

configured to use a single class of component, they can be given an

entity with multiple different kinds of components on them, and they’ll

add only the type they’re looking for:

for entity in entities {

 graphicsComponentSystem.addComponent(foundIn: entity)
 physicsComponentSystem.addComponent(foundIn: entity)
}

A component system, much like an entity, can be updated, using

the update(deltaTime:) method:

// Update all of the graphics components
graphicsComponentSystem.update(deltaTime: 0.033)

// And then all of the physics components
physicsComponentSystem.update(deltaTime: 0.033)

1.5 Calculating Delta Times

Problem

You want to know how many seconds have elapsed since the last time

the game updated.

Solution

First, decide which object should be used to keep track of time. This

may be a view controller, an SKScene, a GLKViewController, or something

entirely custom.

Create an instance variable inside that object:

class TimeKeeper {

 var lastFrameTime : Double = 0.0

}

Then, each time your game is updated, get the current time in

milliseconds, and subtract lastFrameTime from that. This gives you the

amount of time that has elapsed since the last update.

When you want to make something happen at a certain rate—for

example, moving at 3 meters per second—multiply the rate by the delta

time:

func update(currentTime : Double) {

 // Calculate the time since this method was last called
 let deltaTime = currentTime - lastFrameTime

 // Move at 3 units per second
 let movementSpeed = 3.0

 // Multiply by deltaTime to work out how far
 // an object needs to move this frame
 someMovingObject.move(distance: movementSpeed * deltaTime)

 // Set last frame time to current time, so that
 // we can calculate the delta time when we're next
 // called
 lastFrameTime = currentTime
}

Discussion

“Delta time” means “change in time.” Delta times are useful for keeping

track of how much time has elapsed from one point in time to another—

in games, this means the time from one frame to the next. Because the

game content changes frame by frame, the amount of time between

frames becomes important.

Additionally, the amount of time between frames might change a little.

You should always be aiming for a constant frame rate of 60 frames per

second (i.e., a delta time of 16 milliseconds: 1÷60 ≈ 0.0166…);

however, this may not always be achievable, depending on how much

work needs to be done in each frame. This means that delta time might

vary slightly, so calculating the delta time between each frame becomes

necessary if you want rates of change to appear constant.

Some engines give you the delta time directly. For

example, CADisplayLink gives you a duration property (see Recipe 1.8).

Some engines give you just the current time, from which you can

calculate the delta time. For example, the SKScene class passes

the currentTime parameter to the update: method (discussed further

in Recipe 7.15).

https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch01.html#cadisplaylink
https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch07.html#adding-thrusters

In other cases (e.g., if you’re doing the main loop yourself), you won’t

have easy access to either. In these cases, you need to get the current

time yourself:

let currentTime = Date.timeIntervalSinceReferenceDate as Double

1.6 Detecting When the User Enters and Exits
Your Game

Problem

You want to detect when the user leaves your game, so that you can

pause the game. You also want to know when the user comes back.

Solution

To get notified when the user enters and exits your game, you register to

receive notifications from a NotificationCenter. The specific notifications

that you want to receive

are UIApplicationDidBecomeActive, UIApplicationWillEnterForeground, UIApplicati

onWillResignActive, and UIApplicationDidEnterBackground:

override func viewDidLoad() {
 super.viewDidLoad()

 let center = NotificationCenter.default

 let didBecomeActive = #selector(

 ViewController.applicationDidBecomeActive(notification:)
)

 let willEnterForeground = #selector(

 ViewController.applicationWillEnterForeground(notification:)
)

 let willResignActive = #selector(

 ViewController.applicationWillResignActive(notification:)
)

 let didEnterBackground = #selector(

 ViewController.applicationDidEnterBackground(notification:)
)

 center.addObserver(self,

 selector: didBecomeActive,

 name:
UIApplication.didBecomeActiveNotification,
 object: nil)

 center.addObserver(self,

 selector: willEnterForeground,
 name:
UIApplication.willEnterForegroundNotification,
 object: nil)

 center.addObserver(self,

 selector: willResignActive,
 name:
UIApplication.willResignActiveNotification,
 object: nil)

 center.addObserver(self,

 selector: didEnterBackground,
 name:
UIApplication.didEnterBackgroundNotification,
 object: nil)

}

@objc func applicationDidBecomeActive(notification : Notification) {

 print("Application became active")
}

@objc func applicationDidEnterBackground(notification : Notification) {
 print("Application entered background - unload textures!")
}

@objc func applicationWillEnterForeground(notification : Notification) {

 print("Application will enter foreground - reload " +
 "any textures that were unloaded")
}

@objc func applicationWillResignActive(notification : Notification) {

 print("Application will resign active - pause the game now!")
}

deinit {
 // Remove this object from the notification center
 NotificationCenter.default.removeObserver(self)
}

Discussion

On iOS, only one app can be the “active” application (i.e., the app that is

taking up the screen and that the user is interacting with). This means

that apps need to know when they become the active one, and when they

stop being active.

When your game is no longer the active application, the player can’t

interact with it. This means that the game should pause (see Recipe 1.9).

When the game resumes being the active application, the player should

see a pause screen.

NOTE

Pausing, of course, only makes sense in real-time games, such as

shooters, driving games, arcade games, and so on. In a turn-based game,

like a strategy or puzzle game, you don’t really need to worry about the

game being paused.

In addition to being the active application, an application can be in

the foreground or the background. When an application is in the

foreground, it’s being shown on the screen. When it’s in the background,

it isn’t visible at all. Apps that are in the background

become suspended after a short period of time to save battery power.

Apps that enter the background should reduce their memory

consumption as much as possible; if your app consumes a large amount

of memory while it is in the background, it is more likely to be

terminated by iOS.

1.7 Updating Based on a Timer

Problem

You want to update your game after a fixed amount of time.

Solution

Use a Timer to receive a message after a certain amount of time, or to

receive an update on a fixed schedule.

First, add an instance variable to your view controller:

var timer : Timer?

Next, add a method that takes a Timer parameter:

@objc
func updateWithTimer(timer: Timer) {
 // Timer went off; update the game

https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch01.html#pausing-game

 print("Timer went off!")
}

Finally, when you want to start the timer:

// Start a timer
self.timer = Timer.scheduledTimer(timeInterval: 0.5,
 target: self,

 selector:
#selector(ViewController.updateWithTimer(timer:)),
 userInfo: nil,
 repeats: true)

To stop the timer:

// Stop a timer
self.timer?.invalidate()
self.timer = nil

Discussion

A Timer waits for a specified number of seconds, and then calls a method

on an object that you specify. You can change the number of seconds by

changing the timeInterval parameter.

You can also make a timer either fire only once or repeat forever, by

changing the repeats parameter to false or true, respectively.

1.8 Updating Based on When the Screen
Updates

Problem

You want to update your game every time the screen redraws.

Solution

Use a CADisplayLink, which sends a message every time the screen is

redrawn.

First, import the QuartzCore framework:

import QuartzCore

Next, add an instance variable to your view controller:

var displayLink : CADisplayLink?

Next, add a method that takes a single parameter (a CADisplayLink):

@objc func screenUpdated(displayLink : CADisplayLink) {
 // Update the game.
}

Finally, add this code when you want to begin receiving updates:

// Get a reference to the method we want to run when the
// display updates
let screenUpdated = #selector(screenUpdated(displayLink:))

// Create and schedule the display link
displayLink = CADisplayLink(target: self, selector: screenUpdated)

displayLink?.add(to: RunLoop.main, forMode: RunLoop.Mode.common)

When you want to pause receiving updates, set the paused property of

the CADisplayLink to true:

// Pause the display link
displayLink?.isPaused = true

When you want to stop receiving updates, call invalidate on

the CADisplayLink:

// Remove the display link; once done, you need to
// remove it from memory by setting all references to it to nil
displayLink?.invalidate()
displayLink = nil

Discussion

When we talk about “real-time” games, what comes to mind are objects

like the player, vehicles, and other things moving around the screen,

looking like they’re in continuous motion. This isn’t actually what

happens, however—what’s really going on is that the screen is

redrawing itself every 1/60 of a second, and every time it does this, the

locations of some or all of the objects on the screen change slightly. If

this is done fast enough, the human eye is fooled into thinking that

everything’s moving continuously.

NOTE

In fact, you don’t technically need to update as quickly as every 1/60 of

a second—anything moving faster than 25 frames per second (in other

words, one update every 1/25 of a second) will look like motion.

However, faster updates yield smoother-looking movement, and you

should always aim for 60 frames per second. In games where that’s not

possible, 30 frames per second is generally acceptable.

You’ll get the best results if you update your game at the same rate as

the screen. You can achieve this with a CADisplayLink, which uses the

Core Animation system to figure out when the screen has updated.

Every time this happens, the CADisplayLink sends its target a message,

which you specify.

It’s worth mentioning that you can have as many CADisplayLink objects as

you like, though they’ll all update at the same time.

1.9 Pausing a Game

Problem

You want to be able to pause parts of your game, but still have other

parts continue to run.

Solution

Keep track of the game’s “paused” state in a Bool variable. Then, divide

your game objects into two categories—ones that run while paused, and

ones that don’t run while paused:

for gameObject in gameObjects {

 // Update it if we're not paused, or if this game object
 // ignores the paused state
 if paused == false || gameObject.canPause == false {

 gameObject.update(deltaTime: deltaTime)
 }

}

Discussion

The simplest possible way to pause the game is to keep track of a pause

state; every time the game updates, you check to see if the pause state is

set to true, and if it is, you don’t update any game objects.

However, you often don’t want every single thing in the game to freeze.

For example:

 The user interface may need to continue to animate.

 The network may need to keep communicating with other

computers, rather than stopping entirely.

In these cases, having special objects that never get paused makes more

sense.

1.10 Calculating Time Elapsed Since the Game
Start

Problem

You want to find out how much time has elapsed since the game started.

Solution

When the game starts, create a Date object and store it:

// Store the time when the game started as a property
var gameStartDate : Date?
// When the game actually begins, store the current date
self.gameStartDate = Date()

When you want to find out how much time has elapsed since the game

started, create a second Date and use the timeIntervalSince method to

calculate the time:

let now = Date()
let timeSinceGameStart = now
 .timeIntervalSince(self.gameStartDate!)

NSLog("The game started \(timeSinceGameStart) seconds ago")

Discussion

Date objects represent moments in time. They’re the go-to object for

representing any instant of time that you want to be able to refer to again

later, such as when your game starts. Date objects can refer to practically

any date in the past or future and are very precise.

When you create a Date with the Date() initializer, you get back

a Date object that refers to the current time (i.e., the instant when

the Date object was created).

To determine the interval between two dates, you use timeIntervalSince.

This method returns a TimeInterval, which is actually another term for a

floating-point number. These values are represented in seconds, so it’s

up to your code to do things like determine the number of hours and

minutes:

let formatter = DateComponentsFormatter()

formatter.allowedUnits = [.hour, .minute, .second]
formatter.unitsStyle = .positional

let formattedString = formatter.string(from: timeSinceGameStart) ?? ""

print("Time elapsed: \(formattedString)")

1.11 Working with Closures

Problem

You want to store some code in a variable for later execution.

Solution

Closures are ideal for this:

class GameObject {
 // define a type of closure that takes a single GameObject
 // as a parameter and returns nothing
 var onCollision : ((GameObject) -> Void)?
}

// Create two objects for this example
let car = GameObject()
let brickWall = GameObject()

// Provide code to run when the car hits any another object
car.onCollision = { (objectWeHit) in

 print("Car collided with \(objectWeHit)")
}

// later, when a character collides:
car.onCollision?(brickWall) // note the ? - this means that
// the code will only run if onCollision
// is not nil

Discussion

Closures are a language feature in Swift that allow you to store chunks

of code in variables, which can then be worked with like any other

variable.

Here’s an example of a simple closure:

var multiplyNumber : (Int) -> Int

multiplyNumber = { (number) -> Int in

 return number * 2

}

multiplyNumber(2)

This is how you define a variable that stores a closure. In this case,

the closure returns an Int, is named multiplyNumber, and accepts a

single Int parameter.

This is how you declare a closure. Just like any other variable,

once a closure is defined, it needs to be given a value. In this case,

we’re providing a closure that takes an Int and returns an Int, just

like the variable’s definition.

Calling a closure works just like calling any other function.

HOW CLOSURES WORK

So far, this just seems like a very roundabout way to call a function.

However, the real power of closures comes from two facts:

 Closures capture the state of any other variables their code

references.

 Closures are objects, just like everything else. They stay around

until you need them. If you store a closure, you can call it however

often you like.

This is extremely powerful, because it means that your game doesn’t

need to carefully store values for later use; if a closure needs a value, it

automatically keeps it.

You define a closure by describing the parameters it receives and the

type of information it returns. To help protect against mistakes, you can

also create a type alias for closures, which defines a specific type of

closure. This allows you to declare variables with more easily

understandable semantics:

typealias ErrorHandler = (Error) -> Void

var myErrorHandler : ErrorHandler

myErrorHandler = { (theError) in
 // do work with theError
 print("i SPILL my DRINK! \(theError)")
}

CLOSURES AND OTHER OBJECTS

When a closure is created, the compiler looks at all of the variables that

the closure is referencing. If a variable is a value type, like an int or

a float, that value is simply copied. However, if the variable is a

reference type, like an instance of a class, it can’t be copied because it

could potentially be very large. Instead, the object is retained by the

closure. When a closure is freed, any objects retained by the closure are

released.

This means that if you have a closure that references another object, that

closure will keep the other object around. This is usually what you want,

because it would be annoying to have to remember to keep the variables

referenced by closures in memory. However, sometimes that’s not what

you want.

One example is when you want a closure to run in two seconds’ time

that causes an enemy object to run an attack animation. However,

between the time you schedule the closure and the time the closure runs,

the enemy is removed from the game. If the closure has a strong

reference to the enemy, the enemy isn’t actually removed from memory

until the closure is scheduled to run, which could have unintended side

effects.

To get around this problem, you use weak references. A weak reference

is a reference that does not keep an object in memory; additionally, if the

object that is being referred to is removed (because all owning

references to it have gone away), the weak reference will automatically

be set to nil. For more information on weak references, see The Swift

Programming Language’s chapter on Automatic Reference Counting.

1.12 Writing a Method That Calls a Closure

Problem

You want to write a method that, after performing its work, calls a

closure to indicate that the work is complete.

For example, you want to tell a character to start moving to a

destination, and then run a closure when the character finishes moving.

Solution

To create a method that takes a closure as a parameter, you just do this:

func move(to position : CGPoint, completion: (()->Void)?) {

 // Do the actual work of moving to the location, which
 // might take place over several frames

 // Call the completion handler, if it exists
 completion?()
}

let destination = CGPoint(x: 5, y: 3)

// Call the function and provide the closure as a parameter
move(to: destination) {
 print("Arrived!")
}

Discussion

Methods that take a closure as a parameter are useful for when you’re

writing code that starts off a long-running process, and you want to run

some code at the conclusion of that process but want to keep that

conclusion code close to the original call itself.

Before closures were added to the Swift language, the usual technique

was to write two methods: one where you started the long-running

process, and one that would be called when the process completed. This

separates the various parts of the code, which decreases the readability

of your code; additionally, passing around variables between these two

http://bit.ly/auto_ref_counting

methods is more complicated (because you need to manually store them

in a temporary variable at the start, and retrieve them at the end; with

closures, you just use the variables without any additional work).

NOTE

If the last parameter that you pass to a function or method is a closure,

you can place the closure outside the function call’s parentheses. It can

look a little cleaner.

1.13 Working with Operation Queues

Problem

You want to put chunks of work in a queue, so that they’re run when the

operating system has a moment to do them.

Solution

Use an OperationQueue to schedule closures to be run in the background

without interfering with more time-critical tasks like rendering or

accepting user input:

// Create a work queue to put tasks on
let concurrentQueue = OperationQueue()

// This queue can run 10 operations at the same time, at most
concurrentQueue.maxConcurrentOperationCount = 10

// Add some tasks
concurrentQueue.addOperation {
 UploadHighScores()
}

concurrentQueue.addOperation {
 SaveGame()
}

concurrentQueue.addOperation {
 DownloadMaps()
}

Discussion

An operation queue is a tool for running chunks of work. Every

application has an operation queue called the main queue. The main

queue is the queue that normal application tasks (e.g., handling touches,

redrawing the screen, etc.) are run on.

RUNNING OPERATIONS ON THE MAIN QUEUE

Many tasks can only be run on the main queue, including updating anything run by

UIKit. It’s also a good idea to only have a single operation queue that’s in charge

of sending OpenGL instructions - don’t try to use it from multiple queues at once.

The main queue is a specific OperationQueue, which you can access using

the main method:

let mainQueue = OperationQueue.main

mainQueue.addOperation { () -> Void in

 ProcessPlayerInput()
}

It’s often the case that you want to do something in the background (i.e., on

another operation queue), and then alert the user when it’s finished. However, as

we’ve already mentioned, you can only do UIKit tasks (e.g., displaying an alert

box) on the main queue.

To address this, you can put tasks on the main queue from inside a background

queue:

let backgroundQueue = OperationQueue()

backgroundQueue.addOperation { () -> Void in

 // Do work in the background

 OperationQueue.main.addOperation {

 // Once that's done, do work on the main queue

 }
}

An operation queue runs as many operations as it can simultaneously.

The number of concurrent operations that can be run depends on several

conditions, including the number of processor cores available and the

different priorities that other operations may have.

By default, an operation queue determines the number of operations that

it can run at the same time on its own. However, you can specify a

maximum number of concurrent operations by using

the maxConcurrentOperationCount property.

1.14 Performing a Task in the Future

Problem

You want to run some code, but you want it to happen a couple of

seconds from now.

Solution

Use the DispatchQueue class’s asyncAfter method to schedule a closure of

code to run in the future:

// Place a bomb, but make it explode in 10 seconds
PlaceBomb()

let deadline = DispatchTime.now() + 10

DispatchQueue.main.asyncAfter(deadline: deadline, execute: {
 // Time's up. Kaboom.
 ExplodeBomb()
})

Discussion

OperationQueue is actually a higher-level wrapper around the lower-level

features provided by the C-based Grand Central Dispatch API. Grand

Central Dispatch, or GCD, works mostly with objects called “dispatch

queues,” which are basically OperationQueues. You do work with GCD by

putting closures onto a queue, which runs the closures. Just as

with OperationQueue, there can be many queues operating at the same time,

and they can be serial or concurrent queues.

1.15 Making Operations Depend on Each
Other

Problem

You want to run some operations, but they need to run only after certain

other operations are done.

Solution

To make an operation wait for another operation to complete, store each

individual operation in a variable, and then use the addDependency: method

to indicate which operations need to complete before a given operation

begins:

let firstOperation = BlockOperation { () -> Void in

 print("First operation")
}

let secondOperation = BlockOperation { () -> Void in

 print("Second operation")
}

let thirdOperation = BlockOperation { () -> Void in

 print("Third operation")
}

// secondOperation will not run until firstOperation and
// thirdOperation have finished
secondOperation.addDependency(firstOperation)
secondOperation.addDependency(thirdOperation)

let operations = [firstOperation, secondOperation, thirdOperation]

backgroundQueue.addOperations(operations, waitUntilFinished: true)

Discussion

You can add an operation to another operation as a dependency. This is

useful for cases where you want one closure to run only after one or

more operations have completed.

To add a dependency to an operation, you use the addDependency: method.

Doing this doesn’t run the operation, but just links the two together.

Once the operation dependencies have been set up, you can add the

operations to the queue in any order that you like; operations will not

run until all of their dependencies have finished running.

1.16 Filtering an Array with Closures

Problem

You have an array, and you want to filter it with your own custom logic.

Solution

Use the filtered method to create an array that only contains objects that

meet certain conditions:

let array = ["One", "Two", "Three", "Four", "Five"]

print("Original array: \(array)")

let filteredArray = array.filter { (element) -> Bool in

 if element.range(of: "e") != nil {
 return true
 } else {
 return false
 }
}

print("Filtered array: \(filteredArray)")

Discussion

The closure that you provide to the filter method is called multiple

times. Each time it’s called, it takes an item in the array as its single

parameter, and returns true if that item should appear in the filtered

array, and false if it shouldn’t.

1.17 Loading New Assets During Gameplay

Problem

You want to load new resources without impacting the performance of

the game.

Solution

For each resource that needs loading, run an operation that does the

loading into memory, and do it in the background. Then run a

subsequent operation when all of the loads have completed.

You can do this by scheduling load operations on a background queue,

and also running an operation on the main queue that depends on all of

the load operations. This means that all of your images will load in the

background, and you’ll run code on the main queue when it’s complete:

let imagesToLoad = ["Image 1.jpg", "Image 2.jpg", "Image 3.jpg"]

let imageLoadingQueue = OperationQueue()

// We want the main queue to run at close to regular speed, so mark this
// background queue as running in the background

// (Note: this is actually the default value, but it's good to know about
// the qualityOfService property.)
imageLoadingQueue.qualityOfService = QualityOfService.background

// Allow loading multiple images at once
imageLoadingQueue.maxConcurrentOperationCount = 10

// Create an operation that will run when all images are loaded - you may

want
// to tweak this
let loadingComplete = BlockOperation { () -> Void in

 print("Loading complete!")
}

// Create an array for storing our loading operations
var loadingOperations : [Operation] = []

// Add a load operation for each image

for imageName in imagesToLoad {
 let loadOperation = BlockOperation { () -> Void in

 print("Loading \(imageName)")

 }

 loadingOperations.append(loadOperation)

 // Don't run the loading complete operation until
 // this load (and all other loads) are done
 loadingComplete.addDependency(loadOperation)
}

imageLoadingQueue.addOperations(loadingOperations, waitUntilFinished: false)

imageLoadingQueue.addOperation(loadingComplete)

Discussion

When you create an OperationQueue, you can control its quality of service.

By default, operation queues you create have the background quality of

service, which indicates to the operating system that it’s OK for higher-

priority operations to take precedence. This is generally what you want

for your asset-loading routines, because it’s important that you keep

your application responsive to user input.

Depending on how much memory the rest of your game takes, you can

also use this technique to load assets while the user is busy doing

something else. For example, once the user reaches the main menu, you

could start loading the resources needed for actual gameplay while you

wait for the user to tap the New Game button.

1.18 Adding Unit Tests to Your Game

Problem

You want to test different parts of your game’s code in isolation, so that

you can ensure that each part is working.

Solution

You can write code that tests different parts of your app in isolation

using unit tests. By default, all newly created projects come with an

empty set of unit tests, in which you can add isolated testing functions.

NOTE

If you’re working with an existing project, you can create a new set of

unit tests by choosing File→New→Target and creating an iOS Unit

Testing Bundle.

You’ll find your unit test files in a group whose name ends with Tests.

For example, if your Xcode project is called MyAwesomeGame, your

testing files will be in a group named MyAwesomeGameTests, and it will by

default come with a file called MyAwesomeGameTests.swift.

When you want to add a test, open your test file (the .swift file) and add

a method whose name begins with test:

func testDoingSomethingCool() {

 let object = SomeAwesomeObject()

 let succeeded = object.doSomethingCool()

 if succeeded == false {
 XCTFail("Failed to do something cool");
 }
}

When you want to run the tests, choose Product→Test or press

Command-U. All of the methods in your testing classes that begin

with test will be run, one after the other.

You can also add additional collections of tests, by creating a new test

suite. You do this by choosing File→New→File and creating a new

Swift test case class. When you create this new class, don’t forget to

make it belong to your testing target instead of your game target, or

you’ll get compile errors.

Discussion

Unit testing is the practice of writing small tests that test specific

features of your code. In normal use, your code is used in a variety of

ways, and if there’s a bug, it can be difficult to track down exactly why

your code isn’t behaving the way you want it to. By using unit tests, you

can run multiple tests of your code and check each time to see if the

results are what you expect. If a test fails, the parts of your game that use

your code in that particular way will also fail.

Each test is actually a method in a test case. Test cases are subclasses

of XCTestCase whose names begin with test. The XCTestCase objects in a

testing bundle make up a test suite, which is what’s run when you tell

Xcode to test your application.

When tests run, Xcode performs the following tasks for each test

method, in each test case, in each test suite:

 Call the test case’s setUp method.

 Call the test method itself, and note if the test succeeds or fails.

 Call the test case’s tearDown method.

 Show a report showing which tests failed.

As you can see, the test case’s setUp and tearDown methods are called

for each test method. The idea behind this is that you use setUp to create

whatever conditions you want to run your test under (e.g., if you’re

testing the behavior of an AI, you could use setUp to load the level in

which the AI needs to operate). Conversely, the tearDown method is used

to dismantle whatever resources are set up in setUp. This means that each

time a test method is run, it’s operating under the same conditions.

The contents of each test method are entirely up to you. Typically, you

create objects that you want to test, run methods, and then check to see if

the outcomes were what you expected. The actual way that you check

the outcomes is through a collection of dedicated assertion methods,

which flag the test as failing if the condition you pass in evaluates to

false. The assertion methods also take a string parameter, which is

shown to the user if the test fails.

For example:

// Fails if X is not nil
XCTAssertNil(X, "X should be nil")

// Fails if X IS nil
XCTAssertNotNil(X, "X should not be nil")

// Fails if X is not true
XCTAssertTrue(1 == 1, "1 really should be equal to 1")

// Fails if X is not false
XCTAssertFalse(2 != 3, "In this universe, 2 equals 3 apparently")

// Fails if X and Y are not equal (tested by calling X.equals(Y)])
XCTAssertEqualObjects((2), (1+1), "Objects should be equal")

// Fails if X and Y ARE equal (tested by calling X.equals(Y))
XCTAssertNotEqualObjects("One", "1", "Objects should not be equal")

// Fails, regardless of circumstances
XCTFail("Everything is broken")

There are several other assertion methods available for you to use that

won’t fit in this book; for a comprehensive list, see the documentation

for the XCTest framework.

1.19 2D Grids

Problem

You want to represent your game’s layout as a 2D grid.

Solution

Use a GKGridGraph to represent a grid of a fixed size. Subclass

the GKGridGraphNode class to store custom objects, like the position of a

game entity, on the graph.

https://apple.co/2Dz0NVK
https://apple.co/2Dz0NVK

The GKGridGraph represents a 2D grid of nodes, each of which has a

coordinate that defines its position on the grid, as well as connections to

other nodes on the grid.

For example, let’s define a subclass of GKGridGraphNode that allows you to

store some additional information, like a string:

class GameNode : GKGridGraphNode {
 var name : String

 init (name: String, gridPosition: vector_int2) {
 self.name = name
 super.init(gridPosition: gridPosition)
 }

 override var description: String {
 return self.name
 }

 required init?(coder aDecoder: NSCoder) {

 fatalError("not implemented")
 }
}

We can now create a grid using this node, like so:

let graph = GKGridGraph<GameNode>(
 fromGridStartingAt: [0,0], width: 6, height: 6, diagonalsAllowed: false)

You can remove nodes from the grid, and add new nodes. Note that a

node is not considered part of the grid unless it is attached to other

nodes, which you can do using the connectToAdjacentNodes method:

func add<NodeType>(node: NodeType, to graph: GKGridGraph<NodeType>) {

 // If there's a node at this position here already, remove it
 if let existingNode = graph.node(atGridPosition: node.gridPosition) {

 graph.remove([existingNode])
 }

 // Add the new node, and connect it to the other nodes on the graph
 graph.connectToAdjacentNodes(node: node)
}

When you add a node to the grid, you specify its position:

// Add two
let playerNode = GameNode(name: "Player", gridPosition: [0,2])
let exitNode = GameNode(name: "Exit", gridPosition: [0,3])

add(node: playerNode, to: graph)
add(node: exitNode, to: graph)

You can also retrieve a node from the grid by specifying a position:

graph.node(atGridPosition: [0,2])?.name // "Player"

Finally, you can get all nodes on the grid, and filter them based on

whatever properties you desire:

// Get all GameNodes on the grid of a certain type
let allNodes = graph.nodes?.filter { $0 is GameNode }

Discussion

Nodes on a GKGridGraph class can also be used for pathfinding, which is

discussed in Recipe 9.10.

1.20 Using Randomization

Problem

You want to make use of random numbers in your game, in a way that

makes for satisfying gameplay.

Solution

Use a random number generator from GameplayKit. The framework offers

several different types, each producing a different distribution of random

numbers.

The GKRandomDistribution generator produces a sequence of numbers

where every value has an equally likely chance of appearing:

// Random distributions generate a random value every time
let dice = GKRandomDistribution(forDieWithSideCount: 6)

// Getting values from a random source
dice.nextBool()
dice.nextUniform()
dice.nextInt()

An example of a stream of random numbers from this generator looks

like this:

4, 4, 6, 6, 4, 2, 3, 3, 6, 3

https://learning.oreilly.com/library/view/ios-swift-game/9781491999073/ch09.html#pathfinding-on-a-grid

NOTE

As you can see, some numbers appear multiple times, and sometimes

appear twice in a row. This is because each value’s probability in the

stream is entirely independent of any other number.

The GKGaussianDistribution is a weighted random distribution. Numbers

coming out of this random number generator are more likely to be in the

center of the distribution, and will rarely be at the lowest or highest

values in the range:

// Gaussian distributions produce values that tend to be around the middle,
// and rarely produce values that tend to be at the edges
let gaussian = GKGaussianDistribution(forDieWithSideCount: 20)

An example of a stream of random numbers coming from this generator

is:

14, 10, 13, 8, 7, 14, 19, 15, 13, 11

Notice how the numbers in this example tend to be close to the 8-to-12

range, and it’s rare to see numbers near 1 or 20.

Finally, the GKShuffledDistribution generator produces a stream of values

that tries to avoid repeating the same value:

// Shuffled distributions avoid repeating the same element
let shuffled = GKShuffledDistribution.d6()

An example of a stream of random numbers from this generator is:

2, 4, 3, 6, 1, 5, 1, 6, 4, 3

Discussion

True randomness, such as numbers coming from

a GKRandomDistribution generator, can feel “unfair” to the player, since

humans have trouble understanding probability. The gambler’s fallacy is

a famous example, in which people playing a game of chance who

notice a trend of losses keep playing, feeling that a win will happen

“soon,” when in reality, each win and loss exists entirely independently

of the others.

Two common types of dice are six-sided dice and twenty-sided dice. To

quickly create a random number generator that produces numbers

between zero and six or zero and twenty, use the d6 and d20 functions:

let d6 = GKRandomDistribution.d6()
let d20 = GKRandomDistribution.d20()

1.21 Building a State Machine

Problem

You want to use a state machine to manage the different states a part of

your game can be in.

Solution

State machines are systems in which you define multiple states that a

system can be in. The system is always in one state at a time;

additionally, each state has a list of other states that the system can

transition to.

For example, imagine a system where there are three states: sitting,

standing, and walking. You can transition from sitting to standing (and

vice versa), and you can transition from standing to walking. However,

you can’t transition directly from sitting to walking; you need to go via

standing first.

Every time you transition to another state, you have the opportunity to

run code. To continue this example, when you transition to the standing

state, you might make your character display a standing up animation.

State machines are useful for managing the states that a system can be

in, and in navigating between different states.

GameplayKit provides the GKStateMachine class, which you can use to

manage and transition between different states. To work

with GKStateMachine, you create subclasses of GKState, which handle the

logic of entering, updating, and leaving a state.

For example, consider the following four states:

// The 'Building Up an Army' state
class BuildUpState : GKState {

 override func didEnter(from previousState: GKState?) {

 print("Now building up!")
 }

 // Called every time the state machine is updated
 override func update(deltaTime seconds: TimeInterval) {
 print("Building in progress!")
 }

 // Called when we leave this state
 override func willExit(to nextState: GKState) {

 print("Stopping buildup!")
 }

}

// The 'Attacking with the Army' state
class AttackState : GKState {

 override func didEnter(from previousState: GKState?) {
 // Called when we enter this state
 print("Now attacking the enemy!")
 }

 override func update(deltaTime seconds: TimeInterval) {
 // Called every time the state machine is updated
 print("Attack in progress!")
 }
}

// The 'Withdrawing the Army from Attack' state
class WithdrawState : GKState {

}

// The 'Defeated' state
class DefeatedState : GKState {
 override func didEnter(from previousState: GKState?) {
 // Called when we enter this state
 print("I'm defeated!")

 // Use 'previousState' to learn about the state we entered from
 if previousState is BuildUpState {

 print("I was in the middle of building up, too!")
 }
 }
}

To use these states in a state machine, you create an instance of each of

the states, put them in an array, and then provide that array to the

initializer of GKStateMachine:

// Create instances of the states

let states = [

 BuildUpState(),
 AttackState(),
 WithdrawState(),
 DefeatedState()
]

let stateMachine = GKStateMachine(states: states)

You can then tell the state machine to transition between different states:

stateMachine.enter(BuildUpState.self)
stateMachine.enter(AttackState.self)
stateMachine.enter(BuildUpState.self)
stateMachine.enter(DefeatedState.self)

When you transition between states, each state has an opportunity to run

code when it enters and exits. In this example, telling the state machine

to enter these states results in the following being printed:

Now building up!

Stopping buildup!

Now attacking the enemy!

Now building up!

Stopping buildup!

I'm defeated!

I was in the middle of building up, too!

You can also run the update method on a state machine’s current state by

calling update on the state machine:

stateMachine.update(deltaTime: 0.033)

You can also get the actual state object itself:

stateMachine.currentState

If you want to get the state object for a certain class of state, you can use

the state(forClass:) method:

let state = stateMachine.state(forClass: BuildUpState.self)

Finally, you can place restrictions on which states can transition to

others by implementing the isValidNextState on your GKState subclass.

This method receives a class as a parameter, and returns true if the state

should transition to a state of this class, and false otherwise:

// Limiting which states we can proceed to from here
override func isValidNextState(_ stateClass: AnyClass) -> Bool {

 if stateClass == AttackState.self || stateClass == DefeatedState.self
{
 return true
 } else {
 return false
 }
}

You can then ask the state machine if it’s possible to transition from the

current state to a class you specify:

stateMachine.enter(BuildUpState.self)
stateMachine.canEnterState(WithdrawState.self)
// = false

TIP

The enter function returns true if the state transition was allowed,

and false otherwise.

Discussion

State machines are great for several problems, because they help to

encapsulate a lot of the logic that comes up around objects that need to

switch between modes. Additionally, by adding constraints on which

states can transition to other states, you can reduce the number of bugs

caused by invalid transitions.

