
Reading Sample
In this reading sample, we provide two sample chapters. The first
sample chapter introduces basic ABAP programming language con-
cepts, which lay the foundation to writing ABAP programs. The
second sample chapter discusses how to implement object-oriented
programming techniques such as encapsulation, inheritance, and
polymorphism in your code.

Kiran Bandari

Complete ABAP
1047 Pages, 2016, $79.95
ISBN 978-1-4932-1272-9

 www.sap-press.com/3921

First-hand knowledge.

“ABAP Programming Concepts”

“Object-Oriented ABAP”

Contents

Index

The Author

http://www.sap-press.com/3921?utm_source=AWS&utm_campaign=Browse%20the%20Book&utm_medium=readingsample&utm_content=1272

107

Chapter 4

In this chapter, we’ll look at basic ABAP programming language concepts.
The concepts discussed in this chapter will lay the foundations to write
your own ABAP programs.

4 ABAP Programming Concepts

ABAP programs process data from the database or an external source. As discussed
in Chapter 2, ABAP programs run in the application layer, and ABAP program
statements can work only with locally available data in the program. External data,
like user inputs on screens, data from a sequential file, or data from a database ta-
ble, must always be transported to and saved in the program’s local memory in or-
der to be processed with ABAP statements.

In other words, before any data can be processed with an ABAP program, it must
first be read from the source, stored locally in the program memory, and then
accessed via ABAP statements; you can’t work with the external data directly
using ABAP statements. This temporary data that exists in an ABAP program
while the program is executed is called transient data and is cleared from memory
once the program execution ends. If you wish to access this data later, it must be
stored persistently in the database; such stored data is called persistent data.

This chapter provides information on the basic building blocks of the ABAP pro-
gramming language in order to understand the different ways to store and pro-
cess data locally in ABAP programs. In Section 4.1, we begin by looking at the
general structure of an ABAP program, before diving into ABAP syntax rules and
ABAP keywords in Section 4.2 and Section 4.3, respectively.

Section 4.4 introduces the TYPE concept, and explores key elements such as data
types and data objects, which define memory locations in ABAP programs to
store data locally. In Section 4.5, we discuss the different types of ABAP state-
ments that can be employed, including declarative, modularization, control, call,
and operational statements. Finally, in Section 4.6, we conclude this chapter by
walking through the steps to create your first ABAP program!

ABAP Programming Concepts4

108

Initially, we’ll use a procedural model for our examples to keep things simple;
we’ll switch to an object-oriented model after we discuss object-oriented pro-
gramming in Chapter 8.

4.1 General Program Structure

Any ABAP program can be broadly divided into two parts:

� Global declarations
In the global declaration area, global data for the program is defined; this data
can then be accessed from anywhere in the program.

� Procedural
The procedural part of the program consists of various processing blocks such
as dialog modules, event blocks, and procedures. The statements within these
processing blocks can access the global data defined in the global declarations.

In this section, we’ll look at both of these program structure parts.

4.1.1 Global Declarations

The global declaration part of an ABAP program uses declarative statements to
define memory locations, which are called data objects and which store the work
data of the program. ABAP statements work only with data available in the pro-
gram as content for data objects, so it’s imperative that data is stored in a data
object before it’s processed by an ABAP program.

Data objects are local to the program; they can be accessed via ABAP statements
in the same program. The global declaration area exists at the top of the program
(see Figure 4.1). We use the term global with respect to the program; data objects
defined in this area are visible and valid throughout the entire ABAP program and
can be accessed from anywhere in the source code using ABAP statements.

ABAP also uses local declarations, which can be accessed only within a subset of
the program. We’ll explore local declarations in Chapter 7 when we discuss mod-
ularization techniques.

General Program Structure 4.1

109

Figure 4.1 Program Structure

4.1.2 Procedural

After the declarative area is the procedural portion of the program. Here, the pro-
cessing logic of the ABAP program is defined. In this section of the ABAP pro-
gram, you typically use various ABAP statements to import and process data from
an external source.

The procedural area is where the program logic is implemented. It uses various
processing blocks that contain ABAP statements to implement business require-
ments. For example, in a typical report, the procedural area contains an event
block to process the selection screen and validate user inputs on the selection
screen and another event block to fetch the data from the database based on user
input, and then calls a procedure to display the output to the user.

Declaration Part

Procedural Part

ABAP Programming Concepts4

110

4.2 ABAP Syntax

The source code of an ABAP program is simply a collection of various ABAP state-
ments, interpreted by the runtime environment to perform specific tasks. You use
declarative statements to define data objects, modularization statements to define
processing blocks, and database statements to work with the data in the database.

In this section, we’ll look at the basic syntax rules that every ABAP programmer
should know. We’ll then look at the use of chained statements and comment
lines.

4.2.1 Basic Syntax Rules

There are certain basic syntax rules that need to be followed while writing ABAP
statements:

� An ABAP program is a collection of individual ABAP statements that exist
within the program. Each ABAP statement is concluded with a period (".") and
the first work of the statement is known as a keyword.

� An ABAP statement consists of operands, operators, or additions to keywords
(see Figure 4.2). The first word of an ABAP statement is an ABAP keyword, the
remaining can be operands, operators, or additions. Operands are the data
objects, data types, procedures, and so on.

Various operators are available, such as assignment operators that associate the
source and target fields of an assignment (e.g., = or ?=), arithmetic operators
that assign two or more numeric operands with an arithmetic expression (e.g.,
+, -, *), relational operators that associate two operands with a logical expres-
sion (such as =, <, >), etc. Each ABAP keyword will have its own set of additions.

� Each word in the statement must be separated by at least one space.

� An ABAP statement ends with a period, and you can write a new statement on
the same line or on a new line. A single ABAP statement can extended over sev-
eral lines.

� ABAP code is not case-sensitive.

In Figure 4.2, the program shown consists of three ABAP statements written
across three lines. The first word in each of these statements (REPORT, PARAMETERS,

ABAP Syntax 4.2

111

and WRITE) is a keyword. As you can see, each statement begins with a keyword
and ends with a period. Also, each ABAP word is separated by a space.

Figure 4.2 ABAP Statement

You can write multiple statements on one line or one statement can extend over
multiple lines. Therefore, if you wish, you can rewrite the code in Figure 4.2 as
shown:

REPORT ZCA_DEMO_PROGRAM. PARAMETERS p_input(10) TYPE c. WRITE p_
input RIGHT-JUSTIFIED.

However, to keep the code legible, we recommend restricting your program to
one statement per line. In some cases, it’s recommended to break a single state-
ment across multiple lines—for example:

SELECT * FROM mara INTO TABLE it_mara WHERE matnr EQ p_matnr.

The above statement may be written as shown in Listing 4.1 to make it more leg-
ible.

SELECT * FROM mara
INTO TABLE it_mara
WHERE matnr EQ p_matnr.

Listing 4.1 Example of Splitting Statement across Multiple Lines

4.2.2 Chained Statements

If more than one statement starts with the same keyword, you can use a colon (:)
as a chain operator and separate each statement with a comma. These are called
chained statements, and they help you avoid repeating the same keyword on each
line.

For example,

DATA v_name(20) TYPE c.
DATA v_age TYPE i.

Keyword Operand Addition

ABAP Programming Concepts4

112

Also can be written as

DATA : v_name(20) TYPE c,
v_age TYPE i.

End the last statement in the chain with a period. Chained statements are not lim-
ited to keywords; you can put any identical first part of a chain of statements
before the colon and write the remaining parts of the individual statements sepa-
rated by comma—for example,

v_total = v_total + 1.
v_total = v_total + 2.
v_total = v_total + 3.
v_total = v_total + 4.

can be chained as

v_total = v_total + : 1, 2, 3, 4.

Note

ABAP code is not case-sensitive, so you can use either uppercase or lowercase to write
ABAP statements. We recommend writing keywords and their additions in uppercase
and using lowercase for other words in the statement to make the code more legible.

4.2.3 Comment Lines

To make your source code easy to understand for other programmers, you can
add comments to it (see Listing 4.2). Comment lines are ignored by the system
when the program is generated, and they’re useful in many ways.

DATA f1 TYPE c LENGTH 2 VALUE 'T3'.
DATA f2 TYPE n LENGTH 2.
*This is a comment line
f2 = f1.
WRITE f2. "This is also a comment line

Listing 4.2 Comment lines

There are two ways to add comment lines in source code:

� You can enter an asterisk (*) at the beginning of a line to make the entire line
a comment.

� You can enter a double quotation mark (") midline to make the part of the line
after the quotation mark a comment this is called an in-line comment).

ABAP Keywords 4.3

113

You can comment (i.e., set as a comment) on a block of lines at once (a multiline
comment) by selecting the lines to be commented on and pressing (Ctrl) + (<) on
the keyboard. Similarly, to uncomment (i.e., set as normal code) a block of lines,
you can select the lines and press (Ctrl) + (>).

Alternatively, you can also use the context menu to comment or uncomment
code. To comment a line of code or a block lines, select the code, right-click, and
select the appropriate option from the Format context menu. This helps you
avoid the tedious job of adding asterisks manually at the beginning of each line.

Now that you have a better understanding of basic ABAP syntax rules and chain-
ing ABAP statements, in the next section, we’ll look at the keywords used in
ABAP.

4.3 ABAP Keywords

Because each ABAP statement starts with a keyword, writing ABAP statements is
all about choosing the right keyword to perform the required task. Every key-
word provides specific functionality and comes with its own set of additions,
which allow you to extend the keyword’s functionality.

For each keyword, SAP maintains extensive documentation, which serves as a
guide to understanding the syntax to use with the keyword and the set of addi-
tions supported for the keyword.

You can access the keyword documentation by typing “ABAPDOCU” in the com-
mand bar to open it just like any other transaction or by placing the cursor on the
keyword and pressing (F1) while writing your code in ABAP Editor. You can also
visit https://help.sap.com/abapdocu_750/en/abenabap.htm, to access an online ver-
sion of the ABAP keyword documentation (see Figure 4.3).

Because there are literally hundreds of keywords that can be used in ABAP, the
best way to become familiar with the keywords is to explore them in relation to
a requirement. We’ll be taking this approach throughout the book as we intro-
duce you to these keywords in various examples.

ABAP Programming Concepts4

114

Figure 4.3 ABAP Keyword Documentation

4.4 Introduction to the TYPE Concept

An ABAP program only works with data inside data objects. The first thing you
do when developing a program is declare data objects. Inside these data objects,
you store the data to be processed in your ABAP program. You use declarative
statements to define data objects that store data in the program; these statements
are called data declarations.

Typically, you’ll work with various kinds of data, such as a customer’s name,
phone number, or amount payable. Each type of data has specific characteristics.
The customer’s name consists of letters, a phone number consists of digits from 0
to 9, and the amount due to the customer will be a number with decimal values.
Identifying the type and length of data that you plan to store in data objects is
what the TYPE concept is all about.

In this section, we’ll look at data types, domains, and data objects.

Introduction to the TYPE Concept 4.4

115

4.4.1 Data Types

Data types are templates that define data objects. A data type determines how the
contents of a data object are interpreted by ABAP statements. Other than occupy-
ing some space to store administrative information, they don’t occupy any mem-
ory space for work data in the program. Their purpose simply is to supply the
technical attributes of a data object.

Data types can be broadly classified as elementary, complex, or reference types.
In this chapter, we’ll primarily explore the elementary data types and will only
briefly cover complex types and reference types. More information on complex
data types can be found in Chapter 5, and more details about reference types are
provided in Chapter 8.

Elementary Data Types

Elementary data types specify the types of individual fields in an ABAP program.
Elementary data types can be classified as predefined elementary types or user-
defined elementary types. We’ll look at these subtypes next.

Predefined Elementary Data Types

The SAP system comes built in with predefined elementary data types. These data
types are predefined in the SAP NetWeaver AS ABAP kernel and are visible in all
ABAP programs. You can use these predefined elementary data types to assign a
type to your program data objects. You can also create your own data types (user-
defined elementary data types) by referring to the predefined data types.

Table 4.1 lists the available predefined elementary data types.

Data Type Definition

i Four-byte integer

int8 Eight-byte integer

f Binary floating-point number

p Packed number

decfloat16 Decimal floating-point number with sixteen decimal places

decfloat34 Decimal floating-point number with thirty-four decimal places

Table 4.1 Predefined Elementary Data Types

ABAP Programming Concepts4

116

Predefined elementary data types can be classified as numeric or nonnumeric
types. There are six predefined numeric elementary data types:

� 4-byte integer (i)

� 8-byte integer (int8)

� Binary floating-point number (f)

� Packed number (p)

� Decimal floating point number with 16 decimal places (decfloat16)

� Decimal floating point number with 34 decimal places (decfloat34)

There are five predefined nonnumeric elementary data types:

� Text field (c)

� Numeric character string (n)

� Date (d)

� Time (t)

� Hexadecimal (x)

The field length for data types f, i, int8, decfloat16, decfloat34, d, and t is
fixed. In other words, you don’t need to specify the length when you use these
data types to declare data objects (or user-defined elementary data types) in your
program. The field length determines the number of bytes that the data object
occupies in memory. In types c, n, x, and p, the length is not part of the type defi-
nition. Instead, you define it when you declare the data object in your program.

c Text field
(alphanumeric characters)

d Date field
(format: YYYYMMDD)

n Numeric text field
(numeric characters 0 to 9)

t Time field
(format: HHMMSS)

x Hexadecimal field

Data Type Definition

Table 4.1 Predefined Elementary Data Types (Cont.)

Introduction to the TYPE Concept 4.4

117

Before we discuss the predefined elementary data types further, let’s see how
they’re used to define a data object in the program.

The keyword used to define a data object is DATA. For the syntax, you provide a
name for your data object and use the addition TYPE to refer it to a data type, from
which the data object can derive its technical attributes.

For example, the line of code in Figure 4.4 defines the data object V_NAME of TYPE
c (character).

Figure 4.4 Declaring a Data Object

Notice that we did not specify the length in Figure 4.4; therefore, the object will
take the data type’s initial length by default. Here, V_NAME will be a data object of
TYPE c (text field) and LENGTH 1 (default length). It can store only one alphanu-
meric character.

If you wish to have a different length for your data object, you need to specify the
length while declaring the data object, either with parentheses or using the addi-
tion LENGTH:

DATA v_name(10) TYPE c.
DATA v_name TYPE c LENGTH 10.

In this example, V_NAME will be a data object of TYPE c and LENGTH 10. It can now
store up to 10 alphanumeric characters. The Valid Field Length column in Table
4.2 lists the maximum length that can be assigned to each data type.

For data types of fixed lengths, you don’t need to specify the length, because it’s
part of the TYPE definition—for example:

DATA count TYPE i.
DATA date TYPE d.

Table 4.2 lists the initial length of each data type, its valid length, and its initial
value. The initial length is the default length that the data object occupies in mem-
ory if no length specification is provided while defining the data object, and the
initial value of a data object is the value it stores when the memory is empty.

Keyword Data Object Name Data Type Reference

ABAP Programming Concepts4

118

For example, as shown in Table 4.2, a TYPE c data object will be filled with spaces
initially, whereas a TYPE n data object would be filled with zeros.

Predefined nonnumeric data types can be further classified as follows:

� Character types
Data types c, n, d, and t are character types. Data objects of these types are
known as character fields. Each position in one of these fields can store one
code character. For example, a data object of LENGTH 5 can store five characters
and a data object of LENGTH 10 can store ten characters. Currently, ABAP only
works with single-byte codes, such as American Standard Code for Information
Interchange (ASCII) and Extended Binary Coded Decimal Interchange Code
(EBCDI). As of release 6.10, SAP NetWeaver AS ABAP supports both Unicode
and non-Unicode systems. However, support for non-Unicode systems has
been withdrawn from SAP NetWeaver 7.5.

Data Type Initial Field Length
(Bytes)

Valid Field Length
(Bytes)

Initial Value

Numeric Types

i 4 4 0

int8 8 8 0

f 8 8 0

p 8 1–16 0

decfloat16 8 8 0

decfloat34 16 16 0

Character Types

c 1 1–65535 Space

d 8 8 '00000000'

n 1 1–65535 '0 … 0'

t 6 6 '000000'

Hexadecimal Type

x 1 1–65535 X'0 … 0'

Table 4.2 Elementary Data Types: Technical Specifications

Introduction to the TYPE Concept 4.4

119

Single-byte code refers to character encodings that use exactly one byte for each
character. For example, the letter A will occupy one byte in single-byte encod-
ing.

ASCII is a character-encoding standard. ASCII code represents text in comput-
ers and other devices and is a popular choice for many modern character-
encoding schemes. In an ASCII file, each alphabetic or numeric character is rep-
resented with a seven-bit binary number.

EBCDI is an eight-bit character encoding, which means each alphabetic or
numeric character is represented with an eight-bit binary number.

� Hexadecimal types
The data type x interprets individual bytes in memory. These fields are called
hexadecimal fields. You can process single bits using hexadecimal fields. Hexa-
decimal notation is a human-friendly representation of binary-coded values.
Each hexadecimal digit represents four binary digits (bits), so a byte (eight bits)
can be more easily represented by a two-digit hexadecimal value.

With modern programming languages, we seldom need to work with data at the
bits and bytes levels. However, unlike ABAP (which uses single-byte code pages,
like ASCII), many external data sources use multibyte encodings. Therefore, TYPE
x fields are more useful in a Unicode system, in which you can work with the
binary data to be processed by an external software application.

For example, you can insert the hexadecimal code 09 between fields to create a
tab-delimited file so that spreadsheet software—like Microsoft Excel—knows
where each new field starts. TYPE x fields are also useful if you wish to create files
in various formats from your internal table data.

Predefined Elementary ABAP Types with Variable Length

The data types we’ve discussed so far either have a fixed length or require a
length specification as part of data object declaration. We assume that we know
the length of the data we plan to process; for example, a material number is
defined in SAP as an alphanumeric field with a maximum of eighteen characters
in length. Therefore, if you wish to process a material number in your ABAP pro-
gram, you can safely create a data object as a TYPE c field with LENGTH 18. How-
ever, there can be situations in which you need a field with dynamic length
because you won’t know the length of the data until runtime.

ABAP Programming Concepts4

120

For such situations, ABAP provides data types with variable lengths:

� string

This is a character type with a variable length. It can contain any number of
alphanumeric characters.

� xstring

This is a hexadecimal type with a variable length.

When you define a string as a data object, only the string header, which holds
administrative information, is created statically. The initial length of the string
data object is 0, and its length changes dynamically at runtime based on the data
stored in the data object—for example:

DATA path TYPE string.
DATA xpath TYPE xstring.

Table 4.3 highlights some of the use cases for the predefined elementary data
types.

Data Type Use Case

Numeric Types

i Use to process integers like counters, indexes, time peri-
ods, and so on. Valid value range is -2147483648 to
+2147483647.

If the value range of i is too small for your need, use
TYPE p without the DECIMALS addition.

Example syntax:

DATA f1 TYPE i. "fixed length

f Use to process large values when rounding errors aren’t
critical. To a great extent, TYPE f is replaced by dec-
float (decfloat16 and decfloat34) as of SAP Net-
Weaver AS ABAP 7.1.

Use data type f only if performance-critical algorithms
are involved and accuracy is not important.

Example syntax:

DATA f1 TYPE f. "fixed length

Table 4.3 Predefined Elementary Data Types and Use Cases

Introduction to the TYPE Concept 4.4

121

p Use type p when fractions are expected with fixed deci-
mals known at design time (distances, amount of money
or quantities, etc.).

Example syntax:

DATA f1 TYPE p DECIMALS 2. "Takes default le
ngth 8
* OR you can manually specify length.
DATA f1(4) TYPE p DECIMALS 3.

decfloat16 and decfloat34 If you need fractions with a variable number of decimal
places or a larger value range, use decfloat16 or dec-
float34.

Example syntax:

DATA f1 TYPE decfloat16.
DATA f1 TYPE decfloat34.

Nonnumeric Types

c Use to process alphanumeric values like names, places,
or any character strings.

Example syntax:

DATA f1 TYPE c.
DATA f1(10) TYPE c.
DATA f1 TYPE c LENGTH 10.

n Use to process numeric values like phone numbers or zip
codes.

Example syntax:

DATA f1 TYPE n.
DATA f1(10) TYPE n.
DATA f1 TYPE n LENGTH 10.

d Use to process dates; expected format is YYYYMMDD.

Example syntax:

DATA f1 TYPE d.

t Use to process time; expected format is HHMMSS.

Example syntax:

DATA f1 TYPE t.

Data Type Use Case

Table 4.3 Predefined Elementary Data Types and Use Cases (Cont.)

ABAP Programming Concepts4

122

For arithmetic operations, use numeric fields only. If nonnumeric fields are used
in arithmetic operations, the system tries to automatically convert the fields to
numeric types before applying the arithmetic operation. This is called type conver-
sion, and each data type has specific conversion rules. Let’s look at this concept in
more detail next.

Type Conversions

When you move data between data objects, either the data objects involved in the
assignment should be similar (both data objects should be of the same type and
length), or the data type of the source field should be convertible to the target
field.

If you move data between dissimilar data objects, then the system performs type
conversion automatically by converting the data in the source field to the target
field using the conversion rules. For the conversion to happen, a conversion rule
should exist between the data types involved.

For example, the code in Listing 4.3 assigns a character field to an integer field.

x Use to process the binary value of the data. Useful for
working with different code pages.

Example syntax:

DATA f1 TYPE x.
DATA f1(10) TYPE x.
DATA f1 TYPE x LENGTH 10.

string Use when the length of the TYPE c field is known only at
runtime.

Example syntax:

DATA f1 TYPE string.

xstring Use when the length of the TYPE x field is known only at
runtime.

Example syntax:

DATA f1 TYPE xstring.

Data Type Use Case

Table 4.3 Predefined Elementary Data Types and Use Cases (Cont.)

Introduction to the TYPE Concept 4.4

123

DATA f1 TYPE c LENGTH 2 VALUE 23.
DATA f2 TYPE i.
f2 = f1.

Listing 4.3 Type Conversion with Valid Content

In Listing 4.3, the data object f1 is defined as a character field with an initial value
of 23. Since f1 is of TYPE c, the value is interpreted as a character by the system
rather than an integer. The listing also defines another data object, f2, as an inte-
ger type.

When you assign the value of f1 to the data object f2, the system performs the
conversion using the applicable conversion rule (from c to i) before moving the
data to f2. If the conversion is successful, the data is moved. If the conversion is
unsuccessful, the system throws a runtime error. Because the field f1 has the
value 23, the conversion will be successful, because 23 is a valid integer.

Listing 4.4 assigns an initial value of T3 for the field f1. This is a valid value for a
character-type field, but what happens if you try to assign this field to an integer-
type field?

DATA f1 TYPE c LENGTH 2 VALUE 'T3'.
DATA f2 TYPE i.
f2 = f1.

Listing 4.4 Type Conversion with Invalid Content

In Listing 4.4, the field f1 has the value T3; because the system can’t convert this
value to a number, it’ll throw a runtime error by raising the exception CX_SY_CON-
VERSION_NO_NUMBER (see Figure 4.5) when the statement f2 = f1 is executed. The
runtime error can be avoided by catching the exception, which we will discuss in
Chapter 9.

Figure 4.5 Runtime Error Raised by Code in Listing 4.4

ABAP Programming Concepts4

124

There are two exceptions: A data object of TYPE t can’t be assigned to a data object
of TYPE d and vice versa. In addition, assignments between data objects of nearly
every different data type are possible.

Conversion Rules

The conversion rule for a TYPE c source field and a TYPE i target field is that they must
contain a number in commercial or mathematical notation. There are a few exceptions
however. The following lists a few of these exceptions:

� A source field that only has blank characters is interpreted with the number 0.

� Scientific notations is only allowed if it can be interpreted as a mathematical nota-
tion.

� Decimal places must be rounded to whole numbers.

You can read all the conversion rules and their exceptions by visiting the SAP Help web-
site at http://help.sap.com/abapdocu_750/en/abenconversion_elementary.htm.

Even though the automatic type conversion makes it easy to move data between
different types, do not get carried away. Exploiting all the conversion rules to
their full extent may give you invalid data. Only assign data objects to each other
if the content of the source field is valid for the target field and produces an
expected result.

For example, the code in Listing 4.5 will result in invalid data when a TYPE c field
containing character string is assigned to a numeric field.

DATA f1 TYPE c LENGTH 2 VALUE 'T3'.
DATA f2 TYPE n LENGTH 2.
f2 = f1.

Listing 4.5 Example Leading to Data Inconsistency

In Listing 4.5, f2 is of TYPE n and will have the value 03 (T is ignored) instead of
raising an exception as in the earlier case, when f2 was declared as TYPE i.

Type conversions are also performed automatically with all the ABAP operations
that perform value assignments between data objects (like arithmetic operations).

It’s always recommended to use the correct TYPE for the data you plan to process.
This not only saves the time of performing type conversions, it also allows your
ABAP statements to interpret the data correctly and provide additional function-
ality.

Introduction to the TYPE Concept 4.4

125

Say you want to process a date that’s represented in an internal format as YYYYM-
MDD. The following example explains how the WRITE statement interprets this
data based on the data type. In Listing 4.6, a data object date is defined as a TYPE
c field with 20151130 as the value to represent the date in internal format. When
this field is written to the output using the WRITE statement, the value is printed
as it is in the output. The WRITE statement does not interpret this value as a date;
instead, it’s interpreted as a text value.

DATA date TYPE c LENGTH 8 VALUE '20151130'.
WRITE date.

Listing 4.6 Date Stored in TYPE c Field

The output of the code in Listing 4.6 will be 20151130. If instead you declare the
data object date as TYPE d as shown in Listing 4.7, the output will depend on the
date format set by the country-specific system settings or the user’s personal set-
tings.

DATA date TYPE d VALUE '20151130'.
WRITE date.

Listing 4.7 Date Stored in TYPE d Field

SAP allows you to set your own personal date format. So, say that User 1 has his
personal date format set as MMDDYYYY, and User 2 has his personal date format
set as DDMMYYYY. When User 1 executes a program with the code in Listing 4.7,
the output would be 11302015, and when User 2 executes the same program, the
output would be 30112015.

Here, the WRITE statement can make use of the system settings/user’s personal set-
tings to display the output, because it can interpret the value as a date. In Listing
4.6, however, the value in the data object v_date was interpreted as a character
string, so the code outputted the value as is.

User-Defined Elementary Data Types

In ABAP, you can define your own elementary data types based on the predefined
elementary data types. These are called user-defined elementary data types and are
useful when you want to define a few related data objects that can be maintained
centrally.

ABAP Programming Concepts4

126

User-defined elementary data types can be declared locally in the program using
the TYPE keyword, or you can define them globally in the system in ABAP Data
Dictionary.

Say you want to create a family tree or a pedigree chart. You’d start by defining
various data objects to process the names of different family members. The data
object declarations would look something like what’s shown in Listing 4.8.

DATA : Father_Name TYPE c LENGTH 20,
Mother_Name TYPE c LENGTH 20,
Wife_Name TYPE c LENGTH 20,
Son_Name TYPE c LENGHT 20,
Daughter_Name TYPE c LENGTH 20.

Listing 4.8 Data Objects Referring to Predefined Types

Here, it’s assumed that the length of a person’s name can be a maximum of
twenty characters. Later, if you want to extend the length of a person’s name to
thirty characters, you’ll need to edit the definition of all data objects individually.

In Listing 4.8, the source code needs changes in five different places. This may
become time-consuming and tedious in larger programs.

To overcome this problem, first you can create a user-defined type and then point
all references to a person to this data type, as shown in Listing 4.9.

TYPES person TYPE c LENGTH 20.
DATA : Father_Name TYPE person,

Mother_Name TYPE person,
Wife_Name TYPE person,
Son_Name TYPE person,
Daughter_Name TYPE person.

Listing 4.9 Data Objects Referring to User-Defined Types

In Listing 4.9, you first define a user-defined elementary data type person using
the TYPE keyword, and this data type is then used to define other data objects.
Here, the data type person is based on the elementary TYPE c. This way, if you
need to extend the length of all data objects referring to a person in your code,
you just need to change the definition of your user-defined type rather than edit
each individual data object manually.

The basic syntax of the TYPE keyword is similar to that of the DATA keyword, but
with a different set of additions that can be used. Remember that data types don’t
occupy any memory space on their own and can’t be used to store any work data.

Introduction to the TYPE Concept 4.4

127

You always need to create a data object as an instance of a data type to work with
the program data.

Data types and data objects have their own namespaces, which means that a data
type and data object with the same name in the same program can exist. How-
ever, to avoid confusion, we follow certain naming conventions while defining
various data types and data objects. For example, global variables are prefaced
with gv_, local variables with lv_, internal tables with it_, and so on. These nam-
ing conventions are generally set by a company as part of its programming best
practices and coding standards.

Complex Data Types

Complex data types are made up of a combination of other data types and must be
created using existing data types. Complex data types allow you to work with
interrelated data types under a common name.

For more information on complex data types, see Chapter 5.

Reference Types

Reference types describe reference variables (data references and object references)
that provide references to other objects. For more information on reference
types, see Chapter 8. For more information on data references see Chapter 16.

Internal and External Format of Data

As you’ve seen, data can be represented in various formats. Say you have a
requirement indicating that the user wants to create a document and capture the
due date for each document. This data should be updated in the database so that
the user can later run a report to pull out all the documents that are due on a par-
ticular date.

While creating the document, users would prefer to input the due date in their
own personal format. For example, let’s assume there are two users, User 1 and
User 2, who will be using this application to create documents. User 1 inputs the
due date in MM/DD/YYYY format, and User 2 inputs the date in DD-MM-YYYY
format. Assume both users have created four documents in total and that the data

ABAP Programming Concepts4

128

has been updated in the database. The data in the database table would look like
Table 4.4.

Now, the report you want to develop takes the due date as an input to pull out the
documents that are due on that particular date. This report will have a select state-
ment something like the following to query the database table:

SELECT Document_Number FROM db_table WHERE Due_Date EQ inp_due_date.

Here, you’re comparing the data in the Due_Date column of the table with the
user-provided date to fetch all the matching document numbers. As you can see,
if the user inputs the November 5, 2015, as the due date in MM/DD/YYYY format
(11/05/2015), then the SELECT statement will fetch only document number 1001
and ignores document 1003, because the latter doesn’t match character-for-char-
acter with the given input. If the input is given in DD-MM-YYYY format (05-11-
2015), then document 1003 is fetched and 1001 is ignored. If you input the date
in any other format, none of the records are fetched.

Internal and external data formats can help with this issue. If you maintain the
internal format of the date as YYYYMMDD, you can convert the user-provided
date to the internal format (20151105) and save it to the database. In this way,
the data can be saved in the same format consistently. Similarly, you can convert
the date to an external format before displaying it to the user so that the user
always sees the date in his own preferred format.

Following this concept, the data in Table 4.5 can be represented as shown.

Document_Number Due_Date Created_By

1001 11/05/2015 USER1

1002 11/06/2015 USER1

1003 05-11-2015 USER2

1004 06-11-2015 USER2

Table 4.4 Data Represented in External Format

Document_Number Due_Date Created_By

1001 20151105 USER1

1002 20151106 USER1

Table 4.5 Dates Represented in Internal Format

Introduction to the TYPE Concept 4.4

129

Now, when the user inputs a date in your report, it’s always converted to the
internal format first before querying the database table to fetch the matching
records. This allows the user to input the date in any of the valid external formats
per his personal choice without worrying about the format the program expects.

Output Length of Data Types

In the previous section, the external format of date included two separators (/ or
-). The internal length of a date is eight characters, but to represent the date in an
external format requires two extra characters to accommodate the separators.
Therefore, the external length should be a minimum of ten characters. This is
determined by the output length of the data type.

If you examine the data object of TYPE i in the debugger, you’ll see that differ-
ent lengths have been assigned for Length and Output Length, as shown in
Figure 4.6.

Figure 4.6 Output Length

As shown in Figure 4.6, the data object f2 is of Type I with Length 4 bytes. How-
ever, the Output Length is 11 to accommodate the thousands separator for the
value.

If you check the same for a data object of Type D, you’ll see that the Length and
the Output Length are the same—eight bytes—as shown in Figure 4.7.

1003 20151105 USER2

1004 20151106 USER2

Document_Number Due_Date Created_By

Table 4.5 Dates Represented in Internal Format (Cont.)

ABAP Programming Concepts4

130

Figure 4.7 Output Length of Type d

If you return to Listing 4.7, you’ll see that the system outputted the date without
the separators, because there was no space in the data object to accommodate the
separators. Therefore, it simply converted the date to external format while ing-
noring the separators. The output length of each data type is predefined and can’t
be overridden manually.

If you want more control, you can create your own user-defined elementary data
types, as described earlier in this section.

4.4.2 Data Elements

As mentioned earlier, user-defined elementary data types can be created for local
reusability within the program or for global reusability across multiple programs.
The global user-defined elementary types are called data elements and are created
in ABAP Data Dictionary.

Data types defined using the TYPE keyword are only visible within the same pro-
gram that they’re created in. If you want to create an elementary user-defined
type with global visibility across the system, you can do so in ABAP Data
Dictionary. As you may recall from Chapter 3, ABAP Data Dictionary is com-
pletely integrated into ABAP Workbench. This allows you to create and manage
data definitions (metadata) centrally.

Now, let’s create a data element in ABAP Data Dictionary. Proceed through the
following steps to create a data element ZCB_PERSON, which is of TYPE c and
LENGTH 20:

1. Open ABAP Data Dictionary via Transaction SE11 in the command bar or by
navigating to the menu path Tools � ABAP Workbench � Development � ABAP

Dictionary in SAP menu.

Introduction to the TYPE Concept 4.4

131

2. Select the Data Type radio button, provide a name for your data element in the
field to the right of the button, and click the Create button. Because the data
elements are repository objects, they should exist in a customer namespace
(i.e., the data element name should start with Z or Y; see Figure 4.8).

Figure 4.8 ABAP Data Dictionary: Initial Screen

3. The system presents a dialog box (see Figure 4.9) asking you to select the data
type you want to create. Data Element represents the user-defined elementary
data type, so select the Data Element radio button and click Continue (green
checkmark). (We’ll have an opportunity to explore structures and table types in
later chapters.)

Figure 4.9 Create Type

4. On the next screen (see Figure 4.10), provide a short description for your data
type to help others understand its purpose. This short text is also displayed as
a title in the (F1) help for all screen fields referring to this data element.

ABAP Programming Concepts4

132

Note that the Data Type tab is selcted by default and the radio button Elemen-

tary Type preselected. Here, you have two options to maintain the technical
attributes for your data element: You can either derive them from a domain or
use one of the predefined types.

For now, use the predefined elementary data type; we’ll explore the domain
concept in the next section.

Figure 4.10 Change Data Element Screen

5. Select the Predefined Type radio button and enter the predefined type name in
the Data Type field. Note that ABAP Data Dictionary has its own predefined
elementary data types that correspond to the predefined elementary data types
in ABAP programs we discussed earlier.

6. Because we plan to create a character data type, you can enter “CHAR” in the
Data Type field or select it by using (F4) help in the field (see Figure 4.11).

7. Enter the length of the data type in the Length field. For this data element,
enter “20”. Click the Activate button (see Figure 4.12) or press (Ctrl)+ (F3) to
activate the data element. Save it to a package, and click Continue when an
informative message asks you to maintain field labels.

Introduction to the TYPE Concept 4.4

133

Figure 4.11 Data Type Value List

Figure 4.12 Activating a Data Element

8. If the data type supports decimals, you can also maintain the number of deci-
mal places in the Decimal Places field.

The data type we just created has global visibility and can be used to define data
objects or user-defined data types in any program, as shown:

DATA name TYPE ZCB_PERSON.
TYPES user TYPE ZCB_PERSON.

Activate Button

ABAP Programming Concepts4

134

If you change the definition of the data element, the changes will be automatically
reflected for all the objects refering to that data element. This allows you to cen-
trally maintain the definitions of all related objects. Because data elements are
global objects, it’s recommended not to change them without analyzing the
impact first.

There are many things that can be maintained at the data element level, like
search helps, field labels, and help documentation. The program fields can derive
these properties automatically. We’ll explore these concepts in greater detail in
Chapter 10.

4.4.3 Domains

A domain describes the technical attributes of a field. The primary function of a
domain is to define a value range that describes the valid data values for the fields
that refer to this domain.

However, if you plan to create multiple data elements that are technically the
same, you can attach a domain to derive the technical attributes of a data element.
This allows you to manage the technical attributes of multiple data elements cen-
trally, meaning that you can change the technical attributes once for the domain,
and the change will be reflected automatically for all the data elements that use
the domain. This is an alternative to changing each individual data element to
maintain technical attributes when a predefined elementary data type is selected.

A field can’t be referred to a domain directly; it picks up the domain reference
through a data element if the domain is attached to the data element. In other
words, you always attach a domain to a data element. Figure 4.13 depicts this
relationship.

In Figure 4.13, Field 1 refers to Data Element 1, whereas Field 2 and Field 3 refer
to Data Element 2. Both Data Element 1 and Data Element 2 are using the same
domain to derive technical attributes. This implies that Field 2 and Field 3 are
both semantically and technically the same, whereas Field 1 is semantically differ-
ent from Field 2 and Field 3 but is technically the same as these two fields.

For example, a sales document number and a billing document number can both
be technically the same, such as both being ten-digit character fields. However,
the sales document and billing document are semantically different (i.e., their
purposes are different). For such a case, you can use the same domain for both the

Introduction to the TYPE Concept 4.4

135

sales document number and billing document number but a separate data ele-
ment for each.

Figure 4.13 Fields, Data Elements, and Domain Relationships

You can also maintain a conversion routine at the domain level for automatic con-
version to internal and external data formats for fields referring to a domain.
We’ll discuss this topic more in Chapter 10.

You can take a top-down approach or bottom-up approach to create a domain; that
is, you either can create the domain separately first and attach it to a data element
or can create the domain while creating the data element. Let’s take a bottom-up
approach to create a domain and attach it to the previously created data element
ZCB_PERSON.

Because domains and data elements have their own namespaces, you can use the
same name for both of them. In the following example, you’ll create a domain
using the same name as the data element created previously in Section 4.4.2; you
can use a different name if it becomes too confusing.

The following steps will walk you through the procedure to create a domain in
ABAP Data Dictionary:

1. On the initial ABAP Data Dictionary screen (Figure 4.14), select the Domain

radio button, input the name of the domain, and click the Create button.
Domains are also repository objects, so they should exist in a customer name-
space.

2. Enter a Short Description for the domain. This short description is never seen
by end users. It’s displayed when searching for domains using (F4) help and it
helps other developers understand your domain’s purpose.

Field 1 Field 2 Field 3

Data Element 1 Data Element 2

Domain

ABAP Programming Concepts4

136

Figure 4.14 ABAP Dictionary: Initial Screen

3. Use the (F4) help for the Data Type field to select the data type and enter a
value for the No. Characters field. This value defines the field length (Figure
4.15). Optionally, you can enter the number of Decimal Places for numeric
types.

Figure 4.15 Change Domain Screen

Introduction to the TYPE Concept 4.4

137

4. You can also enter Output Characteristics like output length, conversion rou-
tine, or disabling automatic uppercase conversion for screen fields referring to
this domain. We’ll explore these options further in Chapter 10.

5. Activate the domain. To attach this domain to a data element, open the data ele-
ment and select the Domain radio button under the Elementary Type radio
button, as shown in Figure 4.16. Type the name of the domain and press
(Enter).

6. Notice that the Data Type and Length are chosen by the system automatically.
If the system does not set the Data Type and Length after pressing the (Enter)
key, it means the domain does not exist, and an informative message, No

active domain [domain_name] available, is displayed.

At this point, you can simply double-click the domain name to create it using
the top-down approach.

Figure 4.16 Attaching Domain to Data Element

4.4.4 Data Objects

Data objects derive their technical attributes from data types and occupy memory
space to store the work data of a program. ABAP statements access this content by
addressing the name of the data object. Data objects exist as an instance of data

ABAP Programming Concepts4

138

types. Each ABAP data object has a set of technical attributes, such as data type,
field length, and number of decimal places.

Data objects are the physical memory units with which your ABAP statements can
work. ABAP statements can address and interpret the contents of data objects. All
data objects are declared in the ABAP program and are local to the program,
which means they exist in the program memory and can be accessed only from
within the same program. There is no concept of defining data objects centrally in
the system.

Data objects are not persistent; they exist only while the program is being exe-
cuted. The life of the data object lasts only as long as the program execution lasts.
They are created when the program execution starts and destroyed when the pro-
gram execution ends.

Before you can process persistent data (such as data from a database or a sequen-
tial file), you must read the data into data objects first, which can then be accessed
by ABAP statements. Similarly, if you want to retain the contents of a data object
beyond the end of the program, you must save it in a persistent form. Technically,
anything that can store work data in a program can be called a data object.

Let’s explore different kinds of data objects that can be defined in your ABAP pro-
grams. In the following subsections, we will look at the different classifications of
data objects.

Literals

Literals are not created using any declarative statements, nor do they have names.
They exist in the program source code and are called unnamed data objects. Like
all data objects, they have fixed technical attributes.

You cannot access the memory of a literal to read its content, because it’s an
unnamed data object. This means that literals are not reusable data objects and
their contents can’t be changed. Unlike literals, all other data objects are named
data objects, which are explicitly declared in the program.

For example, in the following snippet, Hello World and 1234 are literals:

WRITE 'Hello World'.
WRITE 1234.

Introduction to the TYPE Concept 4.4

139

There are two types of literals:

� Numeric literals
Numeric literals are a sequence of digits (0 to 9) that can have a prefixed sign.
They do not support decimal separators or notation with a mantissa and expo-
nent.

Examples of numeric literals include the following:

� +415

� -345

� 400

The following excerpt shows numeric literals used in ABAP statements:

DATA f1 TYPE I VALUE -4563.
WRITE 1234.
F1 = 1234.

� Character literals
Character literals are alphanumeric characters in the source code of the pro-
gram enclosed in single quotation marks (') or back quotes (`).

For example:

'This is a text field literal'.
'1901 CA'.
`This is a string literal`.
`1901 CA`.

Character literals maintained in single quotes have the predefined type c and
length matching the number of characters. These are called text field literals.
The ones maintained with back quotes have the predefined type string and are
called string literals. If you use character literals where a numeric value is
expected, they are converted into a numeric value. Examples of character liter-
als that can be converted to numeric types include the following:

� '12345'.

� '-12345'.

� '0.345'.

� '123E5'.

� '+23E+12'.

ABAP Programming Concepts4

140

Variables

Variables are data objects for which content can be changed via ABAP statements.
Variables are named data objects and are declared in the declaration area of the
program. Different keywords, like DATA and PARAMETERS, declare different types
of variables.

For now, let’s explore these two keywords, which define variables, and defer the
discussion of other keywords to later chapters.

DATA

The DATA keyword defines a variable in every context. You can use this keyword
in the global declaration area of the ABAP program to declare a global variable
that has visibility throughout the program, or you can use it inside a procedure to
declare a local variable with visibility only within the procedure—for example:

DATA field1 TYPE i

In the preceding statement, a variable with the name field1 is defined as an inte-
ger field, using the DATA keyword.

Inline Declarations

SAP NetWeaver 7.4 introduced inline declaration, which no longer restricts you to
define your local variables separately at the beginning of the procedure. You can define
them inline as embedded in the given context, helping you to make your code thinner.
We’ll explore this concept in later chapters.

PARAMETERS

The PARAMETERS keyword plays a dual role. It defines a variable within the pro-
gram context and also generates a screen field (selection screen). This keyword is
used to create a selection screen for report programs. In these report programs,
we present a selection screen for the user to input the selection criteria for report
processing—for example:

PARAMETERS p_input TYPE c LENGTH 10.

In the preceding statement, a ten-character input field with the name p_input is
defined on the selection screen using the PARAMETERS keyword. This field also
exists as a variable in the program and is linked to the screen field. The input
made on the selection screen for this input field will be stored in the program as
the content of the p_input variable.

ABAP Statements 4.5

141

Constants

Constants are named data objects that are declared using a keyword and whose
content cannot be changed by ABAP statements. The keyword used to declare a
constant is CONSTANT. It is recommended to use constants in lieu of literals wher-
ever possible. Unlike literals, constants can be reused and maintained centrally.
The syntax of constants statement mostly matches the data statement. However,
with constants statements, it is mandatory to use the addition VALUE to assign an
initial value. This value cannot be changed at runtime. For example:

CONSTANTS c_item TYPE c LENGTH 4 VALUE 'ITEM'.

Text Symbols

A text symbol is a named data object in an ABAP program that is not declared in
the program itself. Instead, it’s defined as a part of the text elements of the pro-
gram.

A text symbol behaves like a constant and has the data type c with the length
defined in the text element. We’ll explore text symbols further in Chapter 6.

An example of a text symbol is WRITE text-001. In this statement, a text symbol of
the program with the number 001 is written to the output using the WRITE state-
ment. This text symbol is defined separately in ABAP Editor via the menu path
Goto � Text Elements � Text Symbols.

Text symbols are accessed using the syntax text-nnn, where nnn is the text sym-
bol number.

4.5 ABAP Statements

As we discussed earlier, the source code of an ABAP program is made up of vari-
ous ABAP statements. Unlike other programming languages like C/C++ or Java,
which contain a limited set of language-specific statements and provide most
functionality via libraries, ABAP contains an extensive set of built-in statements.
We’ll explore many ABAP statements as we progress in this book.

The best way to learn about the various ABAP statements available is to put them
in perspective with the requirements at hand. It is beyond the scope of this book
to cover all the available ABAP statements, so we’ll give a brief introduction to

ABAP Programming Concepts4

142

some popular statements here, and we’ll explore these in greater detail in the
upcoming chapters:

� Declarative statements
Declarative statements define data types or declare data objects that are used by
the other statements in a program.

Examples include TYPE, DATA, CONSTANTS, PARAMETERS, SELECT-OPTIONS, and
TABLES.

� Modularization statements
Modularization statements define the processing blocks in an ABAP program.
Processing blocks allow you to organize your code into modules. All ABAP pro-
grams are made up of processing blocks, and different processing blocks allow
you to modularize your code differently. We will explore this topic further in
Chapter 7.

Examples include the LOAD-OF-A-PROGRAM, INITIALIZATION, AT SELECTION SCREEN,
START-OF-SELECTION, END-OF-SELECTION, AT USER-COMMAND, AT LINE-SELECTION,
GET, AT USER COMMAND, AT LINE SELECTION, FORM-ENDFORM, FUNCTION-ENDFUNC-
TION, MODULE-ENDMODULE, and METHOD-ENDMETHOD.

� Control statements
Control statements control the flow of the program within a processing block.
Examples include IF-ELSEIF-ELSE-ENDIF, CASE-WHEN-ENDCASE, CHECK, EXIT,
and RETURN.

� Call statements
Call statements are used to call processing blocks or other programs and trans-
actions.

Examples include PERFORM, CALL METHOD, CALL TRANSACTION, CALL SCREEN, SUB-
MIT, LEAVE TO TRANSACTION, and CALL FUNCTION.

� Operational statements
Operational statements allow you to modify or retrieve the contents of data
objects.

Examples include ADD, SUBTRACT, MULTIPLY, DIVIDE, SEARCH, REPLACE, CONCATE-
NATE, CONDENSE, READ TABLE, LOOP AT, INSERT, DELETE, MODIFY, SORT, DELETE
ADJACENT DUPLICATES, APPEND, CLEAR, REFRESH, and FREE.

Creating Your First ABAP Program 4.6

143

� Database access statements (Open SQL)
Database access statements allow you to work with the data in the database.
Examples include SELECT, INSERT, UPDATE, DELETE, and MODIFY.

In this chapter thus far, we’ve explored the general program structure of an ABAP
program, learned basic rules for using ABAP syntax, touched on the use of ABAP
keywords and ABAP keyword documentation, and introduced the TYPE concept
for data types, data elements, and data objects.

In the next section, you’ll start creating your first ABAP program using what
you’ve learned so far.

4.6 Creating Your First ABAP Program

Before we explore ABAP basics further, you’ll have the chance to create your first
program using ABAP Editor.

You’ll need developer access to the SAP system with relevant development autho-
rizations and a developer key assigned to your user ID. Contact your system
administrator if the system complains about missing authorizations or prompts
you for a developer key when creating the program.

To begin, proceed with the following steps:

1. Open Transaction SE38 or follow the menu path Tools � ABAP Workbench �
Development � ABAP Editor.

2. On the ABAP Editor initial screen, enter the program name, select the Source

Code radio button and click the Create button. Because this program will be a
repository object, it should be in a customer namespace starting with Z or Y, as
shown in Figure 4.17.

3. You’ll see the Program Attributes window (Figure 4.18) to maintain the attri-
butes for your program. Program attributes allow you to set the runtime envi-
ronment of the program.

ABAP Programming Concepts4

144

Figure 4.17 ABAP Editor: Initial Screen

Figure 4.18 Program Attributes Screen

Here, you can maintain a title for your program and other attributes. The Title

and Type are mandatory fields; the others are optional.

Table 4.6 provides an explanation of all the attributes and their significance.

Creating Your First ABAP Program 4.6

145

Attribute Explanation

Type Allows you to select the type of program you wish to create.
This is the most important attribute and specifies how the pro-
gram is executed. It’s a mandatory field.

From within ABAP Editor, you can only choose from the follow-
ing program types:

� Executable Program

� Module Pool

� Subroutine Pool

� Include Program

All other program types are not created directly from within
ABAP Editor but are created with the help of special tools such
as Function Builder for function groups or Class Builder for class
pools.

Status Allows you to set the status of the program development—for
example, production program or test program.

Application Allows you to set the program application area so that the sys-
tem can allocate the program to the correct business area. For
example, SAP ERP Financial Accounting.

Authorization Group In this field, you can enter the name of a program group. This
allows you to group different programs together for authoriza-
tion checks.

Logical Database Visible only when the program type is selected as an executable
program. This attribute determines the logical database used by
the executable program. Used only when creating reports using
a logical database.

Logical databases are special ABAP programs created using
Transaction SLDB that retrieve data and make it available to
application programs.

Selection Screen Visible only when the program type is selected as an executable
program. Allows you to specify the selection screen of the logi-
cal database that should be used.

Editor Lock If you set this attribute, other users can’t change, rename, or
delete your program. Only you will be able to change the pro-
gram, its attributes, text elements, and documentation or
release the lock.

Table 4.6 Program Attributes

ABAP Programming Concepts4

146

4. Under the Attributes section, provide the following values (see Figure 4.19):

� Type: Executable program

� Status: Test Program

� Application: Unknown application

� Also check the Unicode Checks Active and Fixed point arithmetic check-
boxes.

Click the Save button when finished.

Figure 4.19 Maintaining Program Attributes

Fixed Point Arithmetic If this attribute is set for a program, the system rounds type p
fields according to the number of decimal places, or pads them
with zeros.

The decimal sign in this case is always the period (.), regardless
of the user’s personal settings. SAP recommends that this attri-
bute is always set.

Unicode Checks Active This attribute allows you to set if the syntax checker should
check for non-Unicode-compatible code and display a warning
message.

As of SAP NetWeaver 7.5, the system does not support non-
Unicode systems, so this option is always selected by default.

Start Using Variant Applicable only for executable programs. If you set this attri-
bute, other users can only start your program using a variant.
You must then create at least one variant before the report can
be started.

Attribute Explanation

Table 4.6 Program Attributes (Cont.)

Creating Your First ABAP Program 4.6

147

5. On the Create Object Directory Entry screen (see Figure 4.20), you can assign
the program to a package. The package is important for transports between sys-
tems. All of the ABAP Workbench objects assigned to one package are com-
bined into one transport request.

When working in a team, you may have to assign your program to an existing
package, or you may be free to create a new package. All programs assigned to
the package $TMP are private objects (local object) and can’t be transported into
other systems. For this example, create the program as a local object.

Figure 4.20 Assigning Package

6. Either enter “$TMP” as the Package and click the Save button or simply click
the Local Object button (see Figure 4.20).

7. This takes you to the ABAP Editor: Change Report screen where you can write
your ABAP code. By default, the source code includes the introductory state-
ment to introduce the program type. For example, executable programs are
introduced with the REPORT statement, whereas module pool programs are
introduced with the PROGRAM statement.

8. Write the following code in the program and activate the program:

PARAMETERS p_input TYPE c LENGTH 20.

WRITE : 'The input was:', p_input.

9. In the code, you’re using two statements—PARAMETERS and WRITE. The PARAME-
TERS statement generates a selection screen (see Figure 4.21) with one input
field. The input field will be of TYPE c with LENGTH 20, so you can input up to
twenty alphanumeric characters.

ABAP Programming Concepts4

148

Here, the PARAMETERS statement is performing a couple of tasks:

� Declaring a variable called p_input.

� Generating a screen field (screen element) on the selection screen with the
same name as the variable p_input. The screen field p_input is automati-
cally linked to the variable sharing the same name. Therefore, the data
transfer between the screen and the program is handled automatically. In
other words, if you enter some data in the p_input screen field, it will be
automatically transferred to the program and stored in the p_input vari-
able. This data in the p_input variable can then be accessed by other state-
ments, like you’re doing with the WRITE statement to print it in the output.

Figure 4.21 Selection screen

10. Enter a value in the input field and click the Execute button, or press (F8). This
should show you the output or List screen, as shown in Figure 4.22.

Figure 4.22 List Screen

11. The list screen (output screen) is generated by the WRITE statement in the code.
With the WRITE statement, you’re printing the contents of two data objects

Summary 4.7

149

here. One is a text literal, 'The input was:', and the other is the variable p_
input created by the PARAMETERS keyword.

Whatever input was entered on the selection screen was transferred to the
program and stored in the variable p_input, which was then processed by the
WRITE statement to display in the output.

We’ll have many opportunities to work with different types of screens as we
progress through the book.

4.7 Summary

In this chapter, you learned the basics of the ABAP programming language ele-
ments. You saw that ABAP programs can only work with data of the same pro-
gram. Because we typically process various kinds of data in the real world, we
explained the different elementary types that are supported by the system to pro-
cess various kinds of data. Because the basic task of an ABAP program is to pro-
cess data, this understanding is crucial to process the data consistently.

We also described the syntax to write a couple of statements. We’ll explore more
statements as we progress through the book. In the final section, you created your
first ABAP program.

By now, you should have a good understanding of data types and data objects.
However, if you find yourself a little lost, don’t worry; the concepts should make
more sense as we work through creating more programs in the next chapter. In
the next chapter, we’ll discuss complex data types and internal tables.

305

Chapter 8

Some elements of ABAP programs can be designed using procedural or
object-oriented programming. This chapter explores the concepts of object-
oriented programming and their implementation in ABAP.

8 Object-Oriented ABAP

ABAP is a hybrid programming language that supports both procedural and
object-oriented programming (OOP) techniques. In this chapter, we’ll discuss the
various concepts used in OOP and the advantages it provides over procedural
programming techniques.

We’ll start with a basic overview of OOP in Section 8.1. This introduction should
help you appreciate the advantages of using OOP techniques. To understand
OOP, you’ll need to understand concepts such as encapsulation, inheritance,
polymorphism, data encapsulation, and information hiding. We’ll start examin-
ing those concepts in Section 8.2 with a look at encapsulation and the techniques
to hide implementation from the outside world.

In Section 8.3, we’ll discuss inheritance and the techniques that allow you to
leverage existing features and functionality without having to reinvent the wheel.
In Section 8.4, we’ll look at polymorphism, which allows the same object to
behave differently at runtime. We’ll conclude the chapter with a discussion of
XML in Section 8.5.

8.1 Introduction to Object-Oriented Programming

Before OOP, everything was based on functions and variables without focusing
on the object itself. With OOP, the focus is on objects, which represent real-life
entities, with functions and variables approximating the objects.

Traditional programming focused on developing programming logic to manipu-
late data—for example, a logical procedure that takes input data, processes it, and

Object-Oriented ABAP8

306

produces output. However, OOP focuses on the object being manipulated rather
than the logic to manipulate the data.

If you look around, you’ll see many real-world objects, such as your car, your
dog, your laptop, and so on. Each of these real-world objects is represented as a
software object in OOP. Real-world objects have two characteristics: states and
behaviors. For example, a car has states such as its current gear, current speed,
and so on, and behaviors such as changing gears, applying brakes, and so on. Soft-
ware objects that represent real-world objects also have states and behaviors;
software objects store their states in variables (called attributes) and contain func-
tions (called methods) to manipulate or expose the states of the object. For exam-
ple, a car object can have attributes to store the current speed, current gear, and
so on, and methods to read the current speed or change the gear.

Methods operate on the internal state of the object; that is, they can access the
attributes of their own object and serve as a mechanism for communication
between objects. Hiding this internal state of the object and routing all access to
the object through its methods is known as encapsulation. Encapsulation is a fun-
damental principle of OOP, which we’ll discuss in Section 8.2.

Sometimes, an object may share many similarities with other objects while hav-
ing specific features of its own. For example, a mountain bike may have all the
features of a road bike plus certain features unique only to mountain bikes. The
concept of inheritance helps us leverage existing code and avoid code redundancy
while extending functionality. We’ll discuss inheritance in Section 8.3.

Identifying the states and behaviors of real-world objects is the first step to start
thinking in terms of OOP. Before exploring OOP further, let’s consider a simple
procedural programming application that calculates a person’s body mass index
(BMI). We’ll then look at how this application can be designed using OOP. For
this example, we can create a function module with three interface parameters:
height, weight, and BMI. We can pass the person’s height and weight to the func-
tion and receive the calculated BMI as a result, as shown in Listing 8.1.

FUNCTION ZCALCULATE_BMI.
*"---
""Local Interface:
*" IMPORTING
*" REFERENCE(HEIGHT) TYPE I
*" REFERENCE(WEIGHT) TYPE I
*" EXPORTING

Introduction to Object-Oriented Programming 8.1

307

*" REFERENCE(BMI) TYPE I
BMI = WEIGHT / HEIGHT.
ENDFUNCTION.

Listing 8.1 Example Function Module to Calculate BMI

Listing 8.2 shows the call to the function module zcalculate_bmi that we defined
in Listing 8.1.

REPORT ZCA_BMI.
DATA : v_bmi TYPE I.
PARAMETERS: p_height TYPE I,

P_weight TYPE I.

CALL FUNCTION 'ZCALCULATE_BMI'
EXPORTING

height = p_height
weight = p_weight

IMPORTING
bmi = v_bmi.

WRITE: 'Your BMI is', v_bmi.

Listing 8.2 Program to Calculate BMI

When the function module is called in the program, the whole function group to
which this function module belongs is loaded into the memory (internal session)
the main program is assigned to. Each subsequent call to this function module in
the program will access the existing instance in the memory as opposed to load-
ing a new instance.

When a function module is called in a program, one instance of it is created in the
internal session in which the program runs, and each subsequent call to this func-
tion module from the program will point to the existing instance that was previ-
ously loaded into the internal session. You can’t have multiple instances of the
same function module within the same internal session.

If you call the zcalculate_bmi function module in the program to calculate the
BMI of multiple persons, there’s no way for the function module to be aware of
the person for which the BMI is calculated. You can define a global variable in the
function group to store a person’s name so that other function modules of the
function group can use this information, but it’s easy to lose track of all these vari-
ables in the code—and even then, this design can only support one person at a
time in the application.

Object-Oriented ABAP8

308

The focus of the function module here is to take a certain input and process it to
produce a result. OOP shifts the focus to the object. In this example, we define an
object that represents a person and then define attributes and methods to store
and process the person’s BMI.

In this section, we’ll look at the defining elements of OOP, including classes,
methods, instances and static components, and events.

8.1.1 Classes

Objects encapsulate data and create functions to manipulate that data. The charac-
teristics (called attributes) and functions (called methods) of an object are put into
one package. The definition of this package is called a class. To use objects in a
program, classes must be defined, because an object exists as an instance of a
class.

A class can be defined as shown in Listing 8.3.

REPORT ZCA_BMI.
CLASS CL_PERSON DEFINITION.
PUBLIC SECTION.

TYPES ty_packed TYPE p LENGTH 4 DECIMALS 2.
METHODS set_height IMPORTING im_height TYPE ty_packed.
METHODS set_weight IMPORTING im_weight TYPE ty_packed.
METHODS set_bmi.
METHODS get_bmi RETURNING VALUE(r_bmi) TYPE ty_packed.
PRIVATE SECTION.
DATA : bmi TYPE I,

height TYPE I,
weight TYPE I.

ENDCLASS.
CLASS CL_PERSON IMPLEMENTATION.
METHOD set_height.

height = im_height.
ENDMETHOD.
METHOD set_weight.

weight = im_weight.
ENDMETHOD.
METHOD set_bmi.
bmi = height / weight.
ENDMETHOD.
METHOD get_bmi.

r_bmi = bmi.
ENDMETHOD.

ENDCLASS.

Introduction to Object-Oriented Programming 8.1

309

DATA john TYPE REF TO cl_person.
DATA mark TYPE REF TO cl_person.
START-OF-SELECTION.
CREATE OBJECT john.

john->set_height(exporting im_height = 165).
john->set_weight(exporting im_weight = 50).
john->set_bmi().
WRITE : / 'John’s BMI is', john->get_bmi().

CREATE OBJECT mark.

mark->set_height(exporting im_height = 175).
mark->set_weight(exporting im_weight = 80).
mark->set_bmi().
WRITE : / 'Mark’s BMI is', mark->get_bmi().

IF john->get_bmi() GT mark->get_bmi().
WRITE : / 'John is fatter than Mark'.
ELSE.
WRITE : / 'Mark is fatter than John'.
ENDIF.

Listing 8.3 Using Objects

A class consists of two sections: a definition section and an implementation sec-
tion. In the definition section, we define the components of the class, such as attri-
butes, methods, and events. The attributes of a class store the state of an object,
and the methods implement the logic to manipulate the behavior of an object by
accessing the attributes.

Different events can be defined for the class, which can be raised during the run-
time of the object. Methods can be called directly or can respond to events
defined in the class. In the implementation section, we implement the methods to
manipulate the behavior of an object or to respond to the events of the class.

Each class component can belong to a specific visibility section, such as public,
protected, or private. The visibility section enables data encapsulation by putting
restrictions on how the class component can be accessed. For example, a compo-
nent belonging to the public visibility section can be accessed by external objects
and programs without any restrictions, whereas a component belonging to the
private visibility section can be accessed only by the methods of the same class.

Object-Oriented ABAP8

310

Components belonging to the protected section can be accessed by the methods
of the same class and its subclasses. A subclass inherits its components from a par-
ent class. Once a class inherits from a parent class, it can access the public and
protected components of the parent class. We’ll learn more about encapsulation
in Section 8.2.

In Listing 8.3, we defined the CL_PERSON class consisting of HEIGHT, WEIGHT and
BMI attributes in the private visibility section. Because these attributes are private,
they can’t be accessed by external objects or programs directly. To manipulate
these attributes, we defined setter and getter methods in the public section of the
class. Setter methods allow you to set the value of an attribute, and getter methods
allow you to read the value of an attribute. Defining the attributes in the private
section and providing setter and getter methods to manipulate the attributes
allows for more control, such as validating the data before changing the state of
the object.

For example, we can avoid an invalid value being set for a person’s height by val-
idating the input in the SET_HEIGHT method. In the program, we defined two
object reference variables called JOHN and MARK referring to the CL_PERSON class. An
object exists as an instance of a class, and each class can have multiple instances.
The object reference variable initially contains an empty value until the object is
instantiated using the CREATE OBJECT statement. Once the object is instantiated,
the object reference variable contains the reference (pointer) to the object in
memory, and the object is accessed using the object reference variable. The object
reference variables are also called reference objects and are defined using the TYPE
REF TO addition.

Unlike in function modules, here each reference object occupies its own memory
space and multiple instances of the class can be defined in the program, with each
instance working with its own data.

In this section, we’ll discuss local and global classes, class parts and components,
and the use of visibility in classes.

Local and Global Classes

As previously discussed, classes can be defined locally in an ABAP program or
globally in the system using Class Builder (Transaction SE24). Local classes can be
used only within the program in which they’re defined, whereas global classes can

Introduction to Object-Oriented Programming 8.1

311

be used in any ABAP program. Irrespective of whether the class is defined locally
or globally, the syntax to define the class remains the same, as shown in Listing
8.3. Apart from visibility, there is no difference between a local class and a global
class. When a class is used in an ABAP program, the system first searches if the
class exists locally. If the class isn’t defined locally, then the system looks for a
global class.

When defining global classes, we can use the form-based editor of the Class
Builder tool to easily define the components of the class and implement the meth-
ods without getting into the nitty gritty of the syntax.

Wherever applicable, we will show you the steps to define classes both locally
and globally throughout this chapter. Define local classes if the scope of the object
is limited to the program and the object may be irrelevant to other programs, but
if you plan to use an object in multiple programs, we recommend defining the
class globally in Class Builder.

Class Parts and Components

To break down the code in Listing 8.3 further, a class in ABAP has two sections:

� Definition section
In the definition section, various components of a class, such as attributes,
events, and methods, are defined. For example, in Listing 8.3, we defined the
attributes and the methods of the class in the definition section of the class.
When defining the methods, we also defined the parameter interface for the
methods.

For the sake of simplicity, we haven’t defined any events in Listing 8.3, but if
you want to trigger various events to which the methods of the class can
respond, you can do so in the definition part of the class. The methods that
respond to events are called event handler methods. We’ll learn more about
defining events and implementing suitable event handler methods in Section
8.1.4.

� Implementation section
The implementation section of the class is where we implement the methods
defined in the definition section. The methods are implemented between the
METHOD and ENDMETHOD statements, and each method defined in the definition
part must have an implementation in the implementation part of the class.

Object-Oriented ABAP8

312

There are three important types of components available in a class:

� Methods
Methods are used to change the state of an object and manipulate its behavior.
For example, in Listing 8.3, different methods were implemented in the CL_
PERSON class to set the height, weight, and BMI of the person. Methods can also
be defined as event handler methods that respond to specific events during the
runtime of the object. By using setter and getter methods, we can ensure that
all attributes of the class are always accessed through its methods, thus guaran-
teeing data consistency.

� Attributes
Attributes are the internal data fields of a class and store the state of an object.
We can change the state of an object by changing the contents of an attribute.

� Events
Events are defined in the definition area of a class and can be raised during the
runtime of the object. A suitable event handler method is maintained in the
implementation part of the class and is triggered when the corresponding event
is raised. Events allow you to call specific methods dynamically during the run-
time of the object.

For example, if you want to perform specific tasks when the user double-clicks
an output line, you can maintain a DOUBLE_CLICK event, which can be raised on
that event. The registered event handler method will be called dynamically
when the event is raised.

The components of a class can be categorized as follows:

� Static components
Static components can be accessed directly using the class component selector
=>. Static components behave similarly to function modules in that only one
instance of a static component exists in the program.

� Instance components
Instance components can’t be accessed directly using the class name. To access
an instance component, you need to define a reference object in the program
using TYPE REF TO (for example, the objects John and Mark in Listing 8.3) and
then access its attributes and methods through the reference object using the
object component selector ->.

Introduction to Object-Oriented Programming 8.1

313

Before the attributes and methods can be accessed through the reference
object, the reference object needs to be instantiated using the CREATE OBJECT
statement, which creates an instance of the class (an object described by the
class) in the program.

We’ll discuss static and instance components further in Section 8.1.3.

Visibility

The components of a class can have different visibility sections, such as public,
protected, and private. The visibility is set in the definition part of the class. Com-
ponent visibility allows for data encapsulation and hiding the implementation
from the external world.

Encapsulation is an important concept in OOP, and we’ll discuss visibility further
in Section 8.2.

8.1.2 Methods

A method can access other components of the same object. To access the attributes
and methods of the same class, a special self-reference variable, me, is used. Even
though the components of the class can be accessed directly from within the
methods of the same class, for better readability it’s recommended to use the self-
reference variable me when accessing the same class components. You can access
both static and instance components from within an instance method, whereas
you only can access static components from within a static method.

To call a method of the class, we can either use the CALL METHOD statement (e.g.,
CALL METHOD John->get_bmi) or use the object component selector and parenthe-
ses directly (e.g., john->get_bmi()).

A method can have importing, exporting, changing, and returning parameters.
The importing, exporting, and changing parameters behave similarly to the pa-
rameters we define in function modules. For example, data is imported through
importing parameters and exported through exporting parameters, while chang-
ing parameters can be used for both importing and exporting.

The methods that use returning parameters are called functional methods. Prior to
SAP NetWeaver 7.4, functional methods could only have one returning parameter
and no exporting parameters. However, with SAP NetWeaver 7.4, this restriction

Object-Oriented ABAP8

314

is lifted. Functional methods are typically used when a result is returned to the
caller program that can be directly assigned to a data object in the program.

For example, with the statement v_bmi = oref->get_bmi(), v_bmi is the data
object, oref is the reference object, and get_bmi is a method with a returning
parameter the value of which will be assigned to the v_bmi variable.

Inheritance

Often, many objects are different, but similar enough to be put into a single class.
For example, animals and humans have heartbeats, so a class may have a get_
heart_beat method. However, dogs have tail lengths, so should this class also
have a get_tail_length method? No, we can define another class as a child class
(called a subclass) of the parent class. This subclass will have all the features of the
parent class plus some additional features. This allows you to extend the function-
ality of your applications while leveraging the existing code.

Let’s look at an example. Objects are designed to closely represent real-life
objects—such as a printer. A printer may have an external interface, including a
paper tray, keypad, and so on, and the basic functionality of the printer is to cre-
ate a printout. OOP objects can be designed to represent that setup.

Therefore, let’s create a class called printer with a method called print, as shown
in Listing 8.4.

CLASS PRINTER DEFINITION.
PUBLIC SECTION.
METHODS print.
ENDCLASS.
CLASS PRINTER IMPLEMENTATION.
METHOD print.
WRITE 'document printed'.
ENDMETHOD.
ENDCLASS.

Listing 8.4 Parent Class for Printer

This is a basic printer, but what if we want to extend its functionality? For exam-
ple, if we have a new printer model that has a counter feature to keep track of the
number of copies printed, do we have to build all of the printer logic from
scratch? No, we can define a subclass, as shown in Listing 8.5, that inherits all the
functionality of the basic printer and extends it.

Introduction to Object-Oriented Programming 8.1

315

CLASS PRINTER_WITH_COUNTER DEFINITION INHERITING FROM PRINTER.
PUBLIC SECTION.
DATA counter TYPE I.
METHODS print REDEFINITION.
ENDCLASS.
CLASS PRINTER_WITH_COUNTER IMPLEMENTATION.
METHOD print.
Counter = counter + 1.
CALL METHOD SUPER->PRINT.
ENDMETHOD.
ENDCLASS.

Listing 8.5 Subclass Implementation

In Listing 8.5, the class PRINTER_WITH_COUNTER is inherited from the class printer.
Here, printer is the superclass (parent class) and PRINTER_WITH_COUNTER is the
subclass (child class). This process of a subclass inheriting the traits of a superclass
is called inheritance in OOP.

Notice the keyword INHERITING FROM used in the definition of the class PRINTER_
WITH_COUNTER. The subclass inherits all the components of the parent class. It will,
by default, have all the attributes and methods defined in the parent class. If
required, the methods inherited in the subclass can be redefined to add function-
ality.

In Listing 8.5, the print method in the PRINTER_WITH_COUNTER subclass is rede-
fined to increment the counter attribute and calls the print method of the parent
class. This effectively extends the functionality of the method while leveraging
the existing functionality provided by the method of the parent class. Because the
same print method behaves differently in the superclass and subclass, it leads to
some interesting behavior called polymorphism (meaning having many forms),
which we’ll discuss in Section 8.4.

Now we have a printer with a counter, and we know that the counter increments
by one every time a document is printed. However, what will its initial value be?
How do we ensure that the counter always starts from one or any other initial
value? These details are sorted out by defining a constructor for the class.

There are two types of constructors:

� Instance constructor
An instance constructor is a special method called when the object is instanti-
ated. The instance constructor is called for each object when it is instantiated.

Object-Oriented ABAP8

316

� Class constructor
The class constructor is special method called just once for the whole class in one
internal mode. A class constructor can have a maximum of one instance and
one static constructor. A static constructor can’t have any parameters, whereas
the instance constructor can have only importing parameters.

By defining importing parameters for the instance constructor, we can ensure
that the object is always initialized before any of its attributes or methods are
accessed.

Listing 8.6 shows the implementation of the constructor.

CLASS PRINTER_WITH_COUNTER DEFINITION INHERITING FROM PRINTER.
PUBLIC SECTION.
DATA counter TYPE I.
METHODS constructor IMPORTING count TYPE I.
METHODS print REDEFINITION.
ENDCLASS.

CLASS PRINTER_WITH_COUNTER IMPLEMENTATION.
METHOD constructor.
CALL METHOD super->constructor.
counter = count.
ENDMETHOD.
METHOD print.
counter = counter + 1.
CALL METHOD SUPER->PRINT.
ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
DATA oref TYPE REF TO PRINTER_WITH_COUNTER.
CREATE OBJECT oref
EXPORTING
count = 0.

Listing 8.6 Class with Constructor

In Listing 8.6, the constructor method is defined in the definition part of the
PRINTER_WITH_COUNTER class with one importing parameter, count. Because the
PRINTER_WITH_COUNTER class is a subclass of the printer class, the superclass con-
structor must be called first in the implementation of the constructor method,
even if there’s no constructor defined in the superclass. This ensures that all of
the superclass components in the inheritance tree are initialized properly. If a
constructor is defined in the superclass, it won’t be inherited by the subclass. This

Introduction to Object-Oriented Programming 8.1

317

allows each class in the inheritance tree to have its own constructor in order to
initialize its attributes per requirements.

In the example in Listing 8.6, the count parameter of the constructor is assigned
a value when instantiating the reference object oref. The syntax checker will give
an error if the constructor’s mandatory parameters aren’t passed while instantiat-
ing the reference object. This ensures that the object is always instantiated prop-
erly.

Now, say we have a more advanced printer model that can print multiple copies
along with the basic features provided so far. To create this printer, we’ll inherit
the PRINTER_WITH_COUNTER class and add additional functionality, as shown in Lis-
ting 8.7.

CLASS MULTI_COPY_PRINTER DEFINITION INHERITING FROM PRINTER_WITH_
COUNTER.
PUBLIC SECTION.
DATA copies TYPE I.
METHODS set_copies IMPORTING copies TYPE I.
METHODS print REDEFINITION.
ENDCLASS.

CLASS MULTI_COPY_PRINTER IMPLEMENTATION.
METHOD set_copies.
Me->copies = copies.
ENDMETHOD.
METHOD print.
Do copies TIMES.
CALL METHOD SUPER->Print.
ENDDO.
ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
DATA oref TYPE REF TO MULTI_COPY_PRINTER.
CREATE OBJECT oref
EXPORTING
count = 0.
oref->set_copies(5).
oref->print().

Listing 8.7 Class Extended to Print Multiple Copies

In Listing 8.7, we defined the MULTI_COPY_PRINTER class, inheriting from PRINT-
ER_WITH_COUNTER. In the MULTI_COPY_PRINTER class, we defined a method called

Object-Oriented ABAP8

318

set_copies that receives the copies importing parameter and assigns the value to
the copies attribute. We redefined the print method to print multiple copies by
calling the method in the superclass in a DO loop.

It’s good practice not to allow direct access to the class attributes and to use meth-
ods to set or get attribute values. This gives us more control while manipulating
attributes. The methods that set values are called setter methods and the methods
that are used to get values are called getter methods. Setter methods are prefixed
with set_ and getter methods are prefixed with get_.

Encapsulation

Now, say our printer is an industrial printer and we want to set a restriction for
the minimum number of prints. For example, the printer should only take a
request if a minimum of fifty copies is requested. We implement this restriction
by writing an IF condition in the set_copies method, as shown in Listing 8.8.

METHOD set_copies.
IF copies GE 50.
Me->copies = copies.
ELSE.
*Raise exception
ENDIF.
ENDMETHOD.

Listing 8.8 Restricting Copies in set_copies Method

The code in Listing 8.8 adds the restriction to set the copies attribute only if the
value is greater than or equal to 50. However, there’s one loophole in this imple-
mentation: Because the copies attribute is defined with its visibility as public,
anyone can directly access this attribute from outside the class and set a value,
thus bypassing the check in the set_copies method, as shown in Listing 8.9.

DATA oref TYPE REF TO MULTI_COPY_PRINTER.
CREATE OBJECT oref
EXPORTING
count = 0.
oref->copies = 5.
oref->print().

Listing 8.9 Bypassing set_copies Method to Set Number of Copies

As you can see in Listing 8.9, we can directly access the copies attribute to set the
number of copies. This is where encapsulation and implementation hiding plays an

Introduction to Object-Oriented Programming 8.1

319

important role. By defining clear boundaries on what can be accessed from out-
side the class and what should be restricted, we not only make it easy for devel-
opers to use our classes, because they only need to know the public interface
(components that are publicly accessible) of our class, but also ensure that inad-
vertent bugs don’t creep into our software implementation.

Encapsulation also gives you the freedom to change the private sections of the
class according to changing requirements without having to worry about depen-
dencies. For example, if you change the interface of a method in the public visi-
bility section, all the programs that call this method will be affected; however,
because no programs can directly access the private section of a class, you can
change private sections freely without having to worry about program dependen-
cies.

In this example, we can make the attribute copies private so that it can be ac-
cessed only from the methods of the same class, as shown in Listing 8.10.

CLASS MULTI_COPY_PRINTER DEFINITION INHERITING FROM PRINTER_WITH_
COUNTER.
PUBLIC SECTION.
METHODS set_copies IMPORTING copies TYPE I.
METHODS print REDEFINITION.
PRIVATE SECTION.
DATA copies TYPE I.
ENDCLASS.

Listing 8.10 Making Attribute Private

As you can see, we made our printer more and more complex without having to
duplicate any code. Also, as the printer added advanced capabilities, it still per-
formed the basic task of printing a document. Therefore, a user using the
advanced model of the printer need not be aware of its advanced features to per-
form the basic task of printing a document. This is similar to a car with advanced
features like cruise control. The driver need not know how to set cruise control to
drive the car, but he can learn to set cruise control to take advantage of it.

In addition, if the print method in the printer superclass is enhanced, then all
the enhancements will be available by default to all the subclasses without having
to change any of them.

Object-Oriented ABAP8

320

8.1.3 Instance and Static Components

A class can contain both instance and static components. An instance attribute
can have multiple instances in the program, whereas a static attribute has only
one instance. An instance component is accessed through a reference object using
the object component selector ->, whereas a static component is accessed using
the class component selector =>. Static components are preceded by the CLASS
keyword during the definition.

Listing 8.11 shows the definition of both instance and static components. For
simplicity, we’re accessing the attributes of the class directly in this example, but
in real-world code direct access to attributes should always be avoided by using
setter and getter methods.

CLASS CL_PERSON DEFINITION.
PUBLIC SECTION.
CLASS-DATA height TYPE I. "Static attribute
DATA weight TYPE I. "Instance attribute
METHODS get_bmi EXPORTING bmi TYPE I. "Instance method
METHODS constructor "Instance constructor

IMPORTING name TYPE CHAR20.
CLASS-METHODS set_height "Static Method
IMPORTING height TYPE I.
CLASS-METHODS class_constructor. "Static Constructor

ENDCLASS.

CLASS CL_PERSON IMPLEMENTATION.
METHOD class_constructor.
ENDMETHOD.
METHOD constructor.
ENDMETHOD.
METHOD get_bmi.
ENDMETHOD.
METHOD set_height.
ENDMETHOD.

ENDCLASS.
DATA oref TYPE REF TO cl_person. "Defining reference object
DATA v_bmi TYPE I.
START-OF-SELECTION.
*Accessing static attributes and methods using the selector "=>"
*with class reference
cl_person=>height = 165.
CALL METHOD cl_person=>set_height
EXPORTING
height = 165.

*Instantiating the reference object and accessing the instance

Introduction to Object-Oriented Programming 8.1

321

*attributes and methods using the selector "->" with object
*reference.
CREATE OBJECT oref
EXPORTING
name = 'JOHN'.

oref->weight = 50.
CALL METHOD oref->get_bmi
IMPORTING
bmi = v_bmi.

Listing 8.11 Instance and Static Class Components

As shown, static components are defined with the preceding keyword CLASS (e.g.,
CLASS-DATA, CLASS-METHODS) and accessed using the => selector with the class
name reference directly (e.g., class_name=>component). Static methods are some-
what similar to function modules in that only one instance exists in the program
memory and each subsequent call to the method points to the same instance,
whereas each reference object works with its own instance components.

A static constructor can’t have any parameter interface, whereas an instance con-
structor can have importing parameters. A static constructor is executed only
once on the first access of any of the class components, including instantiation of
any reference object. An instance constructor is executed each time a reference
object is instantiated.

Table 8.1 compares and contrasts instance and static components.

Instance Component Static Component

Instance components are accessed through
a reference object with the -> selector.

Static components can be accessed directly
through the class name reference with the
=> selector even before a reference object
is instantiated. They can also be accessed
using a reference object.

Multiple instances can exist. Only single instance exists.

Within an instance method, both static and
instance attributes can be accessed.

Within a static method, only static attri-
butes or static methods can be accessed.

To access the instance components of a
class, a reference object needs to be
defined in the program and instantiated
using CREATE OBJECT statement.

Static components can be accessed directly
from program using a class reference (simi-
lar to calling a function module directly)
without the need for a reference object.

Table 8.1 Differences between Instance and Static Components

Object-Oriented ABAP8

322

8.1.4 Events

Events can be defined in a class to be triggered from a method (called triggers)
when a specific event takes place during the runtime of the object; specific meth-
ods (called event handlers) react to these events. For example, we can define an
event called double_click in the class to be triggered in one of the methods when
the user double-clicks the report output. The on_double_click method can be
defined as an event handler for this event so that it’s executed when the double_
click event is triggered from the trigger method.

To trigger an event, the class must have the events defined in the definition part
of the code and triggered in one of its methods. Instance events are defined using
the EVENTS keyword and static events are defined using the CLASS-EVENTS key-
word. A static event can be triggered from both static and instance methods,
whereas, an instance event can only be triggered from an instance method.

Events can have exporting parameters that are passed to the event handler
method when the event is triggered. To trigger an event, the statement RAISE
EVENT event_name is used in one of the methods of the class. The EXPORTING addi-
tion is used with the RAISE EVENT keyword to pass the event parameters to the
event handler method.

Event handlers are special methods that are defined to react to the event. Event
handler methods are defined in the definition part of the class as methods for spe-
cific events. The syntax to define an event handler method is METHODS method_
name FOR EVENT event_name OF class_name, where method_name is the name of the
event handler method, event_name is the name of the event, and class_name is
the name of the class in which the event is defined. If the event has exporting

An instance constructor only can have
importing parameters and is executed each
time a reference object is instantiated.

A static constructor can’t have any parame-
ter interface and is executed only once per
program session. However, it’s executed
before the instance constructor, if the class
has both static and instance constructors,
and when the first reference object is
instantiated, provided it isn’t loaded previ-
ously.

Instance Component Static Component

Table 8.1 Differences between Instance and Static Components (Cont.)

Introduction to Object-Oriented Programming 8.1

323

parameters defined, then the event handler must import all non-optional param-
eters. All instance events have an implicit sender parameter that can be imported
in the event handler. The sender parameter contains a reference to the sender
object in which the event is defined. To define a static method as an event han-
dler, use the CLASS-METHODS keyword.

To allow an event handler method to react to an event, we must determine at run-
time the trigger to which it is to react. We can do that by using the SET HANDLER
statement. The SET HANDLER statement registers the event handler methods with
the event triggers.

Instance events can be registered to a specific instance or to all instances, whereas
static events are registered to the whole class. The syntax to use SET HANDLER state-
ment for instance events is as follows:

SET HANDLER event_handler_method FOR oref.

or:

SET HANDLER event_handler_method FOR ALL INSTANCES.

The syntax to use the SET HANDLER statement for static events is as follows:

SET HANDLER event_handler_method.

Here, event_handler_method is an instance or static method that is defined as an
event handler for an event. The event handler method will not be triggered if the
handler is not registered using the SET HANDLER statement.

Listing 8.12 shows an example to define and register events in a class. This exam-
ple defines the cl_events_demo class with two events, double_click and right_
click. Here, double_click is defined as an instance event and right_click is
defined as a static event. The double_click event also has a couple of mandatory
exporting parameters (column and row) defined. We’ve also defined a trigger_
event method to act as a trigger method. This is defined similarly to any regular
method. The on_double_click and on_right_click methods are defined as event
handler methods for the double_click and right_click events, respectively.

CLASS cl_events_demo DEFINITION.
PUBLIC SECTION.

EVENTS double_click
EXPORTING

VALUE(column) TYPE i
VALUE(row) TYPE i .

CLASS-EVENTS right_click .

Object-Oriented ABAP8

324

METHODS trigger_event.
METHODS on_double_click FOR EVENT double_click OF cl_events_demo

IMPORTING
column
row
sender.

METHODS on_right_click FOR EVENT right_click OF cl_events_demo.
ENDCLASS.
CLASS cl_events_demo IMPLEMENTATION.
METHOD trigger_event.

RAISE EVENT double_click
EXPORTING

column = 4
row = 5.

RAISE EVENT right_click.
ENDMETHOD.
METHOD on_double_click.
WRITE: / 'Double click event triggered at column', column,

'and row', row.
ENDMETHOD.
METHOD on_right_click.

WRITE: / 'Right click event triggered’.
ENDMETHOD.

ENDCLASS.
DATA oref TYPE REF TO cl_events_demo.
START-OF-SELECTION.
CREATE OBJECT oref.
SET HANDLER oref->on_double_click FOR oref. “Instance event
SET HANDLER oref->on_right_click. “Handler for Static event
CALL METHOD oref->trigger_event().

Listing 8.12 Defining Events

In the implementation part of the class, the trigger_event method uses the RAISE
EVENT statement to trigger the double_click and right_click events. Because the
double_click event contains defined exporting parameters, this method exports
certain values to the event handler method. The on_double_click method
imports the values that were exported by the trigger method. In the program
code, the events are registered using the SET HANDLER statement, and the code in
the event handler methods is executed when the trigger_event method is called.

In this section, we introduced the basics of OOP, including classes, methods,
instance and static components, and event. Working with objects simplifies the
implementation of functionality. OOP concepts provide many advantages com-
pared to procedural programming techniques. Programs developed using OOP
techniques are easy to maintain and, if designed well, should be easy to enhance.

Encapsulation 8.2

325

Now that you’ve been introduced to the basics of OOP, in the next few sections
we’ll discuss some of the characteristics of this kind of programming, beginning
with the process of encapsulation.

8.2 Encapsulation

In procedural programming, developers generally use a technique called func-
tional decomposition for application development design. In functional decompo-
sition, the series of steps that the application needs to perform are identified from
the functional requirements, and procedures are developed for each step. In
other words, complex business requirements are broken down into smaller, easy
to understand steps. Once all the procedures are in place, they are composed into
the main program, which calls the procedures in a fixed order and passes the rel-
evant data to each procedure.

For example, if you want to develop software for an ATM machine, then the
requirements can be broken down into smaller steps, such as reading a card,
verifying its PIN, dispensing cash, and so on. Modules can then be developed sep-
arately for each of these steps, such as one module to read the card, another mod-
ule to validate the PIN, another module to verify the account balance and dis-
pense cash, and so on. These modules can then be combined to form the overall
application. By breaking down the requirements into smaller steps that are easy
to understand and maintain, this approach makes it easy to develop small- to
medium-sized applications.

However, because procedures (function modules or subroutines) don’t have their
own data environment, they’re dependent on the main program to supply the
data each time a procedure is called, or they must work with the global data of the
program. This makes the procedures tightly coupled with the main program. As
the application branches out and becomes more and more complex, it may lead to
maintenance headaches.

For example, if many procedures are manipulating the global data, we can’t be
sure if the application will behave in a predictable way if the sequence of proce-
dure calls is changed for any future enhancements. By depending entirely on the
main program to supply the required data each time the procedure is called, the
interface will soon be cluttered, and it makes the procedure too restrictive to
work in other environments. The developer of the procedure depends too much

Object-Oriented ABAP8

326

on the external application, over which he has no control. It also becomes diffi-
cult to develop loosely coupled procedures that can work seamlessly for future
enhancements. In addition, once the procedure is developed, the developer can’t
change the parameter interface for future enhancements without breaking exist-
ing applications that call the procedure.

In OOP, because objects have their own data environment, they can be made
smart enough to make their own decisions without too much dependency on
external applications.

Encapsulation in OOP allows you to define boundaries and hide implementation
from the external world. The term encapsulation means that the attributes (data)
and the methods (functions) that manipulate the data are enclosed in a capsule
(object). This means that we can set a boundary between what can be accessed
from within the object and from the outside world. This boundary helps to
address many of the issues mentioned previously regarding procedures.

In this section, we’ll discuss some of the characteristics of encapsulation in OOP.
We’ll look at component visibility, the different visibility sections, friendship
between classes, and implementation hiding.

8.2.1 Component Visibility

As shown back in Listing 8.7, the component of an object can be accessed from an
external program or from a subclass or from within the class. The access restriction
on a component of a class is what defines its visibility. In other words, we can
decide if the component of a class can be accessed only from within the class or its
subclasses or from external programs.

Back in Listing 8.10, we defined sections (PUBLIC SECTION, PRIVATE SECTION)
under which components are declared. These sections are called visibility sections.
There are three visibility sections: public, protected, and private.

The visibility section identifies how the component of a class can be accessed. The
following list defines the different visibility sections:

� Public section
The components in the public section can be accessed from within the class and
outside of the class. These components form the public interface of the class.

Encapsulation 8.2

327

� Protected section
The components in the protected section can be accessed only from within the
class and its subclasses (child classes). These components can’t be accessed from
external programs.

� Private section
The components in the private section can be accessed only from within the
class and its friend classes (we’ll discuss friend classes in Section 8.2.2).

Listing 8.13 shows an example of the visibility sections.

CLASS cl_encapsulation_demo DEFINITION.
PUBLIC SECTION.

METHODS print.
METHODS set_copies IMPORTING copies TYPE i.
METHODS get_counter EXPORTING counter TYPE i.

PROTECTED SECTION.
METHODS reset_counter.

PRIVATE SECTION.
DATA copies TYPE i.
DATA counter TYPE i.
METHODS reset_copies.

ENDCLASS.
CLASS cl_encapsulation_demo IMPLEMENTATION.
METHOD print.

"Business logic goes here
ENDMETHOD.
METHOD set_copies.

"Business logic goes here
me->copies = copies.

ENDMETHOD.
METHOD get_counter.

"Business logic goes here
counter = me->counter.

ENDMETHOD.
METHOD reset_counter.

"Business logic goes here
CLEAR counter.

ENDMETHOD.
METHOD reset_copies.

"Business logic goes here
CLEAR copies.

ENDMETHOD.
ENDCLASS.
CLASS cl_encapsulation_sub_demo DEFINITION INHERITING FROM cl_
encapsulation_demo.
PROTECTED SECTION.

METHODS reset_counter REDEFINITION.

Object-Oriented ABAP8

328

ENDCLASS.
CLASS cl_encapsulation_sub_demo IMPLEMENTATION.
METHOD reset_counter.

super->reset_counter().
* super->reset_copies(). "gives syntax error
ENDMETHOD.

ENDCLASS.

Listing 8.13 Implementing Visibility Sections

The code in Listing 8.13 implements the cl_encapsulation_demo class, and the
cl_encapsulation_sub_demo class is defined as a subclass of cl_encapsulation_
demo. The code shows the syntax to implement visibility sections. Notice the
order of implementation of the visibility sections: First, public components are
defined, then protected components, and finally private components. This decla-
ration order can’t be changed.

In Listing 8.13, the cl_encapsulation_sub_demo subclass can access only the pub-
lic and protected components of its superclass, cl_encapsulation_demo. If the
cl_encapsulation_sub_demo class tries to access the private components of its
superclass, the attempt will result in a syntax error. Note that when redefining a
method of the superclass in a subclass, the visibility section of the method can’t
be changed. For example, if the method is defined in the protected section of the
superclass, then the method should be redefined in the protected section of the
subclass.

Figure 8.1 shows the visibility set in Class Builder for global classes.

Figure 8.1 Visibility Using Class Builder

With visibility sections, clear boundaries can be defined so that only the required
components of an object are exposed to the outside world. This arrangement

Encapsulation 8.2

329

provides greater flexibility in designing the objects because the private and pro-
tected components of a class can be changed per changing business requirements
without affecting the external programs, which only need to worry about the
public interface.

By keeping object attributes private and implementing setter and getter methods
in the class, we have more control and security over the object’s data; any change
to the attributes should be requested through the setter methods, and any request
for information should be requested through getter methods. This arrangement
allows for better abstraction and prevents undesired data corruption scenarios,
which in turn helps objects perform in a predictable way.

For example, by implementing a setter method to set the value of an attribute, we
can ensure that all the business logic is applied before the value is changed. This
level of certainty isn’t possible if the attribute is directly accessed by an external
program to assign a value over which we have no control.

8.2.2 Friends

A class can declare another class as its friend to allow access to all of its compo-
nents, including its private and protected components. A friend class is any class
that is explicitly defined as a friend in the class definition. The friendship relation
is not reciprocal; for example, if class c1 declares class c2 as a friend, then the
methods of the class c2 can access the private components of class c1, but the
methods of class c1 can’t access the private components of class c2.

Listing 8.14 expands the code from Listing 8.13 to show the implementation of
friend classes.

CLASS c1 DEFINITION DEFERRED.
CLASS c2 DEFINITION DEFERRED.
CLASS cl_encapsulation_demo DEFINITION FRIENDS c1 c2.
PUBLIC SECTION.

METHODS print.
METHODS set_copies IMPORTING copies TYPE i.
METHODS get_counter EXPORTING counter TYPE i.

PROTECTED SECTION.
METHODS reset_counter.

PRIVATE SECTION.
DATA copies TYPE i.
DATA counter TYPE i.
METHODS reset_copies.

ENDCLASS.

Object-Oriented ABAP8

330

CLASS cl_encapsulation_demo IMPLEMENTATION.
METHOD print.

"Business logic goes here
ENDMETHOD.
METHOD set_copies.

"Business logic goes here
me->copies = copies.

ENDMETHOD.
METHOD get_counter.

"Business logic goes here
counter = me->counter.

ENDMETHOD.
METHOD reset_counter.

"Business logic goes here
CLEAR counter.

ENDMETHOD.
METHOD reset_copies.

"Business logic goes here
CLEAR copies.

ENDMETHOD.
ENDCLASS.

CLASS c1 DEFINITION.
PUBLIC SECTION.

METHODS get_counter IMPORTING counter TYPE i.
PROTECTED SECTION.

DATA counter TYPE i.
ENDCLASS.
CLASS c1 IMPLEMENTATION.
METHOD get_counter.

DATA oref TYPE REF TO cl_encapsulation_demo.
CREATE OBJECT oref.
oref->reset_counter().
oref->counter = counter.

ENDMETHOD.
ENDCLASS.
CLASS c2 DEFINITION.
PUBLIC SECTION.

METHODS set_copies IMPORTING copies TYPE i.
PRIVATE SECTION.

DATA copies TYPE i.
ENDCLASS.
CLASS c2 IMPLEMENTATION.
METHOD set_copies.

DATA oref TYPE REF TO cl_encapsulation_demo.
CREATE OBJECT oref.
oref->reset_copies().
oref->copies = copies.

ENDMETHOD.
ENDCLASS.

Encapsulation 8.2

331

CLASS cl_encapsulation_sub_demo DEFINITION INHERITING FROM cl_
encapsulation_demo.
PROTECTED SECTION.
METHODS reset_counter REDEFINITION.

ENDCLASS.
CLASS cl_encapsulation_sub_demo IMPLEMENTATION.
METHOD reset_counter.

super->reset_counter().
super->reset_copies(). "Gives syntax error

ENDMETHOD.
ENDCLASS.

Listing 8.14 Visibility with Friends

The code in Listing 8.14 implements the cl_encapsulation_demo class and de-
fines the c1 and c2 classes as friends via the FRIENDS addition in the CLASS DEFI-
NITION statement. Any number of classes can be listed with the FRIENDS addition,
separated by spaces. Also notice the CLASS c1 DEFINITION DEFERRED and CLASS c2
DEFINITION DEFERRED statements at the beginning of the code. These two state-
ments tell the syntax checker that the classes c1 and c2 are defined later in the
code; otherwise, the syntax checker will give an error when the cl_encapsula-
tion_demo class refers to the c1 and c2 classes as friends in its definition.

In Listing 8.14, the c1 and c2 classes can access the public, private, and protected
components of cl_encapsulation_demo because they’re defined as friends for
that class. However, the cl_encapsulation_demo class can’t access the protected
or private sections of the c1 or c2 classes because the relationship isn’t reciprocal.
Without this restriction, any class can declare itself as a friend of another class to
access its private or protected components, which defeats the purpose of having
visibility sections.

Figure 8.2 shows the friend classes defined under the Friends tab in Class Builder,
where you can maintain friend classes for a global class.

Figure 8.2 Friends Definition in Class Builder

Friend classes are
maintained under
Friends tab.

Object-Oriented ABAP8

332

8.2.3 Implementation Hiding

Hiding implementation from the outside world allows for better implementation
control while providing flexibility for future enhancements due to ever-changing
business requirements. Keeping the public interface to a minimum allows you to
change the private and protected sections of the class per changing requirements
without having to worry about existing applications that call the class. This saves
a lot of headaches during enhancements and maintenance.

Let’s consider a use case to understand how implementation hiding is useful. For
this example, assume you’re developing an app for a mobile operating system
such as iOS or Android. One of the features in this software is to show notifica-
tions to the user from different apps. To facilitate this, define a public attribute in
the application programming interface (API) class that can be accessed by app
developers to send notifications. However, this way, you can’t have control over
the number of notifications displayed by the third-party app or control any spam
activity. Listing 8.15 shows the sample API code.

CLASS cl_notification_api DEFINITION.
PUBLIC SECTION.
DATA message TYPE string.
METHODS set_message IMPORTING im_message TYPE string.
METHODS display_notification.
ENDCLASS.
CLASS cl_notification_api IMPLEMENTATION.
METHOD set_message.
message = im_message.
ENDMETHOD.
METHOD display_notification.
WRITE message.
ENDMETHOD.
ENDCLASS.
*Code in the calling program.
DATA notify TYPE REF TO cl_notification_api.
CREATE OBJECT notify.
notify->set_message(im_message = ‘My App notification’).
Notify->display_notification().

Listing 8.15 Making All Implementation Public

In Listing 8.15, the cl_notification_api class is defined with a message attribute
and the set_message and display_notification methods. Let’s assume cl_noti-
fication_api works as an API that can be called from third-party apps to display
notifications to the user.

Encapsulation 8.2

333

The attribute message holds the message that can be set by calling the set_mes-
sage method. The notification is displayed by calling the display_notification
method. In this class, all of the components have public visibility.

Because all of the components are visible outside the class, any change to them
will break the implementation in all the apps that use this API. For example,
implementing additional features such as filtering a message or restricting the
number of messages per app may be difficult with this design.

The set_message setter method is provided to set the message after screening it
(such as screening for inappropriate words). However, this restriction can be
bypassed easily by third-party app developers, because the message attribute is
also accessible from outside the class. Therefore, outside developers can directly
access the attribute to set the message instead of calling the set_message method.

The API in Listing 8.15 can be enhanced by hiding the implementation, as shown
in Listing 8.16.

CLASS cl_notification_api DEFINITION.
PUBLIC SECTION.
METHODS set_message IMPORTING im_message TYPE string.
METHODS display_notification.
PRIVATE SECTION.
DATA MESSAGE TYPE string.
METHODS filter_message RETURNING VALUE(boolean) TYPE boolean.
METHODS check_count RETURNING VALUE(boolean) TYPE boolean.
METHODS check_status RETURNING VALUE(boolean) TYPE boolean.

ENDCLASS.
CLASS cl_notification_api IMPLEMENTATION.
METHOD set_message.

MESSAGE = im_message.
ENDMETHOD.
METHOD display_notification.

IF me->filter_message() EQ abap_true OR
me->check_count() EQ abap_true OR
me->check_status() EQ abap_true.

WRITE MESSAGE.
ELSE.
CLEAR message.

ENDIF.
ENDMETHOD.
METHOD filter_message.

*Filtering logic goes here and the parameter "Boolean" is set to
*abap_true or abap_false accordingly.
ENDMETHOD.
METHOD check_count.

Object-Oriented ABAP8

334

*Logic to check number of messages goes here and the parameter
*"Boolean" is set to abap_true or abap_false accordingly.
ENDMETHOD.
METHOD check_status.

*Logic to check user personal setting goes here and the parameter
*"Boolean" is set to abap_true or abap_false accordingly.
ENDMETHOD.

ENDCLASS.
*Code in the calling program.
DATA notify TYPE REF TO cl_notification_api.
CREATE OBJECT notify.
notify->set_message(im_message = 'My App notification').
Notify->display_notification().

Listing 8.16 Hiding Implementation

The code in Listing 8.16 now moves the message attribute to the private section
so that it can’t be accessed outside of the class, meaning that its implementation
is hidden from the outside world. In addition, three new methods are defined in
the private section to perform various checks on the message before it’s displayed
to the user; for example, if the user has turned off notifications for the app, the
program can check for that information in the check_status method, and the
message is not displayed if the check_status method returns the Boolean value
abap_false. Similarly, if the user has set a restriction not to display more than
five notifications per day for an app, the check_count method can handle that val-
idation. The validating methods used in the private section can be enhanced or
changed without having to worry about any dependencies.

External developers need not know about the intricacies of the validations per-
formed to display their notifications. All they need to know is how to set the mes-
sage and call the notification API. With the implementation in Listing 8.16, you
have total control over the displayed notifications, and there’s no way for any
checks to be bypassed. This also makes the implementation future-proof, because
you can add as many additional checks as you’d like without external developers
changing anything about the way the API is called in their applications.

When used the right way, implementation hiding makes software development
less prone to errors and easier to enhance or maintain.

Now that we’ve looked at the primary characteristics of encapsulation, in the next
section we’ll move onto another OOP concept: inheritance.

Inheritance 8.3

335

8.3 Inheritance

Inheritance is an important concept in OOP that helps us avoid repetition of code
and leverage existing code libraries. In Section 8.1, we described how inheritance
makes it easy to expand functionality without having to rewrite existing code.
With procedural programming techniques, the closest you can get to something
similar to inheritance is either editing the existing code to expand the functional-
ity or copying the existing code and then adding the additional functionality.
Both approaches are undesirable, because editing existing code may break the
original functionality, and it requires a lot of testing to check that the original and
the new functionality both work correctly, which can itself be a time-consuming
process to go through each time the functionality is enhanced. If we copy the
existing code, not only is the code now redundant, but also it leads to a mainte-
nance nightmare, because each update to the original code needs to be replicated
in all of the copies.

Inheritance allows you to expand a class to meet more specific requirements
while reusing what’s already been developed without having to repeat the exist-
ing code. For example, say that during the initial stage of development you
defined a class to process information about students. Because your requirement
didn’t differentiate between types of students, you developed a generic student
class.

However, later in the development process, the requirement has been enhanced
to branch students into various categories—commerce students, IT students, sci-
ence students, and so on—with each student category required to perform spe-
cific tasks. As the requirement becomes more specific, you can simply inherit the
original student class to add more specific functionality for each student category,
as shown in Listing 8.17. This allows you to move from generic functionality to
specific functionality without breaking the existing implementation while reusing
the effort that already went into the original development.

CLASS cl_student DEFINITION.
PUBLIC SECTION.
METHODS tuition_fee.

ENDCLASS.
CLASS cl_commerce_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.
METHODS tuition_fee REDEFINITION.
METHODS subject. "New method for additional functionality
ENDCLASS.

Object-Oriented ABAP8

336

CLASS cl_commerce_student IMPLEMENTATION.
METHOD tuition_fee.
"Logic to calculate tuition fee for commerce students goes here
ENDMETHOD.

METHOD subject.
ENDMETHOD.
ENDCLASS.

Listing 8.17 Inheritance

In Listing 8.17, the new cl_commerce_student class is a subclass of the original
student superclass from which it’s inheriting, cl_student.

In this section, we’ll look at the different components of the inheritance concept.
We’ll then look at both abstract and final classes and methods before moving on
to composition relationships. In the final subsection, we’ll look at how to use the
refactoring assistant in Class Builder to move class components in the inheritance
tree.

8.3.1 Inheriting Components

In Listing 8.16, we were only concerned with what can be accessed from within
and outside of a class. The public section allowed access from external applica-
tions, while the private section restricted access to components within the class.

Inheritance brings a new dimension to implementation hiding. With the pro-
tected section, you can restrict access to the components from external applica-
tions but allow access to the subclasses. Therefore, for external programs, the
components defined in the protected section are similar to the components in the
private section. This allows you to provide access to child classes without expos-
ing the components of a parent class to the public.

Listing 8.18 provides some sample code to demonstrate inheritance. In this exam-
ple, we’re demonstrating how all the components of the parent class are inherited
by the child class.

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS set_value IMPORTING value TYPE string.
PROTECTED SECTION.
DATA value TYPE string.
METHODS check_value.
PRIVATE SECTION.
METHODS reset_value.

Inheritance 8.3

337

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.
METHOD set_value.
ENDMETHOD.
METHOD check_value.
ENDMETHOD.
METHOD reset_value.
ENDMETHOD.
ENDCLASS.
CLASS cl_child DEFINITION INHERITING FROM cl_parent.
ENDCLASS.
CLASS cl_child IMPLEMENTATION.
ENDCLASS.
DATA child TYPE REF TO cl_child.
START-OF-SELECTION.
CREATE OBJECT child.
Child->set_value(value = 'child').

Listing 8.18 Inheritance Example

In Listing 8.18, the cl_child class is defined as a subclass of cl_parent. Here, cl_
parent is the superclass, and it implements the set_value method in the public
section, the check_value method and the value attribute in the protected section,
and the reset_value method in the private section.

The cl_child class is inherited from cl_parent using the inheriting from addi-
tion of the class definition statement. This sets the parent-child relationship
between the two classes. The cl_child class doesn’t list any components on its
own. All the components in the public and protected sections of the cl_parent
superclass are, by default, available to the cl_child subclass. This is shown in the
program code under start-of-selection (see Listing 8.18), where a reference
object child is defined by referring to cl_child and the set_value method of cl_
parent is accessed using this child class reference with the statement Child->set_
value(value = 'child').

Keep the following important points about inheritance in mind:

� The subclass can access the components defined under public and protected
visibility sections in the superclass.

� You can’t define a component in a subclass with the same name as the compo-
nent in the public or protected sections of the superclass.

� Because the private section of the superclass is invisible to the subclass, you can
define a component in the subclass with the same name as the component in
the superclass.

Object-Oriented ABAP8

338

� The visible instance attributes in the superclass can be accessed from the sub-
class directly or by using the self-reference variable me.

� The visible instance methods of the superclass can be accessed from the sub-
class using the pseudo-reference variable super.

� The static attributes of a class are associated with the complete inheritance tree
(all the classes in the hierarchy) and not just with a single class, so they can be
accessed using any class reference in the hierarchy. For example, if three classes
A, B, and C are in inheritance relationship (B inherits A and C inherits B) and class
A contains a static attribute counter, then this attribute can be accessed as A=
>counter or B=>counter or C=>counter.

� The constructor of the superclass is not inherited by the subclass. This allows
the subclass to define its own constructor, but to ensure the components of the
superclass are instantiated properly, it’s mandatory to call the constructor of
the superclass in the constructor of the subclass, for instance constructors. If
the subclass implements a static constructor, the runtime environment auto-
matically calls the static constructor of the superclass when the subclass is
instantiated if the static constructor of the superclass isn’t yet called.

� The constructor of the class will have visibility to its own components. For
example, if a method is redefined in the subclass and this method is accessed in
the constructor of both the superclass and subclass, then the constructor of the
subclass will execute the redefined method in the subclass, while the construc-
tor of the superclass will execute the original method in the superclass, as
shown in Listing 8.19.

� A method of the superclass can be redefined in the subclass using the REDEFI-
NITION addition to the METHODS statement in the definition part of the subclass,
as shown in Listing 8.19. This allows you to enhance the functionality of the
superclass method in the subclass.

� Any changes in the superclass will be automatically available to the subclass,
whereas changes to subclasses don’t affect the superclass. For example, if a
method of the superclass is enhanced, then the enhancements will be automat-
ically available to the subclass. However, if the same method is changed (rede-
fined) in the subclass, then it won’t impact the superclass.

� The definition of a component of superclass can’t be changed in the subclass; in
other words, you can redefine a superclass method in a subclass, but you can’t
change its parameter interface.

Inheritance 8.3

339

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS constructor.
PROTECTED SECTION.
METHODS meth.

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.
METHOD constructor.

Me->meth().
ENDMETHOD.
METHOD meth.

WRITE 'I'm in parent class'.
ENDMETHOD.

ENDCLASS.
CLASS cl_child DEFINITION INHERITING FROM cl_parent.
PUBLIC SECTION.
METHODS constructor.
PROTECTED SECTION.
METHODS meth REDEFINITION.

ENDCLASS.
CLASS cl_child IMPLEMENTATION.
METHOD constructor.
super->constructor().
Me->meth().

ENDMETHOD.
METHOD meth.
WRITE 'I'm in child class'.

ENDMETHOD.
ENDCLASS.
DATA child TYPE REF TO cl_child.
START-OF-SELECTION.
CREATE OBJECT child.

Listing 8.19 Constructor Access in Superclass and Subclass

In Listing 8.19, cl_parent is defined with an instance constructor and the meth
method. cl_child inherits the cl_parent class, and the meth method is redefined
in the cl_child subclass. A reference object, child, is defined in the program
referring to cl_child. When the reference object child is instantiated under
start-of-selection using the CREATE OBJECT statement, it will call the construc-
tor of the cl_child class. However, because it’s mandatory to call the parent con-
structor before any instance components can be accessed, the constructor in cl_
child calls the parent constructor using the super->constructor() statement.

The meth method is called in the respective constructors of the superclass and
subclass. The constructor of the cl_child subclass calls the redefined meth

Object-Oriented ABAP8

340

method in cl_child, whereas the constructor of the cl_parent superclass calls
the meth method defined in cl_parent. You can keep a breakpoint on the CREATE
OBJECT statement and execute the code to see the sequence of the code execution
in debug mode for easy understanding.

For global classes in Class Builder, the inheritance relation can be maintained
either while creating the class, as shown in Figure 8.3, or under the Properties

tab, as shown in Figure 8.4.

Figure 8.3 Maintaining Superclass Details in Class Builder

Figure 8.4 Maintaining Inheritance under Class Properties

To redefine a method in the subclass, you can use the Redefine button in Class
Builder, as shown in Figure 8.5.

Selecting this button
allows you to maintain
inheritance.

Inheritance 8.3

341

Figure 8.5 Redefine Button in Class Builder

8.3.2 Abstract Classes and Methods

Sometimes, you may want to define a generic class that can be used as a template
that can be implemented in subclasses. Defining a dummy superclass with
dummy methods may not be a good way of defining this template. For example,
if you have students and various course categories and each student course cate-
gory has a different process to determine its tuition, then you can define a student
class with a tuition_fee method that can be used as a template, and its imple-
mentation can be maintained more specifically in the specific subclasses that
inherit this class. For example, a commerce_student class can inherit the student
class and implement the tuition_fee method specific to commerce students.

If you define this student class as a regular class, then you also need to maintain
its implementation. However, because this is a generic class, maintaining the
implementation doesn’t make sense. In such scenarios, we can define this student
class as an abstract class and define the tuition_fee method as an abstract
method.

An abstract class only maintains a definition; no implementation is required for
such a class if it contains all abstract components, which are inherited in a sub-
class in which the specific implementation can be maintained. Listing 8.20 pro-
vides an example of using an abstract class.

CLASS cl_student DEFINITION ABSTRACT.
PUBLIC SECTION.
METHODS tuition_fee ABSTRACT.

ENDCLASS.

CLASS cl_commerce_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.

To redefine a method in
subclass, keep the cursor
in the method and click
the redefine button.

Object-Oriented ABAP8

342

METHODS tuition_fee REDEFINITION.
ENDCLASS.
CLASS cl_commerce_student IMPLEMENTATION.
METHOD tuition_fee.

"Logic to calculate tuition fee for commerce students goes here
ENDMETHOD.

ENDCLASS.

CLASS cl_science_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.
METHODS tuition_fee REDEFINITION.

ENDCLASS.
CLASS cl_science_student IMPLEMENTATION.
METHOD tuition_fee.

"Logic to calculate tuition fee for science students goes here
ENDMETHOD.

ENDCLASS.

Listing 8.20 Using Abstract Class

In Listing 8.20, cl_student is defined as an abstract class by using the ABSTRACT
addition with the CLASS DEFINITION statement.

An abstract method is defined in class cl_student using the ABSTRACT addition
with the METHODS statement. Because this class contains an abstract method, it can
only be implemented in a subclass by using the redefinition addition. If the
class contains a regular method (not an abstract method), then we need to main-
tain the implementation of that method in the implementation part of the class
cl_student. This implementation then would be part of the template that the
subclasses inherit. Because there are no regular methods in Listing 8.20, we’ve
ignored the implementation of the cl_student class completely.

The code in Listing 8.20 defines two subclasses—cl_commerce_student and cl_
science_student—which are inherited from the cl_student abstract class. The
tuition_fee method is redefined in the respective subclasses to implement spe-
cific functionality.

Note

It isn’t possible to create an instance of an abstract class, because an abstract class is
only used as a template.

For global classes, the abstract property for a class is set under the Properties tab
in the Inst.Generation field, as shown in Figure 8.6.

Inheritance 8.3

343

Figure 8.6 Abstract Class in Class Builder

For methods in Class Builder, the abstract property is set by keeping the cursor on
the method, selecting the Detail View button, and then selecting the Abstract

checkbox, as shown in Figure 8.7.

Figure 8.7 Defining Abstract Method in Class Builder

Detail View
button

Object-Oriented ABAP8

344

8.3.3 Final Classes and Methods

Sometimes, in the inheritance tree, it may not make sense to expand a class fur-
ther. In such a scenario, you can make the class final, which means it can’t be
inherited further. A local class can be defined as a final class by adding FINAL to
the CLASS DEFINITION statement, as shown in Listing 8.21.

CLASS cl_final DEFINITION FINAL.
……
ENDCLASS.

Listing 8.21 Defining Final Class

For global classes, to define a class as final in Class Builder, the Final checkbox
needs to be selected in the Properties tab, as shown in Figure 8.8.

Methods can also be defined as final so that they can’t be redefined further in the
subclass. For example, it may make sense to further inherit a class, but a method
in the class may not need to be extended further because it’s purpose is complete.
You can make a method final by adding FINAL to the METHODS statement, as shown
in Listing 8.22.

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS student FINAL.
ENDCLASS.

Listing 8.22 Final Method

Figure 8.8 Final Class

To make the method of a global class final, keep the cursor on the method in the
Class Builder and select the Detail View button. In the Change Method window,
select the Final checkbox, as shown in Figure 8.9.

Inheritance 8.3

345

Figure 8.9 Final Method in Class Builder

8.3.4 Composition

Using inheritance, we design classes that fit an is a relationship. For example, a
commerce student is a type of student, so we define the class commerce_student
as a subclass of student in the example in Listing 8.20. Sometimes, in an effort to
reuse the existing code, developers create an inheritance tree that doesn’t fit an is
a relationship. For example, if we have an existing orders class, it makes sense to
create a sales_order class inheriting from the orders class, because a sales order
is an order.

However, if you want to define a class for delivery, it may not make sense to
inherit the orders class, because a delivery is not an order. However, each order
has one or more deliveries associated with it. If the objects fit the has a relation-
ship, we call it a composition relationship.

Composition allows you to reuse existing functionality by maintaining the exist-
ing object as an attribute in the class. Therefore, the orders class can have deliv-
ery as an attribute in the class. This arrangement allows you to take advantage of
the existing functionality in the system, as shown in Listing 8.23.

Detail View
button

Object-Oriented ABAP8

346

CLASS cl_delivery DEFINITION.
PUBLIC SECTION.
METHODS get_delivery.
ENDCLASS.
CLASS cl_delivery IMPLEMENTATION.
METHOD get_delivery.
ENDMETHOD.
ENDCLASS.
CLASS cl_orders DEFINITION.
PUBLIC SECTION.
METHODS track_order.
PRIVATE SECTION.
DATA delivery TYPE REF TO cl_delivery.
ENDCLASS.
CLASS cl_orders IMPLEMENTATION.
METHOD track_order.
CREATE OBJECT delivery.
delivery->get_delivery().
ENDMETHOD.
ENDCLASS.

Listing 8.23 Composition Example

In Listing 8.23, the cl_delivery class is maintained as an attribute in the cl_
orders class. The delivery object is instantiated in the track method to access the
delivery information about the order.

Tip

As a rule of thumb, use an inheritance relationship between objects if they fit the is a
relationship and use composition if the objects fit the has a relationship. This tip should
help you make better design decisions.

8.3.5 Refactoring Assistant

When you’re designing an application, sometimes you may miss defining the
class components at the right level in the inheritance hierarchy. For example, you
may have defined a method in the subclass that may make more sense in the
superclass due to a change in the requirement.

In such a scenario, you can use the refactoring assistant tool in Class Builder to
move the class components up or down the inheritance tree. This saves a lot of
effort and any chance of missing steps when manually moving the components.

Polymorphism 8.4

347

To use the refactoring assistant, select the menu path Utilities � Refactoring �
Refactoring in Class Builder, as shown in Figure 8.10.

Figure 8.10 Refactoring Assistant Menu Path

In the Refactoring Assistant window (see Figure 8.11), you can drag and drop
components to the right hierarchy level.

Figure 8.11 Refactoring Assistant Window

Now that we’ve walked through the inheritance principles, let’s move on to using
polymorphism in OOP.

8.4 Polymorphism

Polymorphism means having many forms. The inheritance concept leads to many
interesting scenarios in which objects can take different forms. For example, it’s
possible for a subclass to respond to a method call of the superclass.

Object-Oriented ABAP8

348

To understand polymorphism, you first need to understand static and dynamic
types. We’ll then look at how to use casting when a static type source reference
object isn’t the same as the target reference object. From there, we’ll discuss how
to use dynamic binding with the CALL method before finally looking at imple-
menting multiple inheritances using interfaces.

8.4.1 Static and Dynamic Types

The static type of an object (reference variable) is the class type that is used to
define an object. For example, in Listing 8.24, the oref reference is defined by
referring to the cl_class class. In this case, the static type of the oref object is the
cl_class class as it’s statically defined in the code.

CLASS cl_class DEFINITION.
PUBLIC SECTION.
METHODS meth.
ENDCLASS.
CLASS cl_class IMPLEMENTATION.
METHOD meth.
ENDMETHOD.
ENDCLASS.
DATA oref TYPE REF TO cl_class.

Listing 8.24 Code Defining Reference Object

Sometimes, you may want to assign one reference object to another reference
object that doesn’t share the same static type. For example, because instances of
classes in an inheritance tree are interchangeable, you can assign the instance of
the subclass to the instance of the superclass, as shown in Listing 8.25, by using
the parent = child statement.

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS meth1.
METHODS meth2.

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.
METHOD meth1.
WRITE 'In method1 of parent'.
ENDMETHOD.
METHOD meth2.
WRITE 'In method2 of parent'.
ENDMETHOD.

ENDCLASS.

Polymorphism 8.4

349

CLASS cl_child DEFINITION INHERITING FROM cl_parent.
PUBLIC SECTION.
METHODS meth2 REDEFINITION.
METHODS meth3.

ENDCLASS.
CLASS cl_child IMPLEMENTATION.
METHOD meth2.
WRITE 'In method2 of child'.

ENDMETHOD.
METHOD meth3.
WRITE 'In method3 of child'.

ENDMETHOD.
ENDCLASS.
DATA parent TYPE REF TO cl_parent.
DATA child TYPE REF TO cl_child.
START-OF-SELECTION.
CREATE OBJECT parent.
CREATE OBJECT child.
Parent->meth2().
parent = child.
parent->meth2().

Listing 8.25 Example of Casting

In Listing 8.25, once the reference object parent is instantiated using the CREATE
OBJECT statement, it sets the pointer (in memory) of the parent reference object
to the cl_parent class. The pointer to which the reference object points at run-
time is called the dynamic type of the object.

At this point, both the static type and dynamic type of the parent object are the
same. The parent = child statement assigns the instance of the child object to the
parent object. When one reference object is assigned to another reference object,
the object itself is not assigned; only the pointer of the object is moved. In other
words, after the assignment parent = child, the parent object points to the mem-
ory location of the child object. After this assignment, the dynamic type of the
parent object is changed to the cl_child class and the static type is cl_parent.

At this point in the code, both the parent and child reference objects are point-
ing to the same cl_child object. Because there’s no reference to the parent object
after this assignment, the parent object will be removed from the memory auto-
matically by the garbage collector. The ABAP runtime environment calls the gar-
bage collector periodically to remove objects from memory that are no longer ref-
erenced by object reference variables.

Object-Oriented ABAP8

350

In Listing 8.25, when the parent->meth2() method is first called before the par-
ent = child assignment (that is, before its dynamic type is changed), it will exe-
cute the code in the meth2 method of the cl_parent superclass. However, the
same statement after the parent = child assignment will execute the code in the
meth2 method of the cl_child subclass, effectively displaying polymorphism
because the same object behaves differently during the runtime of the program.

8.4.2 Casting

Similar to the conversion rules applied when different types of data objects are
assigned to each other, the assignment of objects of different static types are gov-
erned by certain rules. If the static type of the source reference object is not the
same as the target reference object, then a special operation called a cast must
occur. This process is known as casting. For the cast operation to work, the static
type of the target reference object should be same or more general than the
dynamic type of the source reference object.

In the example in Listing 8.25, the cl_parent parent object is more generic than
the cl_child child object (a superclass will always be the same as or more generic
than a subclass). In other words, the parent class has implemented two methods,
whereas the subclass has become more specific by implementing a third method
not available in the parent class. Therefore, the parent class is more generic than
the child class, and for this reason, we could assign the child object to the parent
object.

There are two different types of cast operations possible: a narrowing cast (or up
cast) and a widening cast (or down cast). The following subsections look at these
different casting operations.

Narrowing Cast

A narrowing cast occurs when the static type of the target reference object is
more generic than the static type of the source reference object. The casting oper-
ation we performed in Listing 8.25 is a narrowing cast. It’s called a narrowing cast
because the parent class is more generic, and after casting the parent class can
only access the components of the child class that are defined in the static type of
the parent class, effectively reducing the scope of (narrowing) the components
that can be accessed.

Polymorphism 8.4

351

For example, say a parent class has two methods, meth1 and meth2, and the child
class has an additional method, meth3, which isn’t defined in the parent class.
After the casting operation, you can only access the meth1 and meth2 methods of
the child class by using the parent object reference. If you try to access the meth3
method, it will result in a syntax error, as shown in Listing 8.26. You can, how-
ever, access the meth3 method using the child object reference, because it still
exists in the program and isn’t truncated.

Parent = child. "Assigns child reference to parent.
Parent->meth1()."Calls the method meth1 in child if redefined.
Parent->meth2()."Calls the method meth2 in child if redefined.
Parent->meth3()."Results in syntax error.
Child->meth3()."Works as expected.

Listing 8.26 Narrow Cast

The narrow cast can also be performed during instantiation by adding TYPE to the
CREATE OBJECT statement as shown:

DATA parent TYPE REF TO cl_parent.
CREATE OBJECT parent TYPE cl_child.

Widening Cast

A widening cast occurs when the static type of the target reference object is more
specific than the static type of the source reference object. Because this contra-
venes the rule for casting, which specifies that the target object should always be
more generic than the source object, the syntax checker will complain that the
source object can’t be converted to the target object if you try to assign the
objects using the = operator or use the MOVE statement. To bypass this restriction
and tell the compiler that we know what we’re doing, we use the ?= operator for
a widening cast, as shown:

Child ?= parent.

Using the ?= operator will only bypass the check statically during compile time
and postpones it until runtime. It will throw a runtime error if the target object is
not more generic than the source object.

For example, the code in Listing 8.27 will pass the syntax checker (static check)
but result in a runtime error because the child object is more specific than the par-
ent object.

Object-Oriented ABAP8

352

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS meth1.
METHODS meth2.

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.
METHOD meth1.
WRITE 'In method1 of parent'.
ENDMETHOD.
METHOD meth2.
WRITE 'In method2 of parent'.
ENDMETHOD.

ENDCLASS.
CLASS cl_child DEFINITION INHERITING FROM cl_parent.
PUBLIC SECTION.
METHODS meth2 REDEFINITION.
METHODS meth3.

ENDCLASS.
CLASS cl_child IMPLEMENTATION.
METHOD meth2.

WRITE 'In method2 of child'.
ENDMETHOD.
METHOD meth3.

WRITE 'In method3 of child'.
ENDMETHOD.

ENDCLASS.
DATA parent TYPE REF TO cl_parent.
DATA child TYPE REF TO cl_child.
START-OF-SELECTION.
CREATE OBJECT parent.
CREATE OBJECT child.
Child ?= parent. "Results in runtime error

Listing 8.27 Widening Cast Resulting in Runtime Error

A widening cast should only be used when the dynamic type of the target object
will be generic than the source object. This effectively means that a narrowing
cast must be performed before a widening cast, as shown in Listing 8.28. Widen-
ing casts can be confusing and dangerous, so they should be used with care.

CLASS cl_parent DEFINITION.
PUBLIC SECTION.
METHODS meth1.
METHODS meth2.

ENDCLASS.
CLASS cl_parent IMPLEMENTATION.
METHOD meth1.
WRITE 'In method1 of parent'.
ENDMETHOD.

Polymorphism 8.4

353

METHOD meth2.
WRITE 'In method2 of parent'.

ENDMETHOD.
ENDCLASS.
CLASS cl_child1 DEFINITION INHERITING FROM cl_parent.
PUBLIC SECTION.
METHODS meth2 REDEFINITION.
METHODS meth3.

ENDCLASS.
CLASS cl_child1 IMPLEMENTATION.
METHOD meth2.
WRITE 'In method2 of child1'.

ENDMETHOD.
METHOD meth3.
WRITE 'In method3 of child1'.

ENDMETHOD.
ENDCLASS.
CLASS cl_child2 DEFINITION INHERITING FROM cl_child1.
PUBLIC SECTION.
METHODS meth2 REDEFINITION.
METHODS meth3 REDEFINITION.
METHODS meth4.

ENDCLASS.
CLASS cl_child2 IMPLEMENTATION.
METHOD meth2.

WRITE 'In method2 of child2'.
ENDMETHOD.
METHOD meth3.

WRITE 'In method3 of child2'.
ENDMETHOD.
METHOD meth4.

WRITE 'In method4 of child2'.
ENDMETHOD.

ENDCLASS.
DATA parent TYPE REF TO cl_parent.
DATA child1 TYPE REF TO cl_child1.
DATA child2 TYPE REF TO cl_child2.
START-OF-SELECTION.
CREATE OBJECT parent.
CREATE OBJECT child1.
CREATE OBJECT child2.
parent = child2.
child1 ?= parent.

child1->meth2().

Listing 8.28 Widening Cast Example

Object-Oriented ABAP8

354

In Listing 8.28, three classes are defined: cl_parent, cl_child1, and cl_child2.
cl_child1 inherits from cl_parent, and Cl_child2 inherits from cl_child1.

A narrow cast is first performed by assigning the child2 object to the parent
object, and then a widening cast is performed by assigning the parent object to
child1. When the meth2 method is called using the child1 object reference after
the widening cast, it will execute the code in the meth2 method of the cl_child2
class.

8.4.3 Dynamic Binding with the CALL Method

When an object is passed to the method as a parameter, the system automatically
binds the object dynamically. This allows us to design objects that are easily
extendable.

To understand dynamic binding with the CALL method, let’s look at the code snip-
pet in Listing 8.29. Here, we’ve defined cl_student as an abstract class with
tuition_fee and get_fee as abstract methods with public visibility. A fee_paid
attribute that can be set if the fee is paid by the student is defined in the protected
section.

Two classes, cl_commerce_student and cl_science_student, inherit the cl_stu-
dent class and maintain their own implementation of the tuition_fee and get_
fee abstract methods. In the tuition_fee method, the private fee_paid attribute
is set to abap_true if the student has paid the fee. The get_fee method returns the
value of the private fee_paid attribute.

We’ve defined one cl_admission class that can be used to enroll a student in a
course. This class has two methods, set_student and enroll, which can be used
to complete the admission of the student in a course. Because this cl_admission
class should be able to enroll any student from any student category (science stu-
dent, commerce student, etc.), we need to design this class to import information
about any student category.

The set_student method of the cl_admission class is defined with an importing
parameter to import the student object. If we maintain the static type of this
importing parameter as cl_commerce_student, it can only import the commerce
student object and our class can only process the admission for commerce stu-
dents. Similarly, if we maintain the static type of the importing parameter as cl_
science_student, it can only import the science student object and our class can

Polymorphism 8.4

355

only process the admission for science students. In order to make it work for any
student category, we’ve maintained the importing parameter of this method as a
static type of the cl_student abstract class, from which the cl_science_student
and cl_commerce_student classes inherit.

CLASS cl_student DEFINITION ABSTRACT.
PUBLIC SECTION.
METHODS tuition_fee ABSTRACT.
METHODS get_fee ABSTRACT RETURNING VALUE(fee_paid) TYPE boolean.
PROTECTED SECTION.
DATA fee_paid TYPE boolean.

ENDCLASS.
CLASS cl_commerce_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.
METHODS tuition_fee REDEFINITION.
METHODS get_fee REDEFINITION.
ENDCLASS.
CLASS cl_commerce_student IMPLEMENTATION.
METHOD tuition_fee.
"logic to calculate tuition fee for commerce students goes here
"IF fee paid.

fee_paid = abap_true.
ENDMETHOD.
METHOD get_fee.

fee_paid = me->fee_paid.
ENDMETHOD.

ENDCLASS.
CLASS cl_science_student DEFINITION INHERITING FROM cl_student.
PUBLIC SECTION.
METHODS tuition_fee REDEFINITION.
METHODS get_fee REDEFINITION.

ENDCLASS.
CLASS cl_science_student IMPLEMENTATION.
METHOD tuition_fee.
"logic to calculate tuition fee for science students goes here
"IF fee paid.

fee_paid = abap_true.
ENDMETHOD.
METHOD get_fee.

fee_paid = me->fee_paid.
ENDMETHOD.

ENDCLASS.
CLASS cl_admission DEFINITION.
PUBLIC SECTION.
METHODS set_student IMPORTING im_student TYPE REF TO cl_student.
METHODS enroll.
PRIVATE SECTION.
DATA admit TYPE boolean.

ENDCLASS.

Object-Oriented ABAP8

356

CLASS cl_admission IMPLEMENTATION.
METHOD set_student.

IF im_student->get_fee() EQ abap_true.
admit = abap_true.
ENDIF.

ENDMETHOD.
METHOD enroll.

IF admit EQ abap_true.
*Perform the steps to enroll

ENDIF.
ENDMETHOD.

ENDCLASS.

DATA : commerce_student TYPE REF TO cl_commerce_student,
science_student TYPE REF TO cl_science_student,
admission TYPE REF TO cl_admission.

START-OF-SELECTION.
CREATE OBJECT: commerce_student,

science_student,
admission.

CALL METHOD commerce_student->tuition_fee.
CALL METHOD admission->set_student(EXPORTING im_student = commerce_
student).
CALL METHOD admission->enroll.

CALL METHOD science_student->tuition_fee.
CALL METHOD admission->set_student(EXPORTING im_student = science_
student).
CALL METHOD admission->enroll.

Listing 8.29 Code for Dynamic Call Method Binding

When the set_student method of the cl_admission class is called, it allows us to
pass any student object that is inherited from cl_student. Within this method,
we’re checking if the student has paid the fee by calling the get_fee method of
the imported object and accordingly processing the admission of the student.
Here, even though the static type of the imported object is different from the
static type of the importing parameter, the system automatically binds the object
to the correct instance.

With this design, we can easily process admissions for any future student cate-
gory via the cl_admission class. All the student category class needs to do is to
inherit the abstract class cl_student.

Polymorphism 8.4

357

8.4.4 Interfaces

Similar to Java, ABAP Objects only supports single inheritance and don’t support
multiple inheritance as in C++. Single inheritance means a class can have multiple
subclasses but only one superclass. Many subclasses can use the same class as
their superclass, but each subclass can only have a single superclass.

Modern programming languages didn’t add support for multiple inheritance
(having multiple superclasses) in order to avoid ambiguity. One of the common
problems with multiple inheritance is called the diamond problem. For example,
as depicted in Figure 8.12, assume you have two subclasses B and C inheriting
from the same superclass A and that both classes B and C have redefined a method
XYZ of class A in their implementation. Now, if a new subclass D is defined as hav-
ing both class B and class C as its superclasses then which superclass method will
it use?

Figure 8.12 Diamond Problem with Multiple Inheritance

One way of implementing multiple inheritance is to use interfaces. Interfaces pro-
vide all the advantages of multiple inheritance while avoiding all the problems.

Interfaces are defined similarly to classes via the INTERFACE statement. An inter-
face only contains a definition for which the implementation is maintained in the
class that uses the interface. If you need a common definition in multiple classes,
then you can create an interface and use it in multiple classes.

Class A

Method xyz

Class C INHERITING FROM AClass B INHERITING FROM A

Methods xyz REDEFINITION

Class D INHERITING FROM A B

Methods xyz REDEFINITION

Methods xyz
Which implementation is
called? Class B or Class C?

Object-Oriented ABAP8

358

The syntax to define an interface is shown in Listing 8.30, in which interface if_
student is defined using the INTERFACE statement and ended with the ENDINTER-
FACE statement.

INTERFACE if_student.
DATA course TYPE char10.
METHODS meth1.
EVENTS enrolled.

ENDINTERFACE.

CLASS cl_science DEFINITION.
PUBLIC SECTION.
INTERFACES if_student.

ENDCLASS.
CLASS cl_science IMPLEMENTATION.
METHOD if_student~meth1.
ENDMETHOD.

ENDCLASS.

Listing 8.30 Interfaces

An interface can have all the components that a class supports, such as methods,
attributes, events, and so on. All of the components are in PUBLIC SECTION by
default, and you can’t use any visibility section in the interface definition.
Because an interface is generally created to be used in multiple classes, it makes
sense to use the interface to define the public interface of the class, with each class
that uses the interface implementing its own private or protected components.

In Listing 8.30, a cl_science class implements the if_student interface via the
INTERFACES statement. In the implementation of the cl_science class, the meth1
method defined in the if_student interface is implemented. Because the meth1
method is defined in the interface and not in the class itself, the method is
accessed using the interface_name~component_name syntax. Here, the tilde sym-
bol (~) is the interface component selector that should be used to access the com-
ponent of an interface.

Unlike classes, interfaces do not have any implementation section. Interfaces can
be defined only in the global declaration area of a program and can’t be defined
within a class or a procedure or an event block.

Sometimes, the interface name can be too long. To avoid addressing the interface
component using the long interface name, we can use aliases to make it easy
while coding, as shown in Listing 8.31.

Polymorphism 8.4

359

INTERFACE if_student.
DATA course TYPE char10.
METHODS meth1.
EVENTS enrolled.

ENDINTERFACE.
CLASS cl_science DEFINITION.
PUBLIC SECTION.
INTERFACES if_student.
ALIASES m1 FOR if_student~meth1.

ENDCLASS.
CLASS cl_science IMPLEMENTATION.
METHOD m1.
ENDMETHOD.

ENDCLASS.
DATA science TYPE REF TO cl_science.
START-OF-SELECTION.
CREATE OBJECT science.
science->m1().

Listing 8.31 Using Aliases

Interfaces can be nested by using the INTERFACES statement to include an inter-
face within an interface. In Listing 8.32, the if_student interface is nested inside
if_college. An alias is defined for the meth1 method of if_student within if_
college. The cl_science class implements the if_college interface. The meth1
method of the if_student interface is accessed within the class using the alias
defined for it in if_college.

INTERFACE if_student.
DATA course TYPE char10.
METHODS meth1.
EVENTS enrolled.

ENDINTERFACE.
INTERFACE if_college.
INTERFACES if_student.
ALIASES m1 FOR if_student~meth1.
METHODS meth1.

ENDINTERFACE.
CLASS cl_science DEFINITION.
PUBLIC SECTION.
INTERFACES if_college.
ALIASES m1 FOR if_college~m1.
ALIASES m2 FOR if_college~meth1.

ENDCLASS.
CLASS cl_science IMPLEMENTATION.
METHOD m1.
ENDMETHOD.

Object-Oriented ABAP8

360

METHOD m2.
ENDMETHOD.

ENDCLASS.
DATA science TYPE REF TO cl_science.
START-OF-SELECTION.
CREATE OBJECT science.
science->m1().

Listing 8.32 Nesting Interfaces

The process of defining a global interface in Class Builder is similar to creating a
class. Follow these steps to create an interface in Class Builder:

1. On the initial Class Builder screen (Transaction SE24; see Figure 8.13), enter the
name of the interface and click the Create button. If the name starts with ZIF,
Class Builder will automatically create an interface; otherwise, you’ll see a
dialog box (see Figure 8.14) to choose whether to create a class or interface.

Figure 8.13 Class Builder: Initial Screen

Figure 8.14 Object Type Selection Dialog Box

2. On the Class Builder: Change Interface… screen (see Figure 8.15), maintain
the components of the interface and click the Activate button in the applica-
tion toolbar to activate.

Polymorphism 8.4

361

Figure 8.15 Class Builder: Change Interface Screen

3. You can include the interface in a global class under the Interfaces tab, as
shown in Figure 8.16.

Figure 8.16 Including Interface in Global Class

4. The alias for an interface component can be maintained under the Aliases tab,
as shown in Figure 8.17. The name of the alias is maintained under the Alias

column, and the visibility for the alias can be set under the Visible column.

Figure 8.17 Aliases for Interface Component

Object-Oriented ABAP8

362

In this section, we discussed the concept of polymorphism in OOP. In the next
section, we’ll take a bit of a departure from object-oriented concepts and look at
how to work with XML.

8.5 Working with XML

Extensible Markup Language (XML) is a meta markup language that is used to
define structured documents that can be easily exchanged between heteroge-
neous systems. There are many ways to exchange data between systems, but with
the growth of web services, XML has gained popularity among developers. The
beauty of XML lies in its flexibility and simplicity.

XML defines a standard that can be used to define the format of documents.
Using XML, we can structure and organize various kind of data. A markup lan-
guage (e.g., HTML) consists of tags, which are predefined. Tags allow you to for-
mat and organize the data. Tags are maintained between less than (<) and greater
than (>) symbols. For example, in an HTML document, we can open the para-
graph tag with <p> and close it with </p>. The content maintained between the
tags is interpreted accordingly. Here, the content maintained between <p> and </
p> is formatted as a paragraph; the content maintained between <h1> and </h1> is
interpreted as a header.

However, XML is a meta markup language, which defines a markup language. It’s
designed to be flexible and easy to understand for both humans and machines. In
XML, there are no predefined tags; any tag can be used to describe content.

Even though an in-depth understanding of XML documents and their processing
is beyond the scope of this book, in this section we’ll discuss the basic XML syn-
tax and look at the iXML library provided by SAP to create XML documents in
ABAP. Understanding XML is helpful when exposing or consuming data with
external applications. This section should help you appreciate how OOP aids in
designing libraries that are easy for developers to use in their programs.

8.5.1 XML Overview

XML files provide great flexibility to share structured documents. Because there
are no predefined tags, we can use tags that suit our domain and that are self-

Working with XML 8.5

363

explanatory. Of course, developing a standard for document markup makes it
easy for third-party vendors to develop software that can process XML files.

For example, say we have a website that can be extended by installing custom
extensions. The extensions are of two types: components and plugins (i.e., the
website can be extended by developing a component or a plugin). We’ve devel-
oped a component and want to upload the files of the custom component as a
package to the webserver. To provide the information about the component to
the installer script, we can supply an XML file with the package that contains
information about the file structure of the package, as shown in Listing 8.33. The
installer can read this XML file and upload the files in the package to the desig-
nated folders in the web server.

<?xml version="1.0" encoding="utf-8"?>
<!—This is comment-->
<extension type="component">
<files folder="site">

<filename>index.html</filename>
<filename>site.php</filename>

</files>
<media folder="media">

<folder>css</folder>
<folder>images</folder>
<folder>js</folder>
</media>

</extension>

Listing 8.33 Sample XML Document

As shown in Listing 8.33, XML documents are organized into a series of elements.
The first line in the document specifies the XML version and the encoding used.
The syntax for this statement is <?xml version="1.0" encoding=""?> and it’s
optional.

The basic syntax to define an element in XML is as follows:

<element_name attribute_name=attribute_value>
<!-- Element Content -->

</element_name>

In the example XML file provided, for the <extension type="component"> tag, the
element name is extension, the attribute name is type, and the attribute value is
component. This tells the upload script that we’re trying to upload an extension
that’s a component. The tags <files> and <media> are the elements under the

Object-Oriented ABAP8

364

parent node <extension>. The tags under <files> and <media> are the respective
elements’ content, which specifies the folders and files that we are uploading. The
document is closed with the closing tag </extension>. Comments can be main-
tained between<!-- and -->.

XML markup is case-sensitive; for example, the element name <ELEMENT> is differ-
ent than <element>.

8.5.2 XML Processing Concepts

SAP NetWeaver AS ABAP provides an iXML library that can be used to process
XML files. This library implements various interfaces that allow us to work with
XML files by calling various methods.

Listing 8.34 shows the code to create an XML file using the iXML library. The
XML file we’re creating contains the data from Listing 8.33. In Listing 8.34, we’re
defining reference objects for the XML document from the iXML library. The
reference object for the XML document is referenced to the if_ixml_document
interface, and a reference object is defined for each element in the XML file by
referencing if_ixml_element. The XML file is generated by calling the respective
methods from the library, as shown in Listing 8.34.

REPORT ZDEMO_XML.
*Declarations to create XML document
DATA: lr_ixml TYPE REF TO if_ixml. "Reference for iXML object
"Reference for XML document
DATA: lr_document TYPE REF TO if_ixml_document.
."Reference for "extension" element in document
DATA: lr_extension TYPE REF TO if_ixml_element

."Reference for "files" element in document
DATA: lr_files TYPE REF TO if_ixml_element
."Reference for "media" element in document
DATA: lr_media TYPE REF TO if_ixml_element
."Reference to set encoding
DATA: lr_encoding TYPE REF TO if_ixml_encoding

*Declarations to create output stream and render the file to
*application server directory
DATA: lr_streamfactory TYPE REF TO if_ixml_stream_factory,

lr_ostream TYPE REF TO if_ixml_ostream,
lr_renderer TYPE REF TO if_ixml_renderer.

DATA file_path TYPE string VALUE 'D:\USR\SAP\PUT\MANIFEST.XML'.

Working with XML 8.5

365

* Create iXML object
lr_ixml = cl_ixml=>create().
*Create Document
lr_document = lr_ixml->create_document().
*Create encoding
lr_encoding = lr_ixml->create_encoding(BYTE_ORDER = 0 CHARACTER_SET =
'UTF-8').

*Set encoding
lr_document->set_encoding(lr_encoding).
*Create element "extension" as root
lr_extension = lr_document->create_simple_element(
name = 'extension'
parent = lr_document).
*Set attribute for the "extension" element
lr_extension->set_attribute(name = 'Type'
VALUE = 'Component').
*Create "files" element with "extension" element as parent
lr_files = lr_document->create_simple_element(
name = 'files'
parent = lr_extension).
*Set attribute for "files" element
lr_files->set_attribute(name = 'Folder'
VALUE = 'site').
*Create element content
lr_document->create_simple_element(name = 'filename'
parent = lr_files
VALUE = 'index.html').
lr_document->create_simple_element(name = 'filename'
parent = lr_files
VALUE = 'site.php').

*Create "media" element with "extension" element as parent
lr_media = lr_document->create_simple_element(
name = 'media'
parent = lr_extension).
**Set attribute for "media" element
lr_media->set_attribute(name = 'Folder'
VALUE = 'media').

*Create element content
lr_document->create_simple_element(name = 'folder'
parent = lr_media
VALUE = 'css').
lr_document->create_simple_element(name = 'folder'
parent = lr_media
VALUE = 'images').
lr_document->create_simple_element(name = 'folder'
parent = lr_media
VALUE = 'js').

Object-Oriented ABAP8

366

* Create stream factory
lr_streamfactory = lr_ixml->create_stream_factory().
* Create output stream
lr_ostream = lr_streamfactory->create_ostream_uri(system_id = file_
path).
* Create renderer
lr_renderer = lr_ixml->create_renderer(ostream = lr_ostream
document = lr_document).
* Set pretty print
lr_ostream->set_pretty_print(abap_true).
* Renders the attached document into output stream
lr_renderer->render().

Listing 8.34 Using iXML library to Create XML File

The code in Listing 8.34 saves the XML file in the application server directory, as
shown in Figure 8.18.

Figure 8.18 XML File

8.6 Summary

In this chapter, we explored various OOP concepts. The four pillars of OOP are
encapsulation, inheritance, polymorphism, and abstraction. We discussed all of
these concepts and looked at the various ways they’re implemented in ABAP.

Summary 8.6

367

By now, you should have a good overview of objects and should feel comfortable
working with ABAP Objects. Designing software using ABAP Objects takes some
experience, but this chapter should serve as a starting point for you to start look-
ing at designing applications by using OOP concepts.

In the next chapter, we’ll use some of the concepts from this chapter to shed light
on how to handle error situations in applications.

7

Contents

Acknowledgments .. 21
Preface ... 23

1 Introduction to ERP and SAP ... 29

1.1 Historical Overview .. 29
1.2 Understanding an ERP System .. 32

1.2.1 What Is ERP? ... 32
1.2.2 ERP vs. Non-ERP Systems .. 33
1.2.3 Advantages of an ERP System .. 35

1.3 Introduction to SAP .. 36
1.3.1 Modules in SAP ... 36
1.3.2 Types of Users ... 37
1.3.3 Role of an ABAP Consultant .. 38
1.3.4 Changing and Adapting the Data Structure 40

1.4 ABAP Overview .. 43
1.4.1 Types of Applications .. 43
1.4.2 RICEF Overview .. 43

1.5 System Requirements ... 48
1.6 Summary .. 48

2 Architecture of an SAP System .. 49

2.1 Introduction to the Three-Tier Architecture 49
2.2 SAP Implementation Overview ... 52

2.2.1 SAP GUI: Presentation Layer ... 52
2.2.2 Application Servers and Message Servers:

Application Layer .. 54
2.2.3 Database Server/RDBMS: Database Layer 61

2.3 Data Structures ... 64
2.3.1 Client Overview .. 64
2.3.2 Client-Specific and Cross-Client Data 65
2.3.3 Repository ... 68
2.3.4 Packages ... 68
2.3.5 Transport Organizer .. 70

2.4 Summary .. 75

8

Contents

3 Introduction to the ABAP Environment 77

3.1 SAP Environment ... 78
3.1.1 ABAP Programming Environment 78
3.1.2 Logging On to the SAP Environment 78
3.1.3 Elements of the SAP Screen .. 79
3.1.4 Transaction Codes .. 82
3.1.5 Navigating and Opening Transactions 83

3.2 ABAP Workbench Overview .. 87
3.2.1 ABAP Editor ... 88
3.2.2 Function Builder ... 90
3.2.3 Class Builder ... 91
3.2.4 Screen Painter .. 92
3.2.5 Menu Painter ... 95
3.2.6 ABAP Data Dictionary .. 96
3.2.7 Object Navigator .. 98

3.3 Eclipse IDE Overview ... 99
3.4 Summary ... 105

4 ABAP Programming Concepts .. 107

4.1 General Program Structure .. 108
4.1.1 Global Declarations .. 108
4.1.2 Procedural ... 109

4.2 ABAP Syntax .. 110
4.2.1 Basic Syntax Rules .. 110
4.2.2 Chained Statements ... 111
4.2.3 Comment Lines .. 112

4.3 ABAP Keywords .. 113
4.4 Introduction to the TYPE Concept ... 114

4.4.1 Data Types ... 115
4.4.2 Data Elements .. 130
4.4.3 Domains .. 134
4.4.4 Data Objects .. 137

4.5 ABAP Statements .. 141
4.6 Creating Your First ABAP Program ... 143
4.7 Summary ... 149

Contents

9

5 Structures and Internal Tables ... 151

5.1 Defining Structures ... 152
5.1.1 When to Define Structures .. 154
5.1.2 Local Structures ... 155
5.1.3 Global Structures ... 158
5.1.4 Working with Structures .. 162
5.1.5 Use Cases .. 163

5.2 Internal Tables .. 164
5.2.1 Defining Internal Tables .. 164
5.2.2 Types of Internal Tables ... 167
5.2.3 Table Keys ... 171
5.2.4 Working with Internal Tables .. 175
5.2.5 Control Break Statements .. 182

5.3 Introduction to Open SQL Statements .. 187
5.3.1 Database Overview ... 189
5.3.2 Selecting Data from Database Tables 198
5.3.3 Selecting Data from Multiple Tables 200

5.4 Processing Data from Database via Internal Tables and
Structures ... 203

5.5 Introduction to the Debugger ... 205
5.6 Practice .. 209
5.7 Summary .. 209

6 User Interaction ... 211

6.1 Selection Screen Overview ... 212
6.1.1 PARAMETERS ... 214
6.1.2 SELECT-OPTIONS ... 221
6.1.3 SELECTION-SCREEN ... 229
6.1.4 Selection Texts .. 230

6.2 Messages .. 231
6.2.1 Types of Messages ... 231
6.2.2 Messages Using Text Symbols ... 233
6.2.3 Messages Using Message Classes 235
6.2.4 Dynamic Messages .. 237
6.2.5 Translation .. 238

6.3 Summary .. 239

10

Contents

7 Modularization Techniques .. 241

7.1 Modularization Overview .. 242
7.2 Program Structure ... 245

7.2.1 Processing Blocks ... 246
7.2.2 Event Blocks ... 258
7.2.3 Dialog Modules .. 260
7.2.4 Procedures ... 261

7.3 Events ... 261
7.3.1 Program Constructor Events ... 262
7.3.2 Reporting Events .. 262
7.3.3 Selection Screen Events .. 269
7.3.4 List Events .. 270
7.3.5 Screen Events ... 271

7.4 Procedures .. 272
7.4.1 Subroutines .. 274
7.4.2 Function Modules .. 284
7.4.3 Methods .. 293

7.5 Inline Declarations ... 300
7.5.1 Assigning Values to Data Objects 301
7.5.2 Using Inline Declarations with Table Work Areas 301
7.5.3 Avoiding Helper Variables .. 302
7.5.4 Declaring Actual Parameters ... 302

7.6 Summary ... 303

8 Object-Oriented ABAP ... 305

8.1 Introduction to Object-Oriented Programming 305
8.1.1 Classes ... 308
8.1.2 Methods .. 313
8.1.3 Instance and Static Components 320
8.1.4 Events .. 322

8.2 Encapsulation .. 325
8.2.1 Component Visibility .. 326
8.2.2 Friends ... 329
8.2.3 Implementation Hiding .. 332

8.3 Inheritance .. 335
8.3.1 Inheriting Components ... 336
8.3.2 Abstract Classes and Methods .. 341
8.3.3 Final Classes and Methods ... 344

Contents

11

8.3.4 Composition ... 345
8.3.5 Refactoring Assistant ... 346

8.4 Polymorphism .. 347
8.4.1 Static and Dynamic Types .. 348
8.4.2 Casting .. 350
8.4.3 Dynamic Binding with the CALL Method 354
8.4.4 Interfaces .. 357

8.5 Working with XML ... 362
8.5.1 XML Overview .. 362
8.5.2 XML Processing Concepts ... 364

8.6 Summary .. 366

9 Exception Handling .. 369

9.1 Exceptions Overview .. 369
9.2 Procedural Exception Handling ... 370

9.2.1 Maintaining Exceptions Using Function Modules 370
9.2.2 Maintaining Exceptions Using Methods 373
9.2.3 Maintaining Exceptions for Local Classes 374

9.3 Class-Based Exception Handling ... 375
9.3.1 Raising Exceptions ... 376
9.3.2 Catchable and Non-Catchable Exceptions 378
9.3.3 Defining Exception Classes Globally 383
9.3.4 Defining Exception Classes Locally 386

9.4 Messages in Exception Classes .. 387
9.4.1 Using the Online Text Repository 387
9.4.2 Using Messages from a Message Class 390
9.4.3 Using the MESSAGE Addition to Raise an Exception 393

9.5 Summary .. 393

10 ABAP Data Dictionary .. 395

10.1 Database Tables ... 396
10.1.1 Creating a Database Table ... 399
10.1.2 Indexes ... 409
10.1.3 Table Maintenance Generator ... 414
10.1.4 Foreign Keys ... 418
10.1.5 Include Structure ... 422
10.1.6 Append Structure .. 424

10.2 Views ... 426
10.2.1 Database Views ... 427

12

Contents

10.2.2 Projection Views .. 429
10.2.3 Maintenance Views .. 431
10.2.4 Help Views ... 433
10.2.5 ABAP CDS Views .. 434

10.3 Data Types .. 438
10.3.1 Data Elements .. 439
10.3.2 Structures ... 443
10.3.3 Table Types .. 446

10.4 Type Groups .. 450
10.5 Domains .. 451
10.6 Search Helps .. 455

10.6.1 Elementary Search Helps .. 457
10.6.2 Collective Search Helps .. 461
10.6.3 Assigning a Search Help ... 463
10.6.4 Search Help Exits .. 464

10.7 Lock Objects ... 465
10.8 Summary ... 469

11 Persistent Data .. 471

11.1 Working with Data in Databases .. 472
11.1.1 Open SQL .. 474
11.1.2 Logical Unit of Work .. 485

11.2 ABAP Object Services .. 492
11.2.1 Persistence Service Overview ... 493
11.2.2 Building Persistent Classes .. 493
11.2.3 Working with Persistent Objects 498

11.3 File Interfaces .. 498
11.3.1 Working with Files in the Application Server 499
11.3.2 Working with Files in the Presentation Layer 501

11.4 Data Clusters ... 503
11.4.1 Exporting Data Clusters to Databases 505
11.4.2 Importing Data Clusters ... 506

11.5 Security Concepts .. 506
11.6 Summary ... 508

12 Dialog Programming .. 509

12.1 Screen Events .. 510
12.2 Screen Elements and Flow Logic .. 513

12.2.1 Components of a Dialog Program 515

Contents

13

12.2.2 Screens ... 520
12.2.3 Screen Elements .. 525

12.3 Basic Screen Elements .. 529
12.3.1 Text Fields ... 530
12.3.2 Checkboxes and Radio Buttons 531
12.3.3 Push Button .. 533

12.4 Input/Output Fields .. 534
12.5 List Box .. 536
12.6 Table Controls .. 537

12.6.1 Create a Table Control without a Wizard 538
12.6.2 Create a Table Control with a Wizard 542

12.7 Tabstrip Controls .. 544
12.8 Subscreens ... 545
12.9 Working with Screens ... 547

12.9.1 Screen Flow Logic ... 548
12.9.2 GUI Status ... 550
12.9.3 GUI Title ... 552
12.9.4 Modifying Screen Fields Dynamically 553
12.9.5 Field Help and Input Help ... 555
12.9.6 Screen Sequence ... 556
12.9.7 Assigning Transaction Codes ... 558

12.10 Control Framework ... 560
12.10.1 Using Container Controls ... 561
12.10.2 Implementing Custom Controls 562

12.11 Practice .. 564
12.11.1 Application Flow ... 566
12.11.2 Delete Functionality .. 567
12.11.3 Validations and Autofills ... 567

12.12 Summary .. 568

13 List Screens .. 569

13.1 Program Types .. 570
13.1.1 Executable Programs ... 571
13.1.2 Module Pool Programs .. 572
13.1.3 Function Groups ... 572
13.1.4 Class Pools .. 573
13.1.5 Interface Pools .. 573
13.1.6 Subroutine Pools ... 573
13.1.7 Type Pools .. 574
13.1.8 Include Programs .. 574

14

Contents

13.2 Program Execution .. 574
13.2.1 Executable Program Flow ... 575
13.2.2 Module Pool Program Flow .. 576
13.2.3 Calling Programs Internally ... 577

13.3 Memory Organization .. 578
13.4 List Events ... 582

13.4.1 TOP-OF-PAGE ... 583
13.4.2 END-OF-PAGE ... 585
13.4.3 AT LINE-SELECTION .. 586
13.4.4 AT USER-COMMAND .. 586

13.5 Basic Lists and Detail Lists ... 588
13.6 Classical Reports .. 592
13.7 Interactive Reports .. 592

13.7.1 HIDE .. 592
13.7.2 READ LINE ... 596
13.7.3 GET CURSOR ... 597
13.7.4 DESCRIBE LIST ... 597

13.8 Practice ... 598
13.9 Summary ... 599

14 Selection Screens ... 601

14.1 Defining Selection Screens ... 602
14.2 Selection Screen Events ... 604
14.3 Input Validations ... 606
14.4 Selection Screen Variants ... 608

14.4.1 Creating a Variant .. 609
14.4.2 Variant Attributes ... 613
14.4.3 Table Variables from Table TVARVC 614
14.4.4 Dynamic Date Calculation .. 616
14.4.5 Dynamic Time Calculation .. 617
14.4.6 User-Specific Variables ... 618

14.5 Executing Programs in the Background .. 619
14.6 Displaying and Hiding Screen Elements Dynamically 621
14.7 Calling Programs via Selection Screens ... 623
14.8 Summary ... 623

15 ALV Reports .. 625

15.1 Standard ALV Reports Using the Reuse Library 626
15.1.1 List and Grid Display: Simple Reports 627

Contents

15

15.1.2 Block Display .. 636
15.1.3 Hierarchical Sequential Display .. 640

15.2 Interactive Reports ... 644
15.2.1 Loading a Custom SAP GUI Status 645
15.2.2 Reacting to User Actions ... 649
15.2.3 Printing TOP-OF-PAGE ... 650

15.3 ALV Reports Using the Control Framework 650
15.4 ALV Object Model ... 653

15.4.1 Table Display .. 654
15.4.2 Hierarchical Display ... 655
15.4.3 Tree Object Model .. 659

15.5 Summary .. 661

16 Dynamic Programming ... 663

16.1 Field Symbols ... 665
16.1.1 Using Field Symbols to Make Programs Dynamic 666
16.1.2 Defining Field Symbols .. 673
16.1.3 Assigning a Data Object .. 674
16.1.4 Checking if a Field Symbol is Assigned 677
16.1.5 Unassigning a Field Symbol ... 678
16.1.6 Casting .. 678

16.2 Data References ... 679
16.2.1 Defining Reference Variables ... 680
16.2.2 Getting Data References .. 681
16.2.3 Anonymous Data Objects .. 682
16.2.4 Assignment between Reference Variables 684

16.3 Runtime Type Services .. 685
16.3.1 Runtime Type Information .. 686
16.3.2 Runtime Type Creation .. 687

16.4 Dynamic Token Specification .. 691
16.5 Dynamic Procedure Calls .. 693
16.6 Dynamic Program Generation ... 695
16.7 Summary .. 697

17 Debugging .. 699

17.1 Classic Debugger .. 700
17.1.1 Activating and Using the Classic Debugger 701
17.1.2 Field View ... 705
17.1.3 Table View .. 705

16

Contents

17.1.4 Breakpoints View ... 706
17.1.5 Watchpoints View .. 707
17.1.6 Calls View .. 708
17.1.7 Overview View ... 708
17.1.8 Settings View ... 708
17.1.9 Additional Features .. 710

17.2 New Debugger .. 714
17.2.1 UI and Tools ... 714
17.2.2 Layout and Sessions ... 717

17.3 AMDP Debugger ... 718
17.4 Using the Debugger to Troubleshoot ... 719
17.5 Using the Debugger as a Learning Tool .. 721
17.6 Summary ... 722

18 Forms .. 723

18.1 SAPscripts ... 725
18.1.1 Overview and Layout ... 725
18.1.2 Creating the Form Layout ... 729
18.1.3 Maintaining Window Details .. 736
18.1.4 Processing Forms with Function Modules 741

18.2 Smart Forms .. 749
18.2.1 Overview and Layout ... 750
18.2.2 Maintaining the Global Settings 753
18.2.3 Maintaining Elements ... 756
18.2.4 Driver Program ... 774

18.3 SAP Interactive Forms by Adobe .. 777
18.3.1 Form Interface .. 778
18.3.2 Form Context and Layout ... 785
18.3.3 Driver Program ... 797
18.3.4 Downloading the Form as a PDF 799

18.4 Summary ... 800

19 Interfaces .. 803

19.1 Batch Data Communication ... 804
19.1.1 Direct Input ... 806
19.1.2 Batch Input .. 807

19.2 Business Application Programming Interface 819
19.2.1 Business Object Types and Business Components 819
19.2.2 BAPI Development via BAPI Explorer 820

Contents

17

19.2.3 Standardized BAPIs ... 823
19.2.4 Standardized Parameters ... 824
19.2.5 Implementing BAPIs .. 826

19.3 EDI/ALE/IDocs ... 835
19.3.1 Electronic Data Interchange .. 836
19.3.2 Application Link Enabling .. 841
19.3.3 Intermediate Documents ... 844
19.3.4 System Configurations ... 856
19.3.5 Inbound/Outbound Programs ... 863

19.4 Legacy System Migration Workbench ... 867
19.4.1 Getting Started .. 868
19.4.2 Migration Process Steps .. 869

19.5 Web Services .. 880
19.5.1 Creating a Web Service ... 884
19.5.2 Consuming Web Services .. 888

19.6 OData Services ... 895
19.6.1 Data Model Definition .. 897
19.6.2 Service Maintenance ... 901
19.6.3 Service Implementation ... 903
19.6.4 READ .. 905

19.7 XSL Transformations ... 908
19.7.1 Serialization .. 909
19.7.2 Deserialization .. 910

19.8 XML and JSON Data Representation .. 911
19.9 WebSockets (ABAP Channels and Messages) 913

19.9.1 Creating an ABAP Messaging Channel 914
19.9.2 Creating a Producer Program ... 916
19.9.3 Creating a Consumer Program ... 917

19.10 Summary .. 920

20 Modifications and Enhancements .. 921

20.1 Customization Overview ... 921
20.2 Modification Overview ... 923
20.3 Using Modification Assistant .. 924

20.3.1 Modifications to Programs .. 925
20.3.2 Modifications to Class Builder ... 927
20.3.3 Modifications to Screen Painter 928
20.3.4 Modifications to Menu Painter .. 929
20.3.5 Modifications to ABAP Data Dictionary 929

18

Contents

20.3.6 Modifications to Function Modules 930
20.3.7 Resetting to Original .. 931

20.4 Using Modification Browser ... 932
20.5 Enhancements Overview ... 933
20.6 User Exits .. 935
20.7 Customer Exits ... 936

20.7.1 Create a Customer Exit ... 939
20.7.2 Function Module Exits ... 942
20.7.3 Screen Exits .. 942
20.7.4 Menu Exits ... 944

20.8 BAdIs .. 946
20.8.1 Overview ... 946
20.8.2 Defining a BAdI .. 948
20.8.3 Implementing a BAdI ... 955
20.8.4 Implementing a Fallback Class .. 958
20.8.5 Calling a BAdI .. 959

20.9 Enhancement Points .. 960
20.9.1 Explicit Enhancements .. 961
20.9.2 Implicit Enhancements ... 963

20.10 Business Transaction Events ... 966
20.10.1 Implementing a BTE ... 967
20.10.2 Testing a Custom Function Module 971

20.11 Summary ... 972

21 Test and Analysis Tools .. 973

21.1 Overview of Tools ... 974
21.2 ABAP Unit ... 976

21.2.1 Eliminating Dependencies .. 977
21.2.2 Implementing Mock Objects .. 979
21.2.3 Writing and Implementing Unit Tests 980

21.3 Code Inspector .. 987
21.4 Selectivity Analysis .. 990
21.5 Process Analysis ... 992
21.6 Memory Inspector ... 995

21.6.1 Creating Memory Snapshots ... 995
21.6.2 Comparing Memory Snapshots 996

21.7 Table Call Statistics .. 997
21.8 Performance Trace ... 1000

21.8.1 Activating and Filtering a Performance Trace 1001
21.8.2 SQL Trace ... 1004

Contents

19

21.8.3 RFC Trace .. 1006
21.8.4 Enqueue Trace .. 1007
21.8.5 Buffer Trace ... 1008

21.9 ABAP Trace/Runtime Analysis ... 1009
21.9.1 Running ABAP Trace ... 1009
21.9.2 Analyzing the Results .. 1011

21.10 Single-Transaction Analysis ... 1014
21.11 Dump Analysis ... 1017
21.12 Summary .. 1019

The Author ... 1021
Index ... 1023

1023

Index

$TMP, 147

A

ABAP, 43
additions, 110
conversions, 45
environment, 77
extensions, 46
forms, 47
interfaces, 44
Reports, 43
RICEF, 43
statements, 110, 141
System requirements, 48

ABAP CDS views, 396, 426, 434
access, 437
create, 434
data definition, 435
define, 434
replacement objects, 438
template, 436

ABAP channels, 913, 915
cosumer programs, 917
producer program, 916

ABAP consultants, 38
ABAP Data Dictionary, 77, 86, 96, 395,

469, 535
ABAP CDS views, 427
BAPI, 827
create data element, 130
create domain, 135
data types, 438
database tables, 396
DDL, 473
domains, 451
elementary search help, 457
global table types, 282
GTT, 401
I_STRUCTURE_NAME, 629
interface, 779
lock objects, 465

ABAP Data Dictionary (Cont.)
Modification Browser, 932
modifications, 929
non-generic data type, 216
objects, 97
screen, 96, 395
search helps, 455
selection texts, 231
smart forms, 754
table controls, 538
type groups, 450
type pools, 574
views, 426

ABAP Debugger, 699
learning tool, 721

ABAP Developer View, 1018
ABAP Development Tools (ADT), 77, 101, 434
ABAP Dispatcher, 55, 56
ABAP Editor, 77, 88, 145, 177, 571, 893

back-end editor, 89
creating variants, 609
front-end editor (new), 88
front-end editor (old), 88
modify programs, 925
program attributes, 143
settings, 89
your first program, 143

ABAP in Eclipse
ABAP CDS views, 434

ABAP keyword documentation, 113
ABAP Managed Database Procedures (AMDP),

700, 718
ABAP messaging channels, 913

create, 914
ABAP Object Services, 492, 508
ABAP Objects, 244, 260, 274, 305, 967
ABAP Objects Control Framework, 561
ABAP processor, 511
ABAP programming environment, 78
ABAP programs, 107, 515

declaration, 247
global declarations area, 108
procedural area, 108, 109

1024

Index

ABAP programs (Cont.)
statements, 253
structure, 108, 245

ABAP push channels, 913, 1000
ABAP runtime environment

event blocks, 255
processing blocks, 243, 248
selection screens, 601

ABAP statements
attributes, 144
call, 142
control, 142
declarative, 142
modularization, 142
OpenSQL, 143
operational, 142
processing blocks, 243

ABAP System Central Services (ASCS), 55
ABAP Trace, 975, 1006, 1009

analysis, 1017
analyze results, 1011
call, 1016
results screen, 1012
run, 1009

ABAP Unit, 974, 976
code example, 986
eliminate dependencies, 977
fixture, 981
implement mock objects, 979
predefined methods, 981
SETUP, 981
TEARDOWN, 981
unit tests, 980

ABAP Workbench, 47, 76, 77, 85, 87, 284
ABAP Data Dictionary, 396
Class Builder, 91
Function Builder, 90
Menu Painter, 95
Object Navigator, 98
objects, 147
Screen Painter, 92, 509

abap_false, 334
ABSTRACT, 342
Abstract classes, 341
Abstract methods, 341
Access control, 473

ActiveX, 630
Actual parameters, 275
Add<subobject>(), 824
Additions, 110, 113
Address

elements, 759
node, 789

Adobe Document Server (ADS), 777
Adobe LiveCycle Designer, 777

Layout tab, 793
Advance Business Application Programming

(ABAP), 43
Agent class, 495, 498
Aggregation functions, 477, 478
ALE, 841

inbound process, 843
layers, 842
outbound process, 842
RFC destination, 858
system configuration, 856
tRFC, 859

Aliases, 359, 361
Alternative node, 792
ALV, 993

block display, 636
CL_GUI_ALV_GRID, 625
components, 626
Control Framework, 650
display, 670
dynamic subroutine, 644
grid display, 630, 631
hierarchical sequential display, 640
layout, 636
library, 625
list and grid display, 627
object model, 625
object-oriented, 661
parameters, 629
reports, 625
reuse library, 626
simple reports, 628
standard reports, 626

ALV grid control, 561, 651, 652
ALV object model, 261, 653, 666

classes, 653, 654
default status, 658

Index

1025

ALV object model (Cont.)
hierarchical display, 655, 657
set SAP GUI status, 655
table display, 654
tree display, 660
tree object model, 659

AMDP Debugger, 699, 700, 718
breakpoints, 719
capabilities, 719
prerequisites, 718

American Standard Code for Information
Interchange (ASCII), 118, 119

Analysis, 973
Anomalies, 193
Anonymous data objects, 682, 683

access components, 684
Any

fields, 171
tables, 170

API, 332, 803
APPEND, 175
Append structure, 160, 424

add, 424
Application flow, 566
Application layer, 49, 51, 54, 75, 246
Application Link Enabling (ALE), 835
Application server, 54, 471

components, 55
files, 499

Application toolbar, 515
Architecture, 49
Arithmetical operations, 484
Array fetch, 199
ASSIGNING, 676
Assignment operators, 110
asXML, 912
Asynchronous data update, 812
AT LINE-SELECTION, 259, 586
AT SELECTION-SCREEN, 255, 604

ON <field>, 604
ON BLOCK, 605
ON END OF <sel>, 605
ON EXIT-COMMAND, 606
ON HELP-REQUEST FOR <field>, 606
ON RADIO BUTTON GROUP, 605
OUTPUT, 604

AT USER-COMMAND, 586

Attributes, 306, 308, 312
Authorization group, 415
Authorization objects, 506, 507, 508
Automatic type conversion, 124
Automation Controller, 561
Average, 478
AVG, 478

B

Background mode, 812
Background processing, 601

executing programs, 619
BAdI Builder, 948
BAdIs, 933, 946

call, 959
create, 950
create definition, 949
create interface, 954
define, 948
definition part, 946
enhancement spots, 948
fallback class, 958
filter values, 952
IF_FILTER_CHECK_AND_F4 interface, 953
implementation, 955
implementation part, 946

BAPI, 261, 819, 820
address parameters, 824
BAPI Explorer, 820
business component, 819
business object type, 820, 830
change parameters, 825
class method, 822
conventions, 827
development phases, 821
documentation, 834
extension parameters, 825
implementation, 826
instance method, 823
releasing, 835
return parameters, 825
standardized parameters, 824
test run parameters, 825
tools, 826
use cases, 819

1026

Index

BAPI Explorer, 820
tabs, 820

Basic lists, 569, 591, 596, 598
BASIS Developer View, 1019
Batch data communications (BDC), 804

batch input, 807
direct input, 806

Batch input, 804, 807
BDCDATA, 810
CALL TRANSACTION, 812
create a material, 808
create program, 809
create program with Transaction

Recorder, 813
SESSION, 813
update modes, 814

BDCDATA structure, 811
Billing document reports, 595
Binary search, 173
Block display, 627

example, 639
function modules, 636

Blocks, 605
Boxed

structure, 444
types, 444, 445

Breakpoints, 206, 702
AMDP Debugger, 719
in a call, 711
setup, 702, 720
view, 706

BTEs, 933
events, 969
implement, 967
interfaces, 967
test custom function modules, 971

Buffer, 63
Buffer trace, 1000, 1008
Buffering, 407, 998

permissions, 408
Bundling techniques, 488
Business Add-In (BAdI), 41
Business Address Services (BAS), 759
Business Application Programming

Interface, 804
Business component, 819

Business Object Repository (BOR)
BAPI, 827

Business object type, 820
BOR, 830

C

Calendar control, 561
CALL FUNCTION, 243, 292, 691
CALL METHOD, 244, 299
CALL SCREEN, 517, 557
Call sequence, 580
Call stack, 708
Call statements, 142
CALL SUBSCREEN, 547
CALL TRANSACTION, 262, 692, 812, 817
Calling program, 629
Cancel(), 824
Candidate keys, 190
Cardinality, 422
CASE statement, 484, 947
Casting, 350, 678, 679

implicit or explicit, 679
narrowing cast, 350
widening cast, 350, 351, 352

CATCH, 376, 380
Catchable exceptions, 378
CDS views, 477, 896
Center of Excellence (CoE), 38
CHAIN, 549
Chained statements, 111, 112
Change(), 824
CHANGING, 278, 280, 290

output parameters, 279
Character

data types, 118
fields, 118
literals, 139

CHECK, 249, 251
Check table, 418, 419, 421
check_count, 334
check_status, 334
Checkboxes, 527, 531
cl_notification_api, 332
Class, 294, 308, 321

attributes, 309

Index

1027

Class (Cont.)
constructor, 316
definition, 309, 311, 331
events, 309
global, 344
implementation, 309, 311
methods, 309
pools, 295
private, 309
properties, 295
protected, 309
public, 309

Class Builder, 77, 91, 92, 294, 328, 336, 340,
343, 344, 346, 360, 955
class pools, 573
components, 927
exception classes, 384
interface pools, 573
Methods tab, 296
modifications, 927
persistent classes, 494
test classes, 980
visibility, 296

CLASS C1 DEFINITION DEFERRED, 331
CLASS C2 DEFINITION DEFERRED, 331
Class pools, 573
Class-based exceptions, 375
Classic BAdIs, 947
Classic Debugger, 205, 699, 700, 703

activate, 701
additional features, 710
breakpoints, 702, 706
calls view, 708
execute code, 704
field view, 705
jumping statements, 710
object view, 711
overview view, 708
program status, 712
settings, 701, 708
shortcuts, 713
table view, 705
views, 704
watchpoints view, 707

Classic views, 427
Classical lists, 569
Classical reports, 592

Client proxy, 888
Clients, 64

data, 64, 65
specific data, 64

CLOSE DATASET, 501
CLOSE_FORM, 741
CLUSTD, 505
CLUSTR, 505
CMOD enhancements, 936
Code Inspector, 974, 987

results, 989
use cases, 987

Code pushdown, 197, 427
COLLECT, 178
Collective search helps, 457, 461

create, 461
Collision check, 467
Command node, 768
Comment, 112, 113
COMMIT WORK, 487, 834
Comparison operators, 480
Complex data types, 127
Component, 151

=>, 312
instance, 312
static, 312

Componentstype, 159
Composer, 725
Composition, 345

relationship, 345
Constant window, 727
Constants, 141
Constructor, 389
Consumer program, 919
Container controls, 561
Context menu, 523
Control break statements, 182, 183

AT END OF, 182
AT FIRST, 182
AT LAST, 182
AT NEW comp, 182
rules, 186

Control Framework, 510, 560, 626, 630
ALV, 650
grid display, 630
server and client side, 561

Control record, 840

1028

Index

Control statements, 142
Conversion

routine, 135, 137
rules, 122, 124

Conversion exits, 452
function modules, 453

Conversion logic, 805
Conversion programs, 45
Conversion routines, 452
Core Data Services (CDS), 198
Count, 478
CREATE OBJECT, 294, 310, 321
Cross-client, 64

data, 65
CRUD, 903
CRUDQ, 895
Currency fields, 405
Custom code

execute, 416
Custom containers, 528, 561, 563
Custom controls

create, 562
Customer development, 40, 42, 922
Customer enhancements, 40, 41
Customer exits, 933, 936, 938

create, 939
function module exists, 942
function modules, 936
menu exits, 944
screen exits, 942
types, 937

Customization, 40, 42
Customizing and development client

(CUST), 66
Customizing Includes (CI Includes), 160
CX_DYNAMIC_CHECK, 380, 382
CX_NO_CHECK, 382
CX_ROOT, 380
CX_STATIC_CHECK, 381
CX_SY_, 378

D

DATA, 140
Data browser, 401
Data classes, 406

Data clusters, 472, 503
administration section, 503
data section, 503
export, 505
exporting to databases, 505
import, 506
media, 503
persistent data, 471

Data Control Language (DCL), 473
Data Definition Language (DDL), 96, 188, 473
Data definitions, 395
Data elements, 130, 131, 403, 439

activate, 133
change, 132
domains, 134
global user-defined elementary types, 130
modify, 930
relationship with domains and fields, 135
search helps, 464

Data format, 127
external, 128
internal, 128

Data inconsistency, 124
Data Manipulation Language (DML), 96,

188, 473
Data model definition, 896
Data modeling, 294
Data node, 792
Data objects, 108, 137

anonymous, 682
constants, 141
DATA, 140
declaration, 117
field symbols, 674
inline declarations, 140
literals, 138
named, 682
PARAMETERS, 140
predefined types, 126
references, 681
text symbols, 141
user-defined types, 126
variables, 140

Data records, 840
Data references, 664, 679

debug mode, 680
dereference, 682

Index

1029

Data references (Cont.)
get, 681
initial, 680
variables, 680

Data security, 506
Data structures, 64
Data transfer, 805

frequency, 805
Data types, 97, 115, 118, 131, 404, 438, 439

data elements, 439
data format, 127
documentation, 440
further characteristics, 440
output length, 129
structures, 443
tab, 132, 439
table types, 446
value list, 133

DATA(..), 301
Database

relationship, 192
Database access statements, 143
Database interface, 511
Database kernel, 410
Database layer, 49, 51, 61, 75
Database locks, 487
Database LUW, 400, 485, 508

database locks, 487
dialog steps, 486

Database structure, 188
Database tables, 156, 198, 396, 472

append structures, 424
components, 398
create, 399
Currency/Quantity fields tab, 405
Display/Maintenance tab, 401
enhancement category, 405
Fields tab, 402
fields tab, 402
hints, 411
include structures, 422, 423
indexes, 409
persistent data, 471
SELECT SINGLE, 198
SELECT...ENDSELECT, 199
technical setting, 399
unique and non-unique indexes, 412

Database views, 426
create, 427

Databases
fetching data, 474
persistent data, 472

Debug session, 718
Debugging, 152, 205, 699, 719

breakpoint, 206
Classic Debugger, 205
exit, 207
New Debugger, 205
troubleshooting, 719

decfloat16, 121
decfloat34, 121
Declarative statements, 142
Deep structures, 153
Default key, 171
DELETE, 188
Delete anomaly, 194
DELETE DATASET, 501
Delete(), 824
Delivery classes, 401
Dependencies, 978
DEQUEUE, 465
DESCRIBE LIST, 597
Desktop, 714
Destination, 492
Detail lists, 569, 588, 596
Dialog box container, 562
Dialog modules, 243, 246, 255, 256, 260,

512, 516
selection screens, 269

Dialog programming
components, 515
practice application, 564

Dialog steps, 246, 486
database LUW, 486

Dialog transactions, 514
Diamond problem, 357
Direct input, 804, 806

manage, 807
programs, 806

Dispatch control, 843
Distributed environment, 841
Distribution model, 842
Docking container, 562

1030

Index

Domains, 98, 134, 191, 451
attach to data element, 137
bottom-up approach, 135
create, 135
format, 452
output length, 137
relationship with data elements and

fields, 135
top-down approach, 135

Downcasting, 684, 685
Drilldown reports, 569, 588
Dropdown list boxes, 527
Dual-stack system, 55
Dump analysis, 975, 1017, 1018

views, 1018
Dynamic binding

CALL method, 354
Dynamic date, 616

calculation, 616
selection, 617

Dynamic elements, 237
Dynamic enhancement points, 961
Dynamic messages, 237
Dynamic procedure calls, 693
Dynamic program, 211
Dynamic program generation, 695

persistent program, 696
transient program, 695

Dynamic programming, 171, 663, 664
Dynamic RFC destinations, 858
Dynamic subroutine pool, 696
Dynamic texts, 762
Dynamic time, 617

calculation, 617
selection, 618

Dynamic token, 664, 691, 693
Dynamic token specification, 691
Dynamic type, 349
Dynpro, 211, 518, 520

E

Eclipse, 77, 99
installation, 100
installation wizard, 102
Project Explorer, 104

Eclipse IDE, 434
EDI, 836

benefits, 837
inbound process, 840
outbound and inbbound processing, 839
process, 837
system configuration, 856
using IDocs, 838

Electronic Data Interchange (EDI), 835
Element bar, 530
Element list, 523
Element palette, 529, 530
Elementary data types, 115, 216, 439, 443
Elementary search helps, 457, 458

create, 457
options, 458

Elements, 743
addresses, 759
call, 743
graphics, 758
maintain, 756
program lines, 767
tables, 764
text, 761, 762

Encapsulation, 305, 306, 318, 319, 325, 326
End users, 37
END-OF-PAGE, 585, 586, 598
END-OF-SELECTION, 267, 269
Enhancement category, 405
Enhancement Framework, 947, 960
Enhancement packages, 31, 32
Enhancement points, 960

explicit, 961
Enhancement spots, 948

create, 948
ENHANCEMENT-POINT, 961
Enhancements, 39, 921, 922, 933, 972

assignments, 940
hooks, 934

Enjoy transactions, 83
ENQUEUE, 465
Enqueue server, 55, 59
Enqueue trace, 975, 1000, 1007
Enterprise resource planning (ERP), 29
ERP systems, 32

advantages, 35
departments, 33

Index

1031

ERP systems (Cont.)
layout, 35
vs. non-ERP systems, 33

Error message, 232
Errors, 123
Event blocks, 243, 246, 255, 256, 258
Events, 261, 312, 322, 416

event handlers, 322
instance events, 322
list events, 270
program constructor, 262
reporting events, 262
screen events, 271
selections screens, 269
sender, 323
sequence, 575
static events, 322

Exception classes, 382
define globally, 383
define locally, 386
function modules, 385
messages, 387

Exception handling, 284, 369
local classes, 374
methods, 373

Exceptions, 374
ASSIGN, 379
catching, 372, 378
local classes, 375
maintain, 371
managing via function modules, 370
MESSAGE addition, 393
overview, 369
passing messages, 389
raise, 372, 374, 376, 385

Exclude
ranges, 226
single values, 226

Exclusive locks (write lock), 466
Executable programs, 145, 211, 260, 262, 571

background processing, 619
flows, 575

EXIT, 249
Exit message, 233
Explicit enhancement points, 961
Explicit enhancements, 961

Extended Binary Coded Decimal Interchange
Code (EBCDI), 118

Extends, 407
Extensible Stylesheet Language (XSL), 908
Extensible Stylesheet Language Transforma-

tions (XSLT), 908
Extensions, 46
External breakpoint, 702
External data, 107
External developers, 803
External program, 326

F

Fallback class, 951, 958
implement, 958

FIELD, 548
Field attributes, 463
Field catalog, 626, 631

components, 632
usage, 634

Field conversion, 843
Field exits, 938
Field help, 555, 556
Field labels, 134, 442
Field symbols, 664, 665, 671

assign data object, 674
assign internal table record, 677
assignment check, 677
define, 673
dynamic field assignment, 675
field positions, 676
filter functionality, 672
generic types, 673
making programs dynamic, 666
modifying an internal table record, 665
static assignment, 674
structure components, 673
structure fields, 676
unassign, 678

Fields
relationship with domains and data

elements, 135
File interfaces, 498
Filtering logic, 333
FINAL, 344

1032

Index

First normal form (1NF), 194
Fixed point arithmetic, 146
Fixture, 981
Flat structures, 153
Flow logic, 515, 541

tab, 523
FOR TESTING, 980
Foreground mode, 812
Foreground on error mode, 812
Foreign keys, 189, 191, 200, 398, 418, 472

create relationships, 420
field types, 421
relationships, 418
table, 418

FORM, 276
Form Builder, 751

draft page, 752
form styles, 769
SAP Interactive Forms by Adobe, 778, 785
smart forms, 750
text modules, 762

Form Painter, 727, 729
create window, 733
graphical, 731
page layout, 732
paragraph and character formatting, 734
SAPscripts, 725

Formal parameters, 275, 279
typed and untyped, 275

Forms, 47, 723, 729
address node, 789
addresses, 759
alternative node, 792
attributes, 753
commands, 768
create, 785
data node, 792
driver program, 774
elements, 743
global definitions, 755
graphic node, 788
graphics, 758
interface, 754
invoices, 723
loops, 768, 791
maintain elements, 756
print, 742

Forms (Cont.)
program lines, 767
SAPscripts, 725, 746
single-record node, 793
structure node, 790
styles, 769
tab positions, 746
tables, 764
templates, 760
text, 761
text node, 792
windows, 756

Free key, 179
Friends, 329, 331
FROM clause, 479
Function Builder, 77, 88, 90, 91, 145, 243,

284, 573, 627, 969
Attributes tab, 288
BAPI, 826, 829
Changing tab, 290
create web service, 884
Exceptions tab, 290
Export tab, 289
function module, 285, 829
function modules, 284
Import tab, 289
Source Code tab, 291
Tables tab, 290
update function modules, 489

Function groups, 211, 260, 284, 572, 603
create, 285

Function module exits, 937, 942
Function modules, 243, 256, 274, 284, 579

calling, 292
CLOSE_FORM, 742
CONVERSION_EXIT_MATN1_OUTPUT, 767
create, 285, 287
enhance interface, 964
F4IF_SHLP_EXIT_EXAMPLE, 464
FP_JOB_CLOSE, 799
function groups, 284
modify, 930
normal, 289
OPEN_FORM, 743
Pattern button, 292
remote-enabled, 289
REUSE_ALV_FIELDCATALOG_MERGE, 635

Index

1033

Function modules (Cont.)
REUSE_ALV_HIERSEQ_LIST_DISPLAY, 643
test in BTEs, 971
update modules, 289

Function pool, 243
Functional consultants, 37
Functional decomposition, 325

G

Garbage collector, 349
Gateway, 55, 58
General dynpros, 211, 212
General screen, 271, 510, 511
Generic types, 276
GET

<table> LATE, 266
BADI, 959
CURSOR, 586, 596
DATASET, 501
SBOOK, 267
table, 265

GET_SOURCE_position, 381
GetDetail(), 824
GetList(), 823
Getter method, 310, 318, 329

get_, 318
Global class, 294, 310
Global declarations, 108, 247
Global table type, 282
Graphic

elements, 758
node, 788

Graphical layout editor, 525, 542
Grid display, 626
GROUP BY clause, 476
GTTs, 409
GUI status, 513, 515, 550, 587

activate and load, 552
create, 550
maintain, 551

GUI title, 552
GUI_DOWNLOAD, 502
GUI_UPLOAD, 502

H

Hash algorithm, 169
Hash keys, 172, 174
Hashed tables, 169, 170

secondary keys, 173
HAVING clause, 476
Help documentation, 134
Help views, 426, 433
Hexadecimal data types, 118
HIDE, 592
Hide areas, 592
Hierarchical display, 627
Hierarchical sequential display, 640

field catalog, 640
Hierarchical sequential list

example, 643
Hierarchical sequential report, 643
Hierarchical structure, 989
High-priority updates, 489
Hints, 411
Hold data, 522
Hooks, 934
Host variables, 484
HTTP trace, 1000

I

I/O fields, 520, 527, 534
create/add, 535

IDocs, 844
assign basic types, 855
attributes, 863
create basic type, 851
create logical type, 854
create segment, 849
development and tools, 848
EDI, 838
inbound programs, 864, 865
master IDoc, 842
outbound program, 866, 867
records, 840
status codes, 865
structure, 846
system configuration, 856

1034

Index

IF_MESSAGE, 379
GET_LONGTEXT, 379
GET_TEXT, 379

Implementation, 52
Implementation hiding, 318, 332, 336
Implicit enhancement points, 963, 964
Implicit enhancements, 963
IMPORT/EXPORT, 580
Inbound interface, 44, 499
Inbound process code, 862
Inbound program, 864
Include programs, 145, 244, 245, 574
Include structures, 422
Include texts, 762
Index access, 166
Index tables, 170
Indexes, 399, 412

unique and nonunique, 412
INDX structures, 504
Information hiding, 305
Information message, 232
Inheritance, 305, 314, 315, 335, 337, 959

cl_child, 337
cl_parent, 337
inheriting from, 315

Inheritance relationship, 346
Inheritance tree, 344
INITIALIZATION, 255, 263, 265, 576
Injection, 979
Inline declarations, 140, 300, 483

assign value to data object, 301
avoid helper variables, 302
declare actual parameters, 302
table work areas, 301

Inner joins, 201, 202
Input fields, 607
Input help, 555, 556
INSERT statement, 175, 176, 177, 188

inserting a single row, 480
inserting multiple rows, 481
SY-DBCNT, 480
SY-SUBRC, 480

Insertion anomaly, 194
Instance component, 320, 321
Instance constructor, 315, 321
Instantiation operation, 683
int8, 115, 116

Integrated development environment
(IDE), 77

Interactive reports, 592, 644
custom SAP GUI status, 645
TOP-OF-PAGE, 650
user actions, 649

Interface, 357
INTERFACE, 357
PUBLIC SECTION, 358

Interface pools, 573
Interface programs, 44, 45
Interface work area, 265
Interfaces, 803
Intermediate Documents (IDocs), 835
Internal tables, 151, 164, 167, 282

APPEND, 175
COLLECT, 178
define, 164
hashed tables, 169
INSERT, 175
modifying records, 181
processing data, 203
reading data, 179
small, 175
sorted tables, 168
usage, 175
work areas, 165

Internet Communication Framework
(ICF), 882

Internet Communication Manager (ICM), 53,
55, 56, 882

Internet Demonstration and Evaluation
System (IDES), 48

Internet Transaction Server (ITS), 53
INTO clause, 479, 484
Invoices, 723
iXML, 362
iXML library, 364, 366

J

JavaBeans, 630
JavaScript Object Notation (JSON), 911
Joins, 201, 426, 427

conditions, 428

Index

1035

JSON
transformation, 912

K

Key access, 166
Keywords, 111, 113

access, 113

L

Languages, 61
Lazy update, 174
LEAVE SCREEN, 557
LEAVE TO LIST-PROCESSING, 591
LEAVE TO SCREEN, 557
Legacy System Migration Workbench

(LSMW), 46, 804
LfgrpF01, 286
LIKE, 282

vs. TYPE, 217
Line type, 164
List display, 626
List dynpro, 212
List events, 270, 582

types, 582
List screens, 148, 270, 510, 569

list events, 582
practice, 598
program types, 570

List system, 591
Literals, 138
Local class, 310
Local declarations, 108, 247
Local exception classes, 386
Local objects, 69
Local structures, 152
Lock objects, 97, 465, 506

code example, 469
create, 465
function modules, 467
maintain, 466

Logical database, 265
Logical expressions, 480
Logical message type, 848, 854

Logical unit of work (LUW), 284, 472, 488
LOOP, 165, 179, 180, 550
LOOP AT SCREEN, 622
Loop node, 768
Low-priority updates, 489
LSWM, 867

field mapping, 875
getting started, 868
object attributes, 870
process steps, 869
recordings, 871
reusable rules, 876
source structure, 873

LZCB_FGTOP, 286
LZCB_FGUXX, 286

M

Macros, 244
Main program group, 579
Main window, 728, 752
Maintenance views, 414, 416, 426, 431

create, 431
maintenance status, 432
options, 433
view key, 432

Many-to-many relationship, 193
MAX, 478
Maximum, 478
Memory, 578, 581

allocation, 446
analysis, 995, 996
storage, 581
units, 138

Memory Inspector, 974, 995
compare memory snapshots, 996
memory snapshot, 995

Memory snapshots, 995
compare, 996
steps, 995

Menu bar, 515
Menu exits, 938, 944
Menu Painter, 77, 80, 95, 509

custom GUI status, 645
GUI status, 515
load custom SAP GUI status, 645

1036

Index

Menu Painter (Cont.)
modifications, 929
screen elements, 513

Message, 334
Message class, 235

IF_T100_DYN_MSG, 392
IF_T100_MESSAGE, 391
maintaining messages, 236
MSGTY, 392
TYPE, 393
using messages, 390
WITH, 393

Message server, 54, 55, 59
Messages, 231

assigning attributes, 392
dynamic, 237
maintenance, 235
message class, 235
placeholders, 238
statement, 231
tab, 235
text symbols, 233
translations, 238
types, 231, 232

Metadata, 395
Methods, 244, 256, 274, 293, 306, 308,

312, 313
abstract, 342
CALL METHOD, 313
calling, 299
cl_notification_api, 332
class, 294
create, 293
create global classes, 294
functional method, 313
maintain code, 298
me, 313
set_message, 332
static, 299

MIN, 478
Minimum, 478
Mock objects, 979, 980
Modification Assistant, 923, 924

ABAP Data Dictionary, 929
Class Builder, 927
function module, 930
insert, 926

Modification Assistant (Cont.)
modifications, 929
programs, 925
replace, 926
reset original, 931
Screen Painter, 928

Modification Browser, 923, 932
reset to original, 931

Modifications, 40, 921, 922, 923
programs, 925
registration, 924

MODIFY, 181
Modularization, 241

benefits, 242
include programs and macros, 244
local declarations, 108
processing blocks, 242

Modularization statements, 142
MODULE, 523, 548
Module pools, 145, 211, 243, 260, 270,

572, 603
flow, 576

Modules, 36
Multiline comment, 113
Multiple selection window, 223

tabs, 227

N

Named data objects, 682
Narrow cast

child->meth3, 351
parent->meth1, 351
parent->meth2, 351
parent->meth3, 351

Native SQL, 96, 187, 473, 1004
GTT, 401

Nested structure type, 158
Nested structures, 153
New Debugger, 205, 699, 714, 995

layout, 717
Memory Inspector, 995
sessions, 717
tools, 715
UI, 714

New projects, 39

Index

1037

NODES, 266
Non-catchable exceptions, 378
Nonnumeric data types, 121
Non-transportable package, 69
Non-unique index, 412
Normal function modules, 289
Normalization, 193
Numeric data types, 118, 120
Numeric literals, 139

O

Object Navigator, 69, 77, 88, 98, 514,
893, 948
ABAP messaging channel, 914
create screen, 520
create transaction, 558
form interface, 778
module pools, 572
navigation and tool areas, 98
web service consumer, 888

Object palette, 794, 795
Object reference variables, 310
Object view, 711
Object-oriented programming, 244
Objects, 305, 308

usage, 309
OData, 804, 895

data model definition, 897
READ, 905
service creation, 896
service implementation, 903
service maintenance, 901

ON COMMIT, 491
One-to-many relationship, 193
One-to-one relationship, 192
Online text repository (OTR), 387
OOP, 305

basics, 305
introduction, 305

Open Data Protocol (OData), 895
OPEN DATASET, 499
Open Specification Promise (OSP), 895
Open SQL, 96, 152, 187, 508, 1004

data in a database, 474
database, 189

Open SQL (Cont.)
database relationships, 192
DDL, 188
DELETE statement, 482
DML, 188, 474
GTT, 401
INSERT statement, 480
logical database, 265
MODIFY statement, 482, 490
persistent data, 471, 474
SELECT statement, 475
selecting data from database tables, 198
selecting data from multiple tables, 200
statements, 475
UPDATE statement, 481

OPEN_FORM, 741
Operands, 110
Operational statements, 142
Optimistic lock, 467
Oracle, 411
ORDER BY clause, 476
oref, 314
Outbound interface, 44, 499
Outbound process code, 861
Outbound program, 866
Outer joins, 201
Output length, 129
Output table, 626

P

Package Builder, 72, 73
Packages, 68

assign, 147
create, 72
encapsulation, 74
naming conventions, 71
nontransportable, 69
transportable, 68

Parallelism, 197
Parameter table, 694, 695
PARAMETERS, 140, 148, 214, 239

effects, 215
SCREEN_OPTIONS, 218
TYPE_OPTIONS, 215
VALUE_OPTIONS, 221

1038

Index

Partner profile, 859
PC editor, 762
PDF, 648
PERFORM, 243, 255, 256, 264, 935
Performance trace, 975, 1000

activate and filter, 1001
with filter, 1002

Persistence mapping, 494
Persistence service, 492, 493
Persistent attributes, 493
Persistent classes, 492, 493

Class Builder, 495
create, 493
mapping tool, 496

Persistent data, 107, 471
security, 506
storage, 471

Persistent objects, 492, 498
working with, 498

Persistent program, 696
Picture control, 561, 562
Placeholders, 238
Polymorphism, 305, 315, 347, 362

dynamic types, 348
static types, 348

Pooled tables, 400
Port definition, 859
Predefined elementary ABAP types, 119
Predefined elementary data types, 115

use cases, 120
Predefined nonnumeric elementary data

types, 116
categories, 118

Predefined numeric elementary data
types, 116

Predefined types, 446
Presentation layer, 49, 50, 75, 246, 519

files, 501
GUI_DOWNLOAD, 502
GUI_UPLOAD, 502
SAP GUI, 52

Presentation server, 471
Primary index, 409
Primary key, 191, 447, 472
Procedural area, 109
Procedural exceptions, 370
Procedural programming, 108

Procedures, 243, 246, 255, 261, 272, 303
Process after input (PAI), 271, 512, 516, 534,

541, 548
Process analysis, 974, 992
Process before output (PBO), 271, 512, 517,

554, 563
selection screen, 604

Process interfaces, 967
Process on help request (POH), 272, 512, 555
Process on value request (POV), 272, 512,

555, 577
Processing blocks, 109, 142, 241, 242, 246,

254, 303, 571, 572
calling, 248
CHECK, 251
dynpro, 211
ending, 249
EXIT, 249
procedures, 243
RETURN, 252
sequence, 248, 249, 258
types, 243, 255
usage, 253
virtual (global data declarations), 253

Production client (PROD), 67
Production support, 39
Program

RMVKON00, 611
zdemo_prg, 623

Program attributes, 143, 570
maintain, 146
types, 145

Program constructor, 262
Program execution, 574
Program groups, 578
Program line elements, 767
Program types, 569, 570
Programming concepts, 107
Projection views, 426, 429

create, 429
Promote optimistic lock, 467
Pseudocomment, 989
Publish and subscribe interfaces, 967
Pure Java system, 54
Push buttons, 527, 533

Index

1039

Q

Quality assurance, 973
Quality assurance client (QTST), 67
Quantity fields, 405

R

R_ER, 380
Radio buttons, 219, 527, 531

groups, 219
RAISE, 290, 371

EVENT, 324
EXCEPTION, 376

Range field, 223
Range tables, 221

HIGH, 222
LOW, 222
OPTION, 222
SIGN, 222
values, 226

Ranges, 224
operator, 225

READ, 165, 173, 179
CURRENT LINE, 596
DATASET, 500
LINE, 596

Receiver, 842
Receiver determination, 842
Recording routine, 416
REDEFINITION, 338
Refactoring assistant, 346
Reference data types, 127, 439, 446
Reference objects, 310
Reference variables, 680

assignment, 684
upcast and downcast, 684

Referenced data types, 443
Relational database, 472
Relational database management system

(RDBMS), 51, 61, 187, 189
example, 61
foreign keys, 51, 191
primary key, 190
relational database design, 189
table, 190

Remote-enabled function modules, 289
Remove<subobject>(), 824
Replacement objects, 438
Report output

types, 626
Report transactions, 571
Reporting events, 262

END-OF-SELECTION, 267
GET <table> LATE, 266
GET table, 265
INITIALIZATION, 263
START-OF-SELECTION, 264

Reporting programs, 559
Reports, 576

background execution, 620
forms, 723
programs, 44
run in background, 619
scheduling, 619

Repository, 68
object, 40, 74
packages, 68

Repository Browser, 91
Representational State Transfer (REST), 895
REQUEST_LOC, 467
Request-response cycle, 519
Requests, 70
RESTful APIs, 895
RETCODE, 376
RETURN, 249, 252
Returning parameters, 297
REUSE_ALV_BLOCK_LIST_APPEND, 637
REUSE_ALV_BLOCK_LIST_INIT, 636
REUSE_ALV*, 626
RFC, 58, 261, 284

destination, 857
trace, 975, 1000, 1006

RFC/BOR interface, 898
ROLLBACK WORK, 486, 488
Row type, 167
Runtime analysis, 474, 975, 1009
Runtime Type Creation (RTTC), 685, 687

dynamic, 689
Runtime Type Information (RTTI), 685, 686

query, 687
Runtime Type Services (RTTS), 664, 685

1040

Index

S

Sales and Distribution (SD), 935
SAP

data structure, 40
Functional Modules, 36
history, 31
introduction, 36
modules, 36
systems, 39
technical modules, 37
users, 37

SAP Basis, 75
SAP Easy Access, 84

Favorites, 80
SAP Menu, 79
User Menu, 79

SAP ERP, 29, 946
SAP ERP Controlling (CO), 37
SAP ERP Financial Accounting (FI), 37
SAP Gateway, 895

activate/register an OData service, 902
READ, 905
Service Builder, 896

SAP GUI, 50, 52, 77, 78, 245
architecture, 53
for HTML (Web GUI), 53
for the Java environment, 52
for the Windows environment, 52
set status, 647
status, 645

SAP HANA, 51, 61, 189, 197, 426, 718
ABAP CDS views, 198
aggregate functions, 477
code pushdown, 197
parallelism, 197

SAP Interactive Forms by Adobe, 723, 777
address node, 789
alternative node, 792
context and layout, 785
Context tab, 787
currency/quantity fields, 784
data node, 792
development, 777
download as PDF, 799
driver program, 797, 798
form interface, 778

SAP Interactive Forms by Adobe (Cont.)
global definitions, 783
graphic node, 788
import form data, 800
layout, 794
Layout tab, 793
loop, 791
object palette, 794
single-record node, 793
structure node, 790

SAP List Viewer (ALV), 624, 625
SAP liveCache, 61
SAP LUW, 485, 487, 508

bundle with function modules, 489
bundle with RFC, 492
bundle with subroutines, 491
bundling techniques, 488
dialog steps, 488

SAP NetWeaver, 54, 313
SAP NetWeaver 7.5, 36, 858

debugging, 700
global temporary tables, 400
new SQL, 483

SAP Notes, 922
SAP script editor, 737, 739, 762

printing, 740
SAP Software Change Registration (SSCR), 924
SAP start service, 55, 59
SAP Support Portal, 924
SAP system

architecture, 49
enqueue server, 59
environment, 78
gateway, 58
instances, 55
layers, 63
logon, 78
message server, 59
SAP Web Dispatcher, 59
session, 84
user context, 60

SAP Web Dispatcher, 55, 59
SAPscripts, 723, 725

align and print, 744
billing document, 725
change header, 730
composer, 725

Index

1041

SAPscripts (Cont.)
create form layout, 729
create standard text, 741
create window, 733
disadvantages, 749
driver program, 727, 747, 774
elements, 743
field entries, 737
formatting, 729, 737
graphics administration, 736
insert graphic, 739
layout, 725
layout designer, 730
maintain tab positions, 745
maintain window details, 736
paragraph and character formatting, 734
print logo, 736
printing, 743
process forms with function modules, 741
return_code, 748
subroutines, 727
us_screen, 748
windows, 727

SAPUI5, 1000
Schema, 188
Screen, 79, 515, 520

application toolbar, 81
attributes, 521, 523
command field, 82
create, 520
events, 271, 510, 512
exits, 938, 942
groups, 523
menu bar, 80
number, 521
processor, 511, 512
sequence, 556
standard toolbar, 81
status bar, 82
title bar, 81
Transaction codes, 82
types, 522

Screen elements, 510, 513, 515, 525, 528
basic screen elements, 529

Screen fields, 520
modifying dynamically, 553

Screen flow logic, 511, 513, 517, 518,
548, 928

Screen Painter, 77, 92, 93, 231, 509, 522, 560,
568
alphanumeric layout editor, 525
dynpro, 211
graphical layout editor, 94, 525, 530
modifications, 928
module pools, 572
screen elements, 513
subscreens, 545
tab, 525
tabs, 93

Screen structure, 554
components, 554, 621

SCREEN_OPTIONS, 218
AS CHECKBOX, 219
AS LISTBOX VISIBLE LENGTH vlen, 220
RADIOBUTTON GROUP, 219
VISIBLE LENGTH vlen, 218

SCREEN-OPTIONS
NO-DISPLAY, 218
OBLIGATORY, 218

Search helps, 134, 440, 455
assign, 463
change, 462
exit, 464
parameters, 460

Second normal form (2NF), 195
Secondary index, 410, 413

create, 411
Secondary keys, 172, 190, 447, 449, 472
Secondary list, 590
Secondary window, 752
Security, 506
Segment

add, 852
create, 849
definition, 850

Segment Editor, 848, 851
Segment filtering, 843
Segments, 847
SELECT, 177, 188
Select

ranges, 224
single values, 224

SELECT clause, 476

1042

Index

SELECT statement, 475
FROM clause, 479
INTO clause, 479
SELECT clause, 476
WHERE clause, 480

Selection screen events, 269
Selection screens, 148, 212, 510, 601

calling programs, 623
create variants, 609
define, 601, 602
dynamic date, 616
dynamic time, 617
dynamically display/hide screen elements, 621
events, 601, 604
fields, 213
PARAMETERS, 214
radio buttons, 607
standard, 602
standard and user-defined, 602
tasks, 212
user-specific variables, 618
variant attributes, 613
variants, 608

Selection texts, 230
SELECTION-SCREEN, 212, 229

BEGIN OF BLOCK, 229
SKIP, 229
ULINE, 229

Selectivity analysis, 974, 990
SELECT-OPTIONS, 185, 221, 228, 239

multiple selection window, 223
Semantic attributes, 439, 442
Separation of concerns, 978
Sequential data, 154
Serialization, 843
Service implementation, 896, 903
Service maintenance, 896, 901
SESSION, 813, 817

create manually, 818
Session breakpoint, 702
Sessions, 84, 717

components, 717
SET DATASET, 501
SET HANDLER, 323
SET SCREEN, 557
Setter method, 310, 318, 329

set_, 318

Setter method (Cont.)
set_message, 333

Shared lock (read lock), 466
Simple Object Access Protocol (SOAP), 881
Simple report

field catalog, 632
Simple reports, 627
Single inheritance, 357
Single-record node, 793
Singleton design pattern, 498
Single-transaction analysis, 975, 1014
Size category, 407
SKIP, 270
Smart forms, 723, 749, 778, 779, 787

addresses, 759
advantages over SAPscripts, 749
character formatting, 772
commands, 768
create templates, 760
create text elements, 763
draft page, 752
driver program, 774, 776
form attributes, 752, 753
form interface, 752, 754
Form Painter, 751
global definitions, 753, 755
graphics, 758
interface, 780
layout, 750
line type, 764
loops, 768
maintain elements, 756
maintain global settings, 753
maintenance area, 751
navigation area, 751
paragraph formatting, 771
program lines, 767
row type, 764
styles, 769, 773
tables, 764
text, 761
windows, 752, 756

SOAP, 882, 888
Sorted keys, 172
Sorted tables, 168, 170

secondary keys, 173
Special dynpros, 211, 212

Index

1043

Special screens, 271
Splitter containers, 562
SQL, 187
SQL optimizer, 410
SQL trace, 474, 975, 1000, 1004

display, 1005
use cases, 1004
views, 1005

SQLScript, 719
Standard reports, 626
Standard selection screens, 212
Standard tables, 167, 170

secondary key, 172
Standard toolbars, 515
Standardized BAPIs, 823
START-OF-SELECTION, 253, 255, 264
Statement

UNION, 198
Static attribute, 320
Static boxes, 444
Static components, 321
Static constructor, 321
Static enhancement points, 961
Status message, 232
Status records, 840
Status types, 550
Strict mode, 484
STRING, 120, 122
String literals, 139
Structure node, 790
Structure types, 151, 157
Structured Query Language (SQL), 187
Structures, 151, 152, 443

create global structure, 158
define, 154
global, 153
global structures, 158
local structures, 155
processing data, 203
types, 153
usage, 162
use cases, 163

Subclass, 326
SUBMIT, 218
SUBMIT (dobj), 691
Subproject, 868
Subroutine pools, 573, 579

Subroutines, 243, 256, 273, 274, 417
error handling, 375
input parameters that pass values, 279
local declaration, 153
output parameters that pass values, 280
parameters passed by reference, 278
passing internal tables, 280
passing parameters, 277
SAP LUW, 491
USING and CHANGING, 275

Subscreen, 545, 603
Subscreen area, 528
SUM, 478
Superclass, 383
Switch Framework, 31, 936, 961
SY-DBCNT, 480
Synchronous data update, 812
Syntax, 110

chained statements, 111
comment lines, 112
rules, 110

System fields, 177
SY-SUBRC, 375, 480

T

Table, 97, 266
cells, 766
EDID4, 846
EDIDC, 846
EDIDS, 847
fields, 429
ICON, 82
INDX, 504
IT_SFLIGHT, 182
IT_VBRP, 185
line, 765
MAKT, 63, 398
MARA, 63, 66, 419, 461
MARC, 63, 203
NAST, 749
PTAB, 695
SAPLANE, 419
SBOOK, 267
SFLIGHT, 155, 156, 419, 588
SPFLI, 411, 477, 588
T001W, 204

1044

Index

Table (Cont.)
T100, 235
TVARVC, 614
VBLOG, 491
VBRK, 185, 436, 595, 726
VBRP, 161, 185, 726

Table buffer trace, 975
Table call statistics, 975, 997

screen, 999
Table category, 167
Table controls, 528, 537

attributes, 540
create, 538
create with wizard, 542, 543
create without wizard, 538

Table display, 654
Table elements, 764

areas, 764
table line, 765

Table fields, 398
Table key, 171, 179

default key, 171
hash key, 172
secondary key, 172, 174
sorted key, 172

Table maintenance generator, 414, 415
Table Painter, 750
Table types, 446

global, 282
line types, 446
primary key, 448

Table view maintenance, 401
table_line, 173
Tabstrip controls, 528, 544

create, 544
wizard, 545

Tags, 362
Tasks, 70
Technical consultants, 37
Templates, 760

create, 760
Termination message, 232
Test classes, 980

define, 980, 982
fixtures, 981
implementation, 984
properties, 981

Testing, 973
results, 987

Text
elements, 761
modules, 761
node, 792

Text field literals, 139
Text fields, 527

create, 530
Text literals, 233
Text symbols, 141, 233

change, 233
Third normal form (3NF), 196
Three-tier architecture, 30, 49

application layer, 51
buffer, 63
database layer, 51
presentation layer, 50

TOP-OF-PAGE, 583, 584, 650
Total, 478
Transaction, 82

/*xxxx, 86
/h, 86
/i, 86
/IWFND/GW_CLIENT, 903, 906
/IWFND/MAINT_SERVICE, 901
/N, 85
/n, 86
/nend, 86
/nex, 86
/ns000, 86
/nxxxx, 86
/o, 85, 86
/oxxxx, 86
ABAPDOCU, 382
assign, 558
BAPI, 820
BD51, 863
BMV0, 807
CMOD, 939, 942
code, 518
command field, 86
create, 558
custom namespace, 559
DB05, 974, 990
FIBF, 967
FILE, 501

Index

1045

Transaction (Cont.)
FK02, 971
LSMW, 868
ME21N, 83, 943
ME21n, 577
ME22N, 83
ME23N, 83
MM01, 83, 806, 808, 872
MM02, 83
MM03, 83
MRKO, 575, 611, 612
NACE, 747, 799
navigating and opening, 83
opening, 85
RZ10, 58
S_MEMORY_INSPECT, 995
S_MEMORY_INSPECTOR, 975, 996
SA38, 575, 619
SAMC, 914
SAP Easy Access screen, 85
SAT, 474, 975, 1009
SAUNIT_CLIENT_SETUP, 980
SCC4, 68
SCII, 988
SE01, 70
SE03, 70
SE09, 70
SE10, 70
SE11, 86, 130, 156, 158, 282, 395, 574
SE13, 406
SE18, 948
SE19, 948, 956
SE21, 72
SE24, 92, 294, 310, 360, 383, 980
SE37, 91, 243, 284, 573, 627
SE38, 88, 143, 571, 701
SE41, 80, 513, 645
SE51, 513
SE71, 725, 727, 729
SE78, 736
SE80, 69, 88, 91, 92, 514, 948
SE91, 235
SE93, 69, 82, 514, 518
SE95, 931, 932
SEGW, 896, 897
SHDB, 813, 814
SICF, 882
SLDB, 145

Transaction (Cont.)
SM35, 818
SM37, 991
SM50, 57, 58, 974, 992, 994
SM59, 857
SM66, 974, 992, 994
SMARTFORMS, 750, 753, 769
SMOD, 938, 943
SNOTE, 922
SO10, 741
SOAMANAGER, 885, 890
SPACKAGE, 72
SPAU, 923
SPDD, 923
ST05, 474, 975, 1000, 1001, 1014
ST10, 975, 997, 998
ST12, 1014, 1016
ST22, 1017
STMS, 70
STVARV, 614, 616
SU3, 618
SWO1, 826, 834
VA01, 577
VF01, 83, 518
VF02, 83
VF03, 83, 511
WE20, 859
WE21, 859
WE30, 851
WE31, 848, 849
WE41, 861
WE42, 862, 864
WE81, 849, 854
WE82, 849, 855

Transaction Recorder, 813
create program from recording, 816
update modes, 814

Transactional RFC (tRFC), 859
TRANSFER, 500
Transient data, 107
Transient program, 695
Translations, 238
Transparent tables, 397
Transport Organizer, 70
Transportable package, 68
TRANSPORTING, 181
trigger_event, 324

1046

Index

Troubleshooting, 719
TRUNCATE DATASET, 501
TRY, 376
Two-dimensional arrays, 164
TYPE, 114, 216

c, 125
concept, 107, 114
d, 125
f, 120
i, 120
n, 121
p, 121
vs. LIKE, 217

Type classes, 686
Type conversions, 122, 124

with invalid content, 123
with valid content, 123

Type groups, 450
data types, 451

Type objects, 686
Type pools, 574
TYPE RANGE OF, 221
TYPE REF TO, 312
TYPE_OPTIONS, 214, 215

LIKE (name), 217
LIKE dobj, 216
TYPE data_type [DECIMALS dec], 216

Typed formal parameters, 275, 276
TYPE-POOLS, 451
TYPES, 156

U

ULINE, 270, 583
UNASSIGN, 678
Uncomment, 113
Undelete(), 824
Unique index, 412
Unit tests, 977

write and implement, 980
Universal Description, Discovery, and

Integration (UDDI), 882
Unnamed data objects, 138
Upcasting, 684
UPDATE, 188
Update anomaly, 193

Update function modules, 489
attributes, 490

Update modules, 284, 289
Update work process, 490
User actions, 649
User context, 60
User exits, 933, 935

SD, 935
User interaction, 211
User interface, 49
User-defined elementary data types, 115, 125
User-defined selection screens, 212, 602

define, 603
User-specific values, 618
USING, 277

input parameters, 279

V

VALUE, 279
Value ranges, 451, 454
Value tables, 420
VALUE_OPTIONS, 221
Variable window, 728
Variables, 140
Variants, 608

attributes, 611, 613
create, 609
dynamic date, 616
dynamic time, 617
for selection screen fields, 615
system variant, 611
user-specific variables, 618

Views, 97, 396, 426
ABAP CDS views, 434
database, 427
help, 433
maintenance views, 431
projection, 429
replacement objects, 438
type, 427

Virtual processing blocks, 253
Visibility, 152
Visibility section, 313

private, 327
protected, 327

Index

1047

Visibility section (Cont.)
public, 326

Visibility sections, 326

W

Warning message, 232
Watchpoints, 703, 720

create, 707
view, 707

Web Dynpro ABAP, 56, 78, 780
Web services, 804, 880

consume, 888, 894
create, 884
create ABAP program to consume, 893
maintain port information, 890

Web Services Description Language
(WSDL), 880

WebSockets, 913
WHERE clause, 475, 480
Windows, 756

WITH, 623
Work area, 164, 530
Work process, 53, 56, 511, 519

types, 58
WRITE, 125, 270, 599
WRITE_FORM, 741

X

XI Message interface, 882
XML, 911

array, 911
if_ixml_element, 364

XML Path Language (XPath), 908
XML schema-based interface, 780
XML transformations, 804
XSL transformation

deserialization, 910
serialization, 909

XSTRING, 120, 122

First-hand knowledge.

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usage
and exploitation rights are reserved by the author and the publisher.

Kiran Bandari is a solution architect for one of the
world’s leading confection companies, and has been
working with ABAP for more than 10 years. He has
worked as a lead ABAP consultant on multiple SAP
implementations, roll outs, and upgrade projects with
a specific focus on custom development using ABAP
Objects and Web Dynpro ABAP. He is also an industry

trainer and has conducted ABAP training workshops for major clients like
Wrigley‘s, IBM, Accenture, CapGemini, and more.

Kiran Bandari

Complete ABAP
1047 Pages, 2016, $79.95
ISBN 978-1-4932-1272-9

 www.sap-press.com/3921

http://www.sap-press.com/3921?utm_source=AWS&utm_campaign=Browse%20the%20Book&utm_medium=readingsample&utm_content=1272

