
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Michael Fogus

Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Functional JavaScript
by Michael Fogus

Copyright © 2013 Michael Fogus. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Melanie Yarbrough
Copyeditor: Jasmine Kwityn
Proofreader: Jilly Gagnon

Indexer: Judith McConville
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

May 2013: First Edition

Revision History for the First Edition:

2013-05-24: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449360726 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Functional JavaScript, the image of an eider duck, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36072-6

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449360726
http://www.it-ebooks.info/

For Yuki

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Foreword by Jeremy Ashkenas. ix
Foreword by Steve Vinoski. xi
Preface. xiii

1. Introducing Functional JavaScript. 1
The Case for JavaScript 1

Some Limitations of JavaScript 3
Getting Started with Functional Programming 4

Why Functional Programming Matters 4
Functions as Units of Abstraction 8
Encapsulation and Hiding 10
Functions as Units of Behavior 11
Data as Abstraction 15
A Taste of Functional JavaScript 19
On Speed 21

The Case for Underscore 24
Summary 25

2. First-Class Functions and Applicative Programming. 27
Functions as First-Class Things 27

JavaScript’s Multiple Paradigms 29
Applicative Programming 34

Collection-Centric Programming 35
Other Examples of Applicative Programming 36
Defining a Few Applicative Functions 39

Data Thinking 41
“Table-Like” Data 43

v

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 47

3. Variable Scope and Closures. 49
Global Scope 49
Lexical Scope 51
Dynamic Scope 52

JavaScript’s Dynamic Scope 55
Function Scope 56
Closures 59

Simulating Closures 60
Using Closures 65
Closures as an Abstraction 67

Summary 67

4. Higher-Order Functions. 69
Functions That Take Other Functions 69

Thinking About Passing Functions: max, finder, and best 70
More Thinking About Passing Functions: repeat, repeatedly, and

iterateUntil 72
Functions That Return Other Functions 75

Capturing Arguments to Higher-Order Functions 77
Capturing Variables for Great Good 77
A Function to Guard Against Nonexistence: fnull 80

Putting It All Together: Object Validators 82
Summary 85

5. Function-Building Functions. 87
The Essence of Functional Composition 87

Mutation Is a Low-Level Operation 91
Currying 92

To Curry Right, or To Curry Left 94
Automatically Currying Parameters 95
Currying for Fluent APIs 99
The Disadvantages of Currying in JavaScript 100

Partial Application 100
Partially Applying One and Two Known Arguments 102
Partially Applying an Arbitrary Number of Arguments 103
Partial Application in Action: Preconditions 104

Stitching Functions End-to-End with Compose 108
Pre- and Postconditions Using Composition 109

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 110

6. Recursion. 113
Self-Absorbed Functions (Functions That Call Themselves) 113

Graph Walking with Recursion 118
Depth-First Self-Recursive Search with Memory 119
Recursion and Composing Functions: Conjoin and Disjoin 122

Codependent Functions (Functions Calling Other Functions That Call Back) 124
Deep Cloning with Recursion 125
Walking Nested Arrays 126

Too Much Recursion! 129
Generators 131
The Trampoline Principle and Callbacks 134

Recursion Is a Low-Level Operation 136
Summary 137

7. Purity, Immutability, and Policies for Change. 139
Purity 139

The Relationship Between Purity and Testing 140
Separating the Pure from the Impure 142
Property-Testing Impure Functions 143
Purity and the Relationship to Referential Transparency 144
Purity and the Relationship to Idempotence 146

Immutability 147
If a Tree Falls in the Woods, Does It Make a Sound? 149
Immutability and the Relationship to Recursion 150
Defensive Freezing and Cloning 151
Observing Immutability at the Function Level 153
Observing Immutability in Objects 155
Objects Are Often a Low-Level Operation 159

Policies for Controlling Change 160
Summary 163

8. Flow-Based Programming. 165
Chaining 165

A Lazy Chain 168
Promises 173

Pipelining 176
Data Flow versus Control Flow 180

Finding a Common Shape 183
A Function to Simplify Action Creation 187

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 189

9. Programming Without Class. 191
Data Orientation 191

Building Toward Functions 194
Mixins 198

Core Prototype Munging 200
Class Hierarchies 201
Changing Hierarchies 204
Flattening the Hierarchy with Mixins 205
New Semantics via Mixin Extension 211
New Types via Mixin Mixing 212
Methods Are Low-Level Operations 214

}).call(“Finis”); 216

A. Functional JavaScript in the Wild. 217

B. Annotated Bibliography. 227

Index. 231

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword by Jeremy Ashkenas

This is a terribly exciting book.

Despite its ignominious origins as a “Java-lite” scripting language, intended to be em‐
bedded inline in HTML documents to allow a minimum modicum of interactivi‐
ty‚ JavaScript has always been one of the most essentially flexible languages for general
purpose programming.

You can sketch, smudge, and draft bits of code in JavaScript, while pushing and twisting
the language in the direction that best suits your particular style. The reason that this is
more natural in JavaScript than in other, more rigid languages is due to the small set of
strong core ideas that lie at the heart of JavaScript: Everything is an object (everything
is a value) to an even greater extent than in famously object-oriented languages like
Ruby and Java. Functions are objects, are values. An object may serve as prototype
(default values) for any other object. There is only one kind of function, and depending
on how you employ it, it can either serve as a pure function, a mutating procedure, or
as a method on an object.

JavaScript enables, but does not enforce, many different programming styles. In the
early days, we tended to bring our traditional expectations and “best” practices with us
when we started to learn to write JavaScript. Naturally this led to much JavaScript re‐
sembling Java without the omnipresent types or even with the types still there, just living
inside of annotation comments above each method. Gradually, experiments were made:
folks started generating functions at runtime, working with immutable data structures,
creating different patterns for object-orientation, discovering the magic of chaining
APIs, or extending built-in prototypes with custom functionality.

One of my favorite recent developments is the enthusiastic embrace of functional pro‐
gramming ideas as appropriate tools for building rich JavaScript applications. As we
move beyond form validation and DOM animation towards full-featured apps, where
the JavaScript in your codebase might be getting up to any manner of hijinks in any
particular problem space, functional ideas are similarly moving beyond the basic call‐
back, and towards more interesting arenas, such as:

ix

www.it-ebooks.info

http://www.it-ebooks.info/

• Building out a large API by partially applying a core set of functions with arguments
in different configurations.

• Using recursive functions to smooth the gap between actions that need to occur for
a period of time, and events coming in rapid-fire off the event loop.

• Structuring a piece of complex business logic as a pipeline of mutation-free changes
that can later be plugged-into and pulled apart.

You’re reading the ideal book with which to explore this territory. In the following nine
chapters (and two appendixes), your friendly tour guide and resident mad scientist,
Michael Fogus, breaks down functional programming into its basic atoms, and builds
it back up again into edifices of terrifying cleverness that will leave you wondering. It’s
rare that a programming book can take you by surprise, but this one will.

Enjoy.

—Jeremy Ashkenas

x | Foreword by Jeremy Ashkenas

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword by Steve Vinoski

I remember when I first read Douglas Crockford’s wonderful book JavaScript: The Good
Parts. Not only did I learn from it, but the fact that Crockford required only 172 pages
to steer readers away from JavaScript’s problematic parts makes his work that much
more impressive. Brevity is often at odds with educative exposition, but when an author
achieves both as Crockford did, the reader is more likely to fully digest the author’s
recommendations and benefit from them.

In the pages that follow, you’ll find that Michael Fogus has given us a book as excellent
as Crockford’s, perhaps more so. He’s built on the sound advice of Crockford and other
predecessors to take us on a deep dive into the world of functional JavaScript program‐
ming. I’ve often heard and read (and even written myself) that JavaScript is a functional
programming language, but such assertions (including my own) have always seemed
light on the pragmatic details that practicing programmers need. Even Crockford de‐
voted only a single chapter to functions, focusing instead, like many authors, on Java‐
Script’s object support. Here, merely saying that Fogus fills in those missing details would
be a serious understatement.

Functional programming has been a part of the computing field from its inception, yet
traditionally it has not enjoyed significant interest or growth among practicing software
professionals. But thanks to continuing advances in computing hardware speed and
capacity, coupled with our industry’s increasing interest in creating software systems of
ever-escalating levels of concurrency, distribution and scale, functional programming
is rapidly growing in popularity. This growth is due to the observation that functonal
programming appears to help developers reason about, build and maintain such sys‐
tems. Curiosity about languages that support functional programming, like Scala, Clo‐
jure, Erlang and Haskell, is at an all-time high and still increasing, with no abatement
in sight.

As you read through Michael’s insightful investigations of JavaScript’s functional pro‐
gramming capabilities, you’ll be impressed with the significant depth and breadth of
the information he provides. He keeps things simple at first, explaining how functions

xi

www.it-ebooks.info

http://www.it-ebooks.info/

and “data as abstraction” can avoid the desire to use JavaScript’s powerful object pro‐
totype system to create yet another way of modeling classes. But as he explains and
thoroughly reveals in subsequent chapters, the simple model of functional data trans‐
formation can yield sophisticated yet efficient building blocks and higher level abstrac‐
tions. I predict you’ll be amazed at just how far Fogus is able to take these innovative
approaches as each chapter goes by.

Most software development efforts require pragmatism, though, and fortunately for us
Fogus tackles this important requirement as well. Having beautiful, sophisticated and
simple code is ultimately meaningless if it’s not practical, and this is a large part of the
reason functional programming stayed hidden in the shadows for so many years. Fogus
addresses this issue by helping the reader explore and evaluate the computing costs
associated with the functional programming approaches he champions here.

And of course books, just like software, are ultimately about communication. Like
Crockford, Fogus writes in a manner that’s both brief and informative, saying just
enough to drive his ideas home without belaboring them. I can’t overstate the impor‐
tance of Michael’s brevity and clarity, since without them we’d miss the incredible po‐
tential of the ideas and insights he’s provided here. You’ll find elegance not only in the
approaches and code Fogus presents, but also in the way he presents them.

—Steve Vinoski

xii | Foreword by Steve Vinoski

www.it-ebooks.info

http://www.it-ebooks.info/

1. Batman actually had more than just useful tools—he had tools for every conceivable circumstance, including
those that might require a Bat Alphabet Soup Container or Bat Shark Repellant. Underscore doesn’t quite
match that level of applicability.

Preface

What Is Underscore?
Underscore.js (hereafter called Underscore) is a JavaScript library supporting functional
programming. The Underscore website describes the library as such:

Underscore is a utility-belt library for JavaScript that provides a lot of the functional
programming support that you would expect in Prototype.js (or Ruby), but without ex‐
tending any of the built-in JavaScript objects.

In case you didn’t grow up watching the kitschy old Batman television show, the term
“utility belt” means that it provides a set of useful tools that will help you solve many
common problems.1

Getting Underscore
The Underscore website has the latest version of the library. You can download the
source from the website and import it into the applicable project directories.

Using Underscore
Underscore can be added to your own projects in the same way you would add any other
JavaScript library. However, there are a few points to make about how you interact with
Underscore. First, by default Underscore defines a global object named _ that contains
all of its functions. To call an Underscore function, you simply call it as a method on _,
as shown in the following code:

xiii

www.it-ebooks.info

http://underscorejs.org
http://www.it-ebooks.info/

_.times(4, function() { console.log("Major") });

// (console) Major
// (console) Major
// (console) Major
// (console) Major

Simple, no?

One thing that might not be so simple is if you already defined a global _ variable. In
this case, Underscore provides a _.noConflict function that will rebind your old _ and
return a reference to Underscore itself. Therefore, using _.noConflict works as follows:

var underscore = _.noConflict();

underscore.times(4, function() { console.log("Major") });

// (console) Major
// (console) Major
// (console) Major
// (console) Major

_;
//=> Whatever you originally bound _ to

You’ll see many of the details of Underscore throughout this book, but bear in mind
that while I use Underscore extensively (and endorse it), this is not a book about
Underscore per se.

The Source Code for Functional JavaScript
Many years ago, I wanted to write a library for JavaScript based on functional program‐
ming techniques. Like many programmers, I had obtained a working understanding of
JavaScript through a mixture of experimentation, use, and the writing of Douglas
Crockford. Although I went on to complete my functional library (which I named
Doris), I rarely used it for even my own purposes.

After completing Doris, I went on to other ventures, including extensive work with (and
on) the functional programming languages Scala and Clojure. Additionally, I spent a
lot of time helping to write ClojureScript, especially its compiler that targets JavaScript.
Based on these experiences, I gained a very good understanding of functional pro‐
gramming techniques. As a result, I decided to resurrect Doris and try it again, this time
using techniques learned in the intervening years. The product of this effort was called
Lemonad, which was developed in conjunction with the content of this book.

While many of the functions in this book are created for the purpose of illustration, I’ve
expanded on the lessons in this book in my Lemonad library and the official underscore-
contrib library.

xiv | Preface

www.it-ebooks.info

http://www.github.com/fogus/lemonad
http://bit.ly/12xnnSp
http://bit.ly/12xnnSp
http://www.it-ebooks.info/

2. Like all powerful tools, JavaScript’s eval and Function constructors can be used for harm as well as for good.
I have nothing against them per se, but I rarely need them.

Running the Code in This Book
The source code for Functional JavaScript is available on GitHub. Additionally, navi‐
gating to the book’s website will allow you to use your browser’s JavaScript console to
explore the functions defined herein.

Notational Conventions
Throughout the course of this book (and in general when writing JavaScript) I observe
various rules when writing functions, including the following:

• Avoid assigning variables more than once.
• Do not use eval.2

• Do not modify core objects like Array and Function.
• Favor functions over methods.
• If a function is defined at the start of a project, then it should work in subsequent

stages as well.

Additionally, I use various conventions in the text of this book, including the following:

• Functions of zero parameters are used to denote that the arguments don’t matter.
• In some examples, ... is used to denote that the surrounding code segments are

being ignored.
• Text like inst#method denotes a reference to an instance method.
• Text like Object.method denotes a reference to a type method.
• I tend to restrict if/else statements to a single line per branch, so I prefer to avoid

using curly brackets to wrap the blocks. This saves precious vertical space.
• I like to use semicolons.

For the most part, the JavaScript code in this book is like the majority of JavaScript code
that you’ll see in the wild, except for the functional composition, which is the whole
point of writing the book in the first place.

Whom Functional JavaScript Is Written For
This book started as an idea a few years ago, to write an introductory book on functional
programming in the Scheme programming language. Although Scheme and JavaScript
have some common features, they are very different in many important ways. However,

Preface | xv

www.it-ebooks.info

https://github.com/funjs
http://www.functionaljavascript.com
http://www.it-ebooks.info/

regardless of the language used, much of functional programming is transcendent.
Therefore, I wrote this book to introduce functional programming in the context of
what is and what is not possible with JavaScript.

I assume a base-level understanding of JavaScript. There are many amazing books on
the topic and a bevy of online resources, so an introduction to the language is not
provided herein. I also assume a working understanding of object-oriented program‐
ming, as commonly practiced in languages such as Java, Ruby, Python, and even Java‐
Script. While knowing object-oriented programming can help you to avoid my use of
the occasional irrelevant phrase, an expert-level understanding of the subject is not
required.

The ideal readers for Functional JavaScript are long-time JavaScript programmers hop‐
ing to learn about functional programming, or long-time functional programmers
looking to learn JavaScript. For the latter case, it’s advised that this book be supplemented
with material focusing on JavaScript’s…oddities. Of particular note is JavaScript: The
Good Parts by Douglas Crockford (O’Reilly). Finally, this book is appropriate for anyone
looking to learn more about functional programming, even those who have no intention
of using JavaScript beyond the confines of these pages.

A Roadmap for Functional JavaScript
Here is an outline of the topics covered in Functional JavaScript:
Chapter 1, Introducing Functional JavaScript

The book starts off by introducing some important topics, including functional
programming and Underscore.js.

Chapter 2, First-Class Functions and Applicative Programming
Chapter 2 defines first-class functions, shows how to use them, and describes some
common applications. One particular technique using first-class functions—called
applicative programming—is also described. The chapter concludes with a discus‐
sion of “data thinking,” an important approach to software development central to
functional programming.

Chapter 3, Variable Scope and Closures
Chapter 3 is a transitional chapter that covers two topics of core importance to
understanding functional programming in JavaScript. I start by covering variable
scoping, including the flavors used within JavaScript: lexical scoping, dynamic
scoping, and function scoping. The chapter concludes with a discussion of closures
—how they operate, and how and why you might use them.

xvi | Preface

www.it-ebooks.info

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596517748.do
http://www.it-ebooks.info/

Chapter 4, Higher-Order Functions
Building on the lessons of Chapters 2 and 3, this chapter describes an important
type of first-class function: higher-order functions. Although “higher-order func‐
tions” sound complicated, this chapter shows that they are instead straightfoward.

Chapter 5, Function-Building Functions
Moving on from the lessons of the previous chapters, Chapter 5 describes a way to
“compose” functions from other functions. Composing functions is an important
technique in functional programming, and this chapter will help guide you through
the process.

Chapter 6, Recursion
Chapter 6 is another transitional chapter in which I’ll discuss recursion, a term that
describes a function that calls itself either directly or indirectly. Because recursion
is limited in JavaScript, it’s not often used; however, there are ways around these
limitations, and this chapter will guide you through a few.

Chapter 7, Purity, Immutability, and Policies for Change
Chapter 7 deals with various ways to write functional code that doesn’t change
anything. Put simply, functional programming is facilitated when variables are not
changed at all, and this chapter will guide you through just what that means.

Chapter 8, Flow-Based Programming
Chapter 8 deals with viewing tasks, and even whole systems, as virtual “assembly
lines” of functions that transform and move data.

Chapter 9, Programming Without Class
The final chapter focuses on how functional programming allows you to structure
applications in interesting ways that have nothing to do with class-based object-
oriented programming.

Following these chapters, the book concludes with two appendixes of supplementary
information: Appendix A, Functional JavaScript in the Wild and Appendix B, Annotated
Bibliography.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Preface | xvii

www.it-ebooks.info

http://www.it-ebooks.info/

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Functional JavaScript by Michael Fogus
(O’Reilly). Copyright 2013 Michael Fogus, 978-1-449-36072-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xviii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.it-ebooks.info/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/functional_js.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
It takes a village to write a book, and this book is no different. First, I would like to thank
my good friend Rob Friesel for taking the time to provide feedback throughout the
course of writing this book. Additionally, I would like to thank Jeremy Ashkenas for
putting me in touch with O’Reilly and really making this book possible from the start.
Plus he wrote the Underscore.js library—no small matter.

The following people have provided great conversation, direct feedback, or even inspi‐
ration from afar over the years, and I thank them all just for being awesome: Chris
Houser, David Nolen, Stuart Halloway, Tim Ewald, Russ Olsen, Alan Kay, Peter Seibel,
Sam Aaron, Brenton Ashworth, Craig Andera, Lynn Grogan, Matthew Flatt, Brian
McKenna, Bodil Stokke, Oleg Kiselyov, Dave Herman, Mashaaricda Barmajada ee
Mahmud, Patrick Logan, Alan Dipert, Alex Redington, Justin Gehtland, Carin Meier,
Phil Bagwell, Steve Vinoski, Reginald Braithwaite, Daniel Friedman, Jamie Kite, William
Byrd, Larry Albright, Michael Nygard, Sacha Chua, Daniel Spiewak, Christophe Grand,
Sam Aaron, Meikel Brandmeyer, Dean Wampler, Clinton Dreisbach, Matthew Podwy‐
socki, Steve Yegge, David Liebke, and Rich Hickey.

Preface | xix

www.it-ebooks.info

http://oreil.ly/functional_js
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

My soundtrack while writing Functional JavaScript was provided by Pantha du Prince,
Black Ace, Brian Eno, Béla Bartók, Dieter Moebius, Sun Ra, Broadcast, Scientist, and
John Coltrane.

Finally, nothing that I do would be possible without the support of the three loves of
my life: Keita, Shota, and Yuki.

xx | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introducing Functional JavaScript

This chapter sets up the book in a number of important ways. In it, I will introduce
Underscore and explain how you can start using it. Additionally, I will define the terms
and goals of the rest of the book.

The Case for JavaScript
The question of why you might choose JavaScript is easily answered in a word: reach.
In other words, aside from perhaps Java, there is no more popular programming lan‐
guage right now than JavaScript. Its ubiquity in the browser and its near-ubiquity in a
vast sea of current and emerging technologies make it a nice—and sometimes the
only—choice for portability.

With the reemergence of client-service and single-page application architectures, the
use of JavaScript in discrete applications (i.e., single-page apps) attached to numerous
network services is exploding. For example, Google Apps are all written in JavaScript,
and are prime examples of the single-page application paradigm.

If you’ve come to JavaScript with a ready interest in functional programming, then the
good news is that it supports functional techniques “right out of the box” (e.g., the
function is a core element in JavaScript). For example, if you have any experience with
JavaScript, then you might have seen code like the following:

[1, 2, 3].forEach(alert);
// alert box with "1" pops up
// alert box with "2" pops up
// alert box with "3" pops up

The Array#forEach method, added in the fifth edition of the ECMA-262 language
standard, takes some function (in this case, alert) and passes each array element to the
function one after the other. That is, JavaScript provides various methods and functions

1

www.it-ebooks.info

http://www.it-ebooks.info/

1. And, as with all tools, you can get cut and/or smash your thumb if you’re not careful.

that take other functions as arguments for some inner purpose. I’ll talk more about this
style of programming as the book progresses.

JavaScript is also built on a solid foundation of language primitives, which is amazing,
but a double-edged sword (as I’ll discuss soon). From functions to closures to prototypes
to a fairly nice dynamic core, JavaScript provides a well-stocked set of tools.1 In addition,
JavaScript provides a very open and flexible execution model. As a small example, all
JavaScript functions have an apply method that allows you to call the function with an
array as if the array elements were the arguments to the function itself. Using apply, I
can create a neat little function named splat that just takes a function and returns
another function that takes an array and calls the original with apply, so that its elements
serve as its arguments:

function splat(fun) {
 return function(array) {
 return fun.apply(null, array);
 };
}

var addArrayElements = splat(function(x, y) { return x + y });

addArrayElements([1, 2]);
//=> 3

This is your first taste of functional programming—a function that returns another
function—but I’ll get to the meat of that later. The point is that apply is only one of
many ways that JavaScript is a hugely flexible programming language.

Another way that JavaScript proves its flexibility is that any function may be called with
any number of arguments of any type, at any time. We can create a function unsplat
that works opposite from splat, taking a function and returning another function that
takes any number of arguments and calls the original with an array of the values given:

function unsplat(fun) {
 return function() {
 return fun.call(null, _.toArray(arguments));
 };
}

var joinElements = unsplat(function(array) { return array.join(' ') });

joinElements(1, 2);
//=> "1 2"

joinElements('-', '$', '/', '!', ':');
//=> "- $ / ! :"

2 | Chapter 1: Introducing Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

2. A draft specification for ES.next is found at http://wiki.ecmascript.org/doku.php?id=harmony:specifica
tion_drafts.

3. The debate continues over just how deeply.

4. Some languages that target JavaScript include, but are not limited to, the following: ClojureScript, Coffee‐
Script, Roy, Elm, TypeScript, Dart, Flapjax, Java, and JavaScript itself!

Every JavaScript function can access a local value named arguments that is an array-
like structure holding the values that the function was called with. Having access to
arguments is surprisingly powerful, and is used to amazing effect in JavaScript in the
wild. Additionally, the call method is similar to apply except that the former takes the
arguments one by one rather than as an array, as expected by apply. The trifecta of
apply, call, and arguments is only a small sample of the extreme flexibility provided
by JavaScript.

With the emergent growth of JavaScript for creating applications of all sizes, you might
expect stagnation in the language itself or its runtime support. However, even a casual
investigation of the ECMAScript.next initiative shows that it’s clear that JavaScript is an
evolving (albeit slowly) language.2 Likewise, JavaScript engines like V8 are constantly
evolving and improving JavaScript speed and efficiency using both time-tested and
novel techniques.

Some Limitations of JavaScript
The case against JavaScript—in light of its evolution, ubiquity, and reach—is quite thin.
You can say much about the language quirks and robustness failings, but the fact is that
JavaScript is here to stay, now and indefinitely. Regardless, it’s worth acknowledging
that JavaScript is a flawed language.3 In fact, the most popular book on JavaScript,
Douglas Crockford’s JavaScript: The Good Parts (O’Reilly), spends more pages discus‐
sing the terrible parts than the good. The language has true oddities, and by and large
is not particularly succinct in expression. However, changing the problems with Java‐
Script would likely “break the Web,” a circumstance that’s unacceptable to most. It’s
because of these problems that the number of languages targeting JavaScript as a com‐
pilation platform is growing; indeed, this is a very fertile niche.4

As a language supporting—and at times preferring—imperative programming techni‐
ques and a reliance on global scoping, JavaScript is unsafe by default. That is, building
programs with a key focus on mutability is potentially confusing as programs grow.
Likewise, the very language itself provides the building blocks of many high-level fea‐
tures found by default in other languages. For example, JavaScript itself, prior to trunk
versions of ECMAScript 6, provides no module system, but facilitates their creation
using raw objects. That JavaScript provides a loose collection of basic parts ensures a
bevy of custom module implementations, each incompatible with the next.

The Case for JavaScript | 3

www.it-ebooks.info

http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://shop.oreilly.com/product/9780596517748.do
http://www.it-ebooks.info/

Language oddities, unsafe features, and a sea of competing libraries: three legitimate
reasons to think hard about the adoption of JavaScript. But there is a light at the end of
the tunnel that’s not just the light of an oncoming train. The light is that through dis‐
cipline and an observance to certain conventions, JavaScript code can be not only safe,
but also simple to understand and test, in addition to being proportionally scalable to
the size of the code base. This book will lead you on the path to one such approach:
functional programming.

Getting Started with Functional Programming
You may have heard of functional programming on your favorite news aggregation site,
or maybe you’ve worked in a language supporting functional techniques. If you’ve writ‐
ten JavaScript (and in this book I assume that you have) then you indeed have used a
language supporting functional programming. However, that being the case, you might
not have used JavaScript in a functional way. This book outlines a functional style of
programming that aims to simplify your own libraries and applications, and helps tame
the wild beast of JavaScript complexity.

As a bare-bones introduction, functional programming can be described in a single
sentence:

Functional programming is the use of functions that transform values into units of ab‐
straction, subsequently used to build software systems.

This is a simplification bordering on libel, but it’s functional (ha!) for this early stage in
the book. The library that I use as my medium of functional expression in JavaScript is
Underscore, and for the most part, it adheres to this basic definition. However, this
definition fails to explain the “why” of functional programming.

Why Functional Programming Matters
The major evolution that is still going on for me is towards a more functional program‐
ming style, which involves unlearning a lot of old habits, and backing away from some
OOP directions.

—John Carmack

If you’re familiar with object-oriented programming, then you may agree that its pri‐
mary goal is to break a problem into parts, as shown in Figure 1-1 (Gamma 1995).

4 | Chapter 1: Introducing Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1. A problem broken into object-oriented parts

Likewise, these parts/objects can be aggregated and composed to form larger parts, as
shown in Figure 1-2.

Figure 1-2. Objects are “composed” together to form bigger objects

Based on these parts and their aggregates, a system is then described in terms of the
interactions and values of the parts, as shown in Figure 1-3.

Getting Started with Functional Programming | 5

www.it-ebooks.info

http://www.it-ebooks.info/

5. This is a simplistic way to view the composition of object-oriented versus functional systems, but bear with
me as I develop a way to mix the two throughout the course of this book.

Figure 1-3. An object-oriented system and its interactions as a sequence diagram

This is a gross simplification of how object-oriented systems are formed, but I think
that as a high-level description it works just fine.

By comparison, a strict functional programming approach to solving problems also
breaks a problem into parts (namely, functions), as shown in Figure 1-4.

Figure 1-4. A problem broken into functional parts

Whereas the object-oriented approach tends to break problems into groupings of
“nouns,” or objects, a functional approach breaks the same problem into groupings of
“verbs,” or functions.5 As with object-oriented programming, larger functions are
formed by “gluing” or “composing” other functions together to build high-level behav‐
iors, as shown in Figure 1-5.

Figure 1-5. Functions are also composed together to form more behaviors

6 | Chapter 1: Introducing Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, one way that the functional parts are formed into a system (as shown in
Figure 1-6) is by taking a value and gradually “transforming” it—via one primitive or
composed function—into another.

Figure 1-6. A functional system interacts via data transformation

In a system observing a strict object-oriented style, the interactions between objects
cause internal change to each object, leading to an overall system state that is the amal‐
gamation of many smaller, potentially subtle state changes. These interrelated state
changes form a conceptual “web of change” that, at times, can be confusing to keep in
your head. This confusion becomes a problem when the act of adding new objects and
system features requires a working knowledge of the subtleties of potentially far-
reaching state changes.

A functional system, on the other hand, strives to minimize observable state modifica‐
tion. Therefore, adding new features to a system built using functional principles is a
matter of understanding how new functions can operate within the context of localized,
nondestructive (i.e., original data is never changed) data transformations. However, I
hesitate to create a false dichotomy and say that functional and object-oriented styles
should stand in opposition. That JavaScript supports both models means that systems
can and should be composed of both models. Finding the balance between functional
and object-oriented styles is a tricky task that will be tackled much later in the book,
when discussing mixins in Chapter 9. However, since this is a book about functional
programming in JavaScript, the bulk of the discussion is focused on functional styles
rather than object-oriented ones.

Having said that, a nice image of a system built along functional principles is an
assembly-line device that takes raw materials in one end, and gradually builds a product
that comes out the other end (Figure 1-7).

Getting Started with Functional Programming | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-7. A functional program is a machine for transforming data

The assembly line analogy is, of course, not entirely perfect, because every machine I
know consumes its raw materials to produce a product. By contrast, functional pro‐
gramming is what happens when you take a system built in an imperative way and shrink
explicit state changes to the smallest possible footprint to make it more modular
(Hughes 1984). Practical functional programming is not about eliminating state change,
but instead about reducing the occurrences of mutation to the smallest area possible for
any given system.

Functions as Units of Abstraction
One method of abstraction is that functions hide implementation details from view. In
fact, functions are a beautiful unit of work allowing you to adhere to the long-practiced
maxim in the UNIX community, set forth by Butler Lampson:

Make it run, make it right, make it fast.

Likewise, functions-as-abstraction allow you to fulfill Kent Beck’s similarly phrased
mantra of test-driven development (TDD):

Make it run, then make it right, then make it fast.

For example, in the case of reporting errors and warnings, you could write something
like the following:

function parseAge(age) {
 if (!_.isString(age)) throw new Error("Expecting a string");
 var a;

 console.log("Attempting to parse an age");

 a = parseInt(age, 10);

8 | Chapter 1: Introducing Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

 if (_.isNaN(a)) {
 console.log(["Could not parse age:", age].join(' '));
 a = 0;
 }

 return a;
}

This function, although not comprehensive for parsing age strings, is nicely illustrative.
Use of parseAge is as follows:

parseAge("42");
// (console) Attempting to parse an age
//=> 42

parseAge(42);
// Error: Expecting a string

parseAge("frob");
// (console) Attempting to parse an age
// (console) Could not parse age: frob
//=> 0

The parseAge function works as written, but if you want to modify the way that errors,
information, and warnings are presented, then changes need to be made to the appro‐
priate lines therein, and anywhere else similar patterns are used. A better approach is
to “abstract” the notion of errors, information, and warnings into functions:

function fail(thing) {
 throw new Error(thing);
}

function warn(thing) {
 console.log(["WARNING:", thing].join(' '));
}

function note(thing) {
 console.log(["NOTE:", thing].join(' '));
}

Using these functions, the parseAge function can be rewritten as follows:
function parseAge(age) {
 if (!_.isString(age)) fail("Expecting a string");
 var a;

 note("Attempting to parse an age");
 a = parseInt(age, 10);

 if (_.isNaN(a)) {
 warn(["Could not parse age:", age].join(' '));
 a = 0;

Getting Started with Functional Programming | 9

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 return a;
}

Here’s the new behavior:
parseAge("frob");
// (console) NOTE: Attempting to parse an age
// (console) WARNING: Could not parse age: frob
//=> 0

It’s not very different from the old behavior, except that now the idea of reporting errors,
information, and warnings has been abstracted away. The reporting of errors, infor‐
mation, and warnings can thus be modified entirely:

function note() {}
function warn(str) {
 alert("That doesn't look like a valid age");
}

parseAge("frob");
// (alert box) That doesn't look like a valid age
//=> 0

Therefore, because the behavior is contained within a single function, the function can
be replaced by new functions providing similar behavior or outright different behaviors
altogether (Abelson and Sussman 1996).

Encapsulation and Hiding
Over the years, we’ve been taught that a cornerstone of object-oriented programming
is encapsulation. The term encapsulation in reference to object-oriented programming
refers to a way of packaging certain pieces of data with the very operations that manip‐
ulate them, as seen in Figure 1-8.

Figure 1-8. Most object-oriented languages use object boundaries to package data ele‐
ments with the operations that work on them; a Stack class would therefore package an
array of elements with the push, pop, and peek operations used to manipulate it

10 | Chapter 1: Introducing Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript provides an object system that does indeed allow you to encapsulate data with
its manipulators. However, sometimes encapsulation is used to restrict the visibility of
certain elements, and this act is known as data hiding. JavaScript’s object system does
not provide a way to hide data directly, so data is hidden using something called closures,
as shown in Figure 1-9.

Figure 1-9. Using a closure to encapsulate data is a functional way to hide details from
a client’s view

Closures are not covered in any depth until Chapter 3, but for now you should keep in
mind that closures are kinds of functions. By using functional techniques involving
closures, you can achieve data hiding that is as effective as the same capability offered
by most object-oriented languages, though I hesitate to say whether functional encap‐
sulation or object-oriented encapsulation is better. Instead, while they are different in
practice, they both provide similar ways of building certain kinds of abstraction. In fact,
this book is not at all about encouraging you to throw away everything that you might
have ever learned in favor of functional programming; instead, it’s meant to explain
functional programming on its own terms so that you can decide if it’s right for your
needs.

Functions as Units of Behavior
Hiding data and behavior (which has the side effect of providing a more agile change
experience) is just one way that functions can be units of abstraction. Another is to
provide an easy way to store and pass around discrete units of basic behavior. Take, for
example, JavaScript’s syntax to denote looking up a value in an array by index:

var letters = ['a', 'b', 'c'];

letters[1];
//=> 'b'

While array indexing is a core behavior of JavaScript, there is no way to grab hold of
the behavior and use it as needed without placing it into a function. Therefore, a simple

Getting Started with Functional Programming | 11

www.it-ebooks.info

http://www.it-ebooks.info/

example of a function that abstracts array indexing behavior could be called nth. The
naive implementation of nth is as follows:

function naiveNth(a, index) {
 return a[index];
}

As you might suspect, nth operates along the happy path perfectly fine:
naiveNth(letters, 1);
//=> "b"

However, the function will fail if given something unexpected:
naiveNth({}, 1);
//=> undefined

Therefore, if I were to think about the abstraction surrounding a function nth, I might
devise the following statement: nth returns the element located at a valid index within a
data type allowing indexed access. A key part of this statement is the idea of an indexed
data type. To determine if something is an indexed data type, I can create a function
isIndexed, implemented as follows:

function isIndexed(data) {
 return _.isArray(data) || _.isString(data);
}

The function isIndexed is also a function providing an abstraction over checking if a
piece of data is a string or an array. Building abstraction on abstraction leads to the
following complete implementation of nth:

function nth(a, index) {
 if (!_.isNumber(index)) fail("Expected a number as the index");
 if (!isIndexed(a)) fail("Not supported on non-indexed type");
 if ((index < 0) || (index > a.length - 1))
 fail("Index value is out of bounds");

 return a[index];
}

The completed implementation of nth operates as follows:
nth(letters, 1);
//=> 'b'

nth("abc", 0);
//=> "a"

nth({}, 2);
// Error: Not supported on non-indexed type

nth(letters, 4000);
// Error: Index value is out of bounds

12 | Chapter 1: Introducing Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

nth(letters, 'aaaaa');
// Error: Expected a number as the index

In the same way that I built the nth abstraction out of an indexed abstraction, I can
likewise build a second abstraction:

function second(a) {
 return nth(a, 1);
}

The second function allows me to appropriate the correct behavior of nth for a different
but related use case:

second(['a','b']);
//=> "b"

second("fogus");
//=> "o"

second({});
// Error: Not supported on non-indexed type

Another unit of basic behavior in JavaScript is the idea of a comparator. A comparator
is a function that takes two values and returns <1 if the first is less than the second, >1
if it is greater, and 0 if they are equal. In fact, JavaScript itself can appear to use the very
nature of numbers themselves to provide a default sort method:

[2, 3, -6, 0, -108, 42].sort();
//=> [-108, -6, 0, 2, 3, 42]

But a problem arises when you have a different mix of numbers:
[0, -1, -2].sort();
//=> [-1, -2, 0]

[2, 3, -1, -6, 0, -108, 42, 10].sort();
//=> [-1, -108, -6, 0, 10, 2, 3, 42]

The problem is that when given no arguments, the Array#sort method does a string
comparison. However, every JavaScript programmer knows that Array#sort expects a
comparator, and instead writes:

[2, 3, -1, -6, 0, -108, 42, 10].sort(function(x,y) {
 if (x < y) return -1;
 if (y < x) return 1;
 return 0;
});

//=> [-108, -6, -1, 0, 2, 3, 10, 42]

That seems better, but there is a way to make it more generic. After all, you might need
to sort like this again in another part of the code, so perhaps it’s better to pull out the
anonymous function and give it a name:

Getting Started with Functional Programming | 13

www.it-ebooks.info

http://www.it-ebooks.info/

function compareLessThanOrEqual(x, y) {
 if (x < y) return -1;
 if (y < x) return 1;
 return 0;
}

[2, 3, -1, -6, 0, -108, 42, 10].sort(compareLessThanOrEqual);
//=> [-108, -6, -1, 0, 2, 3, 10, 42]

But the problem with the compareLessThanOrEqual function is that it is coupled to the
idea of “comparatorness” and cannot easily stand on its own as a generic comparison
operation:

if (compareLessThanOrEqual(1,1))
 console.log("less or equal");

// nothing prints

To achieve the desired effect, I would need to know about compareLessThanOrEqual’s
comparator nature:

if (_.contains([0, -1], compareLessThanOrEqual(1,1)))
 console.log("less or equal");

// less or equal

But this is less than satisfying, especially when there is a possibility for some developer
to come along in the future and change the return value of compareLessThanOrEqual
to -42 for negative comparisons. A better way to write compareLessThanOrEqual might
be as follows:

function lessOrEqual(x, y) {
 return x <= y;
}

Functions that always return a Boolean value (i.e., true or false only), are called
predicates. So, instead of an elaborate comparator construction, lessOrEqual is simply
a “skin” over the built-in <= operator:

[2, 3, -1, -6, 0, -108, 42, 10].sort(lessOrEqual);
//=> [100, 10, 1, 0, -1, -1, -2]

At this point, you might be inclined to change careers. However, upon further reflection,
the result makes sense. If sort expects a comparator, and lessThan only returns true
or false, then you need to somehow get from the world of the latter to that of the former
without duplicating a bunch of if/then/else boilerplate. The solution lies in creating
a function, comparator, that takes a predicate and converts its result to the -1/0/1 result
expected of comparator functions:

function comparator(pred) {
 return function(x, y) {
 if (truthy(pred(x, y)))

14 | Chapter 1: Introducing Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

 return -1;
 else if (truthy(pred(y, x)))
 return 1;
 else
 return 0;
 };
};

Now, the comparator function can be used to return a new function that “maps” the
results of the predicate lessOrEqual (i.e., true or false) onto the results expected of
comparators (i.e., -1, 0, or 1), as shown in Figure 1-10.

Figure 1-10. Bridging the gap between two “worlds” using the comparator function

In functional programming, you’ll almost always see functions interacting in a way that
allows one type of data to be brought into the world of another type of data. Observe
comparator in action:

[100, 1, 0, 10, -1, -2, -1].sort(comparator(lessOrEqual));
//=> [-2, -1, -1, 0, 1, 10, 100]

The function comparator will work to map any function that returns “truthy” or “falsey”
values onto the notion of “comparatorness.” This topic is covered in much greater depth
in Chapter 4, but it’s worth noting now that comparator is a higher-order function
(because it takes a function and returns a new function). Keep in mind that not every
predicate makes sense for use with the comparator function, however. For example,
what does it mean to use the _.isEqual function as the basis for a comparator? Try it
out and see what happens.

Throughout this book, I will talk about the ways that functional techniques provide and
facilitate the creation of abstractions, and as I’ll discuss next, there is a beautiful synergy
between functions-as-abstraction and data.

Data as Abstraction
JavaScript’s object prototype model is a rich and foundational data scheme. On its own,
the prototype model provides a level of flexibility not found in many other mainstream

Getting Started with Functional Programming | 15

www.it-ebooks.info

http://www.it-ebooks.info/

6. The ECMAScript.next initiative is discussing the possibility of language support for classes. However, for
various reasons outside the scope of this book, the feature is highly controversial. As a result, it’s unclear when
and if classes will make it into JavaScript core.

7. One strong argument for a class-based object system is the historical use in implementing user interfaces.

8. Very often you will see a focus on list data structures in functional literature. In the case of JavaScript, the
array is a nice substitute.

9. The function lameCSV is meant for illustrative purposes and is in no way meant as a fully featured CSV parser.

programming languages. However, many JavaScript programmers, as is their wont,
immediately attempt to build a class-based object system using the prototype or closure
features (or both).6 Although a class system has its strong points, very often the data
needs of a JavaScript application are much simpler than is served by classes.7

Instead, using JavaScript bare data primitives, objects, and arrays, much of the data
modeling tasks that are currently served by classes are subsumed. Historically, func‐
tional programming has centered around building functions that work to achieve
higher-level behaviors and work on very simple data constructs.8 In the case of this book
(and Underscore itself), the focus is indeed on processing arrays and objects. The flex‐
ibility in those two simple data types is astounding, and it’s unfortunate that they are
often overlooked in favor of yet another class-based system.

Imagine that you’re tasked with writing a JavaScript application that deals with comma-
separated value (CSV) files, which are a standard way to represent data tables. For ex‐
ample, suppose you have a CSV file that looks as follows:

name, age, hair
Merble, 35, red
Bob, 64, blonde

It should be clear that this data represents a table with three columns (name, age, and
hair) and three rows (the first being the header row, and the rest being the data rows).
A small function to parse this very constrained CSV representation stored in a string is
implemented as follows:

function lameCSV(str) {
 return _.reduce(str.split("\n"), function(table, row) {
 table.push(_.map(row.split(","), function(c) { return c.trim()}));
 return table;
 }, []);
};

You’ll notice that the function lameCSV processes the rows one by one, splitting at \n
and then stripping whitespace for each cell therein.9 The whole data table is an array of
sub-arrays, each containing strings. From the conceptual view shown in Table 1-1, nes‐
ted arrays can be viewed as a table.

16 | Chapter 1: Introducing Functional JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Table 1-1. Simply nested arrays are one way to abstract a data table
name age hair

Merble 35 red

Bob 64 blonde

Using lameCSV to parse the data stored in a string works as follows:
var peopleTable = lameCSV("name,age,hair\nMerble,35,red\nBob,64,blonde");

peopleTable;
//=> [["name", "age", "hair"],
// ["Merble", "35", "red"],
// ["Bob", "64", "blonde"]]

Using selective spacing highlights the table nature of the returned array. In functional
programming, functions like lameCSV and the previously defined comparator are key
in translating one data type into another. Figure 1-11 illustrates how data transforma‐
tions in general can be viewed as getting from one “world” into another.

Figure 1-11. Functions can bridge the gap between two “worlds”

There are better ways to represent a table of such data, but this nested array serves us
well for now. Indeed, there is little motivation to build a complex class hierarchy rep‐
resenting either the table itself, the rows, people, or whatever. Instead, keeping the data
representation minimal allows me to use existing array fields and array processing
functions and methods out of the box:

_.rest(peopleTable).sort();

//=> [["Bob", "64", "blonde"],
// ["Merble", "35", "red"]]

Likewise, since I know the form of the original data, I can create appropriately named
selector functions to access the data in a more descriptive way:

function selectNames(table) {
 return _.rest(_.map(table, _.first));
}

Getting Started with Functional Programming | 17

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Foreword by Jeremy Ashkenas
	Foreword by Steve Vinoski
	Preface
	What Is Underscore?
	Getting Underscore
	Using Underscore
	The Source Code for Functional JavaScript
	Running the Code in This Book
	Notational Conventions

	Whom Functional JavaScript Is Written For
	A Roadmap for Functional JavaScript
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Functional JavaScript
	The Case for JavaScript
	Some Limitations of JavaScript

	Getting Started with Functional Programming
	Why Functional Programming Matters
	Functions as Units of Abstraction
	Encapsulation and Hiding
	Functions as Units of Behavior
	Data as Abstraction
	A Taste of Functional JavaScript
	On Speed

	The Case for Underscore
	Summary

	Chapter 2. First-Class Functions and Applicative Programming
	Functions as First-Class Things
	JavaScript’s Multiple Paradigms

	Applicative Programming
	Collection-Centric Programming
	Other Examples of Applicative Programming
	Defining a Few Applicative Functions

	Data Thinking
	“Table-Like” Data

	Summary

	Chapter 3. Variable Scope and Closures
	Global Scope
	Lexical Scope
	Dynamic Scope
	JavaScript’s Dynamic Scope

	Function Scope
	Closures
	Simulating Closures
	Using Closures
	Closures as an Abstraction

	Summary

	Chapter 4. Higher-Order Functions
	Functions That Take Other Functions
	Thinking About Passing Functions: max, finder, and best
	More Thinking About Passing Functions: repeat, repeatedly, and
 iterateUntil

	Functions That Return Other Functions
	Capturing Arguments to Higher-Order Functions
	Capturing Variables for Great Good
	A Function to Guard Against Nonexistence: fnull

	Putting It All Together: Object Validators
	Summary

	Chapter 5. Function-Building Functions
	The Essence of Functional Composition
	Mutation Is a Low-Level Operation

	Currying
	To Curry Right, or To Curry Left
	Automatically Currying Parameters
	Currying for Fluent APIs
	The Disadvantages of Currying in JavaScript

	Partial Application
	Partially Applying One and Two Known Arguments
	Partially Applying an Arbitrary Number of Arguments
	Partial Application in Action: Preconditions

	Stitching Functions End-to-End with Compose
	Pre- and Postconditions Using Composition

	Summary

	Chapter 6. Recursion
	Self-Absorbed Functions (Functions That Call Themselves)
	Graph Walking with Recursion
	Depth-First Self-Recursive Search with Memory
	Recursion and Composing Functions: Conjoin and Disjoin

	Codependent Functions (Functions Calling Other Functions That Call
 Back)
	Deep Cloning with Recursion
	Walking Nested Arrays

	Too Much Recursion!
	Generators
	The Trampoline Principle and Callbacks

	Recursion Is a Low-Level Operation
	Summary

	Chapter 7. Purity, Immutability, and Policies for Change
	Purity
	The Relationship Between Purity and Testing
	Separating the Pure from the Impure
	Property-Testing Impure Functions
	Purity and the Relationship to Referential Transparency
	Purity and the Relationship to Idempotence

	Immutability
	If a Tree Falls in the Woods, Does It Make a Sound?
	Immutability and the Relationship to Recursion
	Defensive Freezing and Cloning
	Observing Immutability at the Function Level
	Observing Immutability in Objects
	Objects Are Often a Low-Level Operation

	Policies for Controlling Change
	Summary

	Chapter 8. Flow-Based Programming
	Chaining
	A Lazy Chain
	Promises

	Pipelining
	Data Flow versus Control Flow
	Finding a Common Shape
	A Function to Simplify Action Creation

	Summary

	Chapter 9. Programming Without Class
	Data Orientation
	Building Toward Functions

	Mixins
	Core Prototype Munging
	Class Hierarchies
	Changing Hierarchies
	Flattening the Hierarchy with Mixins
	New Semantics via Mixin Extension
	New Types via Mixin Mixing
	Methods Are Low-Level Operations

	}).call(“Finis”);

	Appendix A. Functional JavaScript in the Wild
	Functional Libraries for JavaScript
	Functional JavaScript
	Underscore-contrib
	RxJS
	Bilby
	allong.es
	Other Functional Libraries

	Functional Programming Languages Targeting JavaScript
	ClojureScript
	CoffeeScript
	Roy
	Elm

	Appendix B. Annotated Bibliography
	Books
	Presentations
	Blog Posts
	Journal Articles

	Index
	About the Author

