Содержание

Предисловие и обзор литературы	10
Благодарности и адреса для переписки	14
Глава 1. Генераторы синусоидальных сигналов	15
1.1. Основные типы сигналов и их параметры	
1.1.1. Сигналы постоянного уровня	15
1.1.2. Источники постоянного напряжения и тока	16
1.1.3. Погрешность измерений в цепях постоянного тока	18
1.1.4. Фон, наводки и шум источников постоянного напряжения и тока	20
1.2. Источники переменного напряжения и тока	21
1.2.1. Параметры синусоидального напряжения и тока	21
1.2.2. Истинное среднеквадратическое значение (True RMS)	22
1.2.3. Типы источников синусоидального напряжения	24
1.2.4. Фазовый шум генераторов	25
1.3. Схемотехника аналоговых генераторов синусоидальных сигналов	26
1.3.1. Обобщенная схема аналогового генератора синусоидального	
напряжения	26
1.3.2. RC-генераторы	
1.3.3. LC-генераторы синусоидального напряжения	
1.3.4. Генераторы на пьезокерамических фильтрах	
1.3.5. Кварцевые резонаторы и генераторы	
1.3.6. Промышленные модули кварцевых генераторов	
1.3.7. Пути улучшения параметров генераторов синусоидальных сигналов	40
1.4. Серийные RC-генераторы низких частот	43
1.4.1. Генератор сигналов низкочастотный ГЗ-118	43
1.4.2. Генераторы, выпускаемые фирмой МНИПИ	43
1.4.3. Генератор Г3-126	44
1.4.4. Звуковые генераторы GAG 809/810 фирмы GW Instek	45
1.5. Аналоговые ВЧ- и СВЧ-генераторы синусоидальных сигналов	46
1.5.1. Основные типы генераторов стандартных сигналов	46
1.5.2. Советские ВЧ-генераторы стандартных сигналов	47
1.5.3. Радиочастотные генераторы HG-1500/1500D фирмы MCP	48
1.5.4. Радиочастотный генератор GRG-450B фирмы GW Instek	49
1.5.5. Аналоговые СВЧ-генераторы синусоидальных сигналов	50

1.6. Основы цифрового синтеза частоты и формы сигналов	52
1.6.1. Основные методы цифрового синтеза сигналов	52
1.6.2. Генераторы на основе цифрового синтезатора частот	52
1.6.3. Генераторы произвольных функций (AFG)	54
1.6.4. Генераторы сигналов произвольной формы (AWG)	55
1.6.5. Шум квантования у генераторов с цифровым синтезом формы	
сигналов	55
1.7. Генераторы синусоидальных сигналов с цифровым синтезом умеренной сложности	
1.7.1. Отечественные генераторы с цифровым синтезом	58
1.7.2. Генератор SG-1501B фирмы JungJin	60
1.7.3. Генератор VC2003 фирмы VICTOR	
1.7.4. Генераторы высокочастотные АКТАКОМ АНР-2015/ 2150	62
1.7.5. Генераторы высокочастотные АКИП ГСВЧ-3000	63
1.8. Генераторы с цифровым синтезом фирмы Agilent Technologies	63
1.8.1. Генератор аналоговых сигналов Е4428С	63
1.8.2. Генератор аналоговых сигналов N5181C MSG	65
1.8.3. Генератор аналоговых сигналов Е8663В	65
1.8.4. Генератор N9310A RF	66
1.8.5. Генератор E8257D PSG с частотой до 67 ГГц	68
1.9. Генераторы синусоидальных сигналов фирмы ROHDE&SCHWARE	69
1.9.1. Портативный переносный генератор R&S SM300	69
1.9.2. Стационарные генераторы R&S серии SML/SMV	70
1.9.3. Стационарные генераторы R&S SMA/SMB/SMF100A	71
1.9.4. Серия генераторов R&S SMP0* с частотами до 20, 27 и 40 ГГц	73
1.9.5. Серия генераторов R&S SMR** с частотами до 60 ГГц	74
1.9.6. Векторное представление сигналов и цифровая модуляция	75
1.9.7. Векторные генераторы фирмы R&S SMU200A/SMJ100A/SMATE200.	A 77
1.9.8. Векторные генераторы фирмы Model 2910 Keithley	79
1.10. Генератор со сверхмалыми нелинейными искажениями DS360 фирмы Stanford Research Systems	81
1.11. Генераторы качающейся частоты (ГКЧ) и измерители АЧХ	82
1.11.1. Промышленные ГКЧ и измерители АЧХ	
1.11.2. Работа с измерителем АЧХ Х1-50	
1.12. Гетеродинные индикаторы резонанса (ГИР)	88
1.12.1. Назначение и принципы работы ГИР	
1.12.2. Простой ГИР на одном полевом транзисторе	
1.12.3. ГИР на транзисторном аналоге негатрона	

Глава 2. Генераторы импульсов	91
2.1. Импульсные сигналы и принципы их генерации	91
2.1.1. Формы и параметры импульсов	91
2.1.2. Принципы генерации импульсных сигналов	94
2.1.3. Спектр сигналов	95
2.2. Схемотехника простых генераторов импульсов	98
2.2.1. Импульсные генераторы на транзисторах и интегральных микросхемах	98
2.2.2. Импульсные генераторы на интегральном таймере	99
2.2.3. Обзор импульсных устройств на негатронах	102
2.2.4. Импульсные устройства на однопереходных транзисторах	104
2.2.5. Особенности лавинных транзисторов	106
2.2.6. Емкостной релаксатор на лавинном транзисторе	108
2.2.7. Генератор прямоугольных импульсов на лавинном транзисторе с накопительной линией	110
2.2.8. Генератор наносекундных импульсов тока в 25 А на лавинном транзисторе	111
2.3. Серийные генераторы импульсов	114
2.3.1. Обзор рынка серийных генераторов импульсов	
2.3.2. Типовая функциональная схема аналогового импульсного генератора	114
2.3.3. Отечественные серийные генераторы микросекундных импульсов.	115
2.3.4. Отечественные серийные генераторы наносекундных импульсов	118
2.3.5. Универсальные генераторы импульсов серии 8500 фирмы Tabor	
2.4. Генераторы телевизионных сигналов	123
2.4.1. Назначение и особенности генераторов телевизионных	
сигналов	
2.4.2. Генератор телевизионных сигналов PG-401L фирмы EZ Digital	124
AHP-3125/3126	125
2.4.4. Линейка генераторов телевизионных сигналов корпорации Tektronix	129
2.4.5. Стационарный генератор телевизионных сигналов Г6-35	131
2.5. Генераторы коротких импульсов	132
2.5.1. Принципы генерации импульсов с субнаносекундным временем нарастания	
2.5.2. Генератор НZ60-3 для испытания аналоговых осциллографов	
2.5.3. Исследование динамики излучения лазерных диодов	

2.5.4. Генераторы пикосекундных импульсов серии 4000 фирмы Picosecond Pulse Lab	137
2.5.5. Импульсные генераторы и оптические модули фирмы DEI	
2.5.6. Высоковольтные модули HVS фирмы ALPHALAS	
2.5.7. Генераторы наносекундных импульсов на фотоно-инжекционных импульсных коммутаторах	145
Глава З. Функциональные генераторы	151
3.1. Принципы построения функциональных генераторов	151
3.1.1. Основные типы функциональных генераторов	151
3.1.2. Функциональные генераторы с интегратором на интегральном операционном усилителе	152
3.1.3. Пример простой схемы функционального генератора	
3.1.4. Функциональные генераторы, управляемые напряжением или током	
3.1.5. Формирователи синусоидального сигнала из треугольного	
3.2. Микросхема функционального генератора XR-2206	
3.2.2. Блок-схема и принципиальная схема микросхемы XR-2206	
3.2.3. Назначение выводов микросхемы XR-2206	
3.2.4. Типовая схема применения микросхемы XR-2206	
3.3. Микросхема функционального генератора MAX038	
3.3.2. Функциональная схема микросхемы МАХОЗ8	
3.3.3. Основные схемы включения микросхемы МАХОЗ8	
3.3.4. Осциллограммы и спектры сигналов микросхемы МАХ038	
3.4. Серийные аналоговые функциональные генераторы	
3.4.1. Функциональные генераторы времен СССР	
3.4.2. Функциональные генераторы фирмы МНИПИ	
3.4.3. Функциональные генераторы фирмы Wavetek Meterman	
3.4.4. Функциональные генераторы и частотомеры фирмы МЕТЕХ	
3.4.5. Программа стыковки приборов МЕТЕХ с компьютером	
3.4.6. Измерительные комплексы MS-9160/9170 фирмы METEX	
3.4.7. Функциональные генераторы MFG-82**A фирмы MATRIX	
3.4.8. Функциональные генераторы фирмы EZ Digital	
3.4.9. Функциональный генератор VC2002 фирмы VICTOR	
3.4.10. Функциональные генераторы АКТАКОМ	187
3.4.11. Заключительные замечания по аналоговым функциональным генераторам	188
1 G11Gpa1 Gpaw	100

3.5. Функциональные генераторы с цифровым синтезом выходных сигналов .	189
3.5.1. Принципы построения функциональных генераторов с цифровым	
синтезом выходных сигналов	
3.5.2. Генератор сигналов VC2003 фирмы VICTOR	
3.5.3. Программируемый функциональный генератор G5100	
3.5.4. Функциональный свип-генератор B821 фирмы Protek	
3.5.5. Функциональные генераторы АКТАКОМ серии АНР	193
3.6. Виртуальные функциональные генераторы	195
3.6.1. Назначение и особенности виртуальных функциональных генераторов	195
3.6.2. Виртуальные функциональные генераторы фирмы Velleman	195
3.6.3. Работа с виртуальным функциональным генератором фирмы	
Velleman	
3.6.4. Создание компьютеризированной лаборатории PC-Lab 2000	200
3.6.5. Функциональные генераторы АКТАКОМ АНР-3121/3122	201
3.6.6. Комбинированный прибор АКТАКОМ АСК-4106	202
Глава 4. Генераторы сигналов произвольной формы	. 207
4.1. Генераторы сигналов произвольной формы зарубежных фирм	207
4.1.1. Назначение и особенности генераторов сигналов произвольной	
формы	207
4.1.2. Генераторы сигналов произвольной формы фирмы Protek	209
4.1.3. Генераторы сигналов произвольной формы АКТАКОМ и АКИП	209
4.1.4. Функциональный генератор 33220A фирмы Agilent	210
4.1.5. Двухканальный генератор произвольных сигналов R&S AM300	212
4.1.6. Генераторы произвольных сигналов фирмы Tabor	214
4.2. Многофункциональные генераторы произвольных сигналов серии	
Tektronix AFG3000	215
4.2.1. Внешний вид и органы управления генератора AFG3000	215
4.2.2. Технические характеристики генераторов AFG3000	219
4.2.3. Работа с генератором AFG3000	220
4.2.4. Основные возможности генераторов AFG3101	221
4.2.5. Основные возможности генераторов AFG3251/3252	233
4.3. Программное обеспечение генераторов AFG3000	237
4.3.1. Назначение программы ArbExpress и ее интерфейс	237
4.3.2. Создание сигналов стандартных форм	
4.3.3. Настройка на типы приборов и работа с файлами	240
4.3.4. Программирование формы сигналов	
4.3.5. Применение графического редактора формы сигналов	

4.3.6. Математические операции с сигналами	
4.3.7. Построение сигнала по осциллограмме	249
4.4. Работа измерительных приборов с системой MATLAB	253
4.4.1. Назначение матричной системы MATLAB	253
4.4.2. Подготовка к стыковке осциллографов с системой МАТLAB	254
4.4.3. MATLAB-программы для работы с цифровыми осциллографами	256
4.4.4. Спектральный анализ осциллограмм в MATLAB	
4.4.5. Построение спектрограмм осциллограмм в MATLAB	263
4.4.6. Управление генераторами серии AFG3000 от матричной системы МАТLAB	266
4.4.7. Применение системы MATLAB при совместной работе генератора и цифрового осциллографа	269
4.5. Генераторы сигналов произвольной формы класса AWG	
4.5.1. Сравнение генераторов класса AFG и AWG	
4.5.2. Генераторы серии AWG7000	
4.5.3. Генераторы серии AWG5000	
4.6. Генераторы цифровых сигналов произвольной формы	
4.6.1. Функциональная схема генератора паттернов данных	
4.6.2. Генераторы цифровых сигналов Tektronix DG2020A	
4.6.3. Генераторы цифровых сигналов Tektronix DG5078/5274/DTG5334	
4.7. Программа NI Signal Express Tektronix Edition	284
4.7.1. Назначение программы	284
4.7.2. Выбор и запуск программы	285
4.7.3. Основное окно программы при работе с осциллографом	287
4.7.4. Работа с инструментами программы	289
4.7.5. Работа с генератором серии AFG3000	290
4.7.6. Дополнительные возможности программы	294
Глава 5. Применение генераторов сигналов	. 297
5.1. Современная лаборатория разработчика электронных устройств	297
5.1.1. Назначение лаборатории	297
5.1.2. Лаборатория начального уровня	298
5.1.3 Лаборатория среднего уровня	
5.1.4. Лаборатория высшего (HiFi) уровня	305
5.2. Контроль параметров генераторов сигналов	314
5.2.1. Осциллографический контроль формы сигналов	314
5.2.2. Контроль и измерение амплитудных параметров генераторов	316
5.2.3. Контроль временных параметров сигналов генераторов	317

5.2.3. Контроль временных параметров сигналов генераторов	317
5.2.4. Проведение автоматических измерений	318
5.2.5. Контроль времени нарастания импульсов генератора	319
5.2.6. Контроль спектра сигналов с помощью осциллографа	320
5.2.7. Анализ спектра сигналов генераторов анализатором спектра	
реального времени	322
5.3. Примеры применения генераторов сигналов	328
5.3.1. Применение AFG3000 для запуска формирователей импульсов	
со временами нарастания и спада до 50 пс	328
5.3.2. Измерение АЧХ осциллографов	. 336
5.3.3. Проверка переходных характеристик осциллографов	337
5.3.4. Применение AFG3000 для измерения добротности LC-контуров	338
5.3.5. Применение AFG3000 в качестве генератора качающейся частоты	340
5.3.6. Применение функциональных генераторов в качестве ГКЧ	341
5.3.7. Исследование линейных цепей	. 345
5.3.8. Применение генераторов Tektronix AFG3000 для измерения	
емкости	
5.3.9. Контроль динамики интегральных микросхем	352
5.3.10. Контроль индикаторной панели	. 354
5.3.11. Контроль режима XY осциллографов	355
5.4. Специальные применения генераторов сигналов	355
5.4.1. Проверка чувствительности радиоприемников	355
5.4.2. Создание сигнала с кодоимпульсной модуляцией	357
5.4.3. Контроль импульсных сигналов с помощью глазковых диаграмм	360
5.4.4. Контроль за деградацией сигнала при его передаче по каналам	
СВЯЗИ	. 362
5.4.5. Контроль ультраширокополосных систем	. 363
5.4.6. Генератор R&S SMA100A как средство контроля аэронавигационных	
систем	367
Литература	369

Предисловие и обзор литературы

Современная измерительная техника переживает драматический период. Пожалуй, впервые за многие десятки лет техника генерации, регистрации и измерения сигналов сильно отстала от многих передовых направлений применения электронных устройств. Так, даже в таких массовых устройствах, как микропроцессоры для персональных компьютеров, цифровые и импульсные схемы уже работают на частотах в единицы $\Gamma\Gamma$ ц (109 Γ ц), а в ближайшей перспективе будут работать на частотах в десятки $\Gamma\Gamma$ ц и выше [1].

Основной разработчик микропроцессоров — корпорация Intel объявила о создании терагерцовых полевых микротранзисторов с изолированным затвором, работающих на частотах в тысячи ГГц. Еще большие рабочие частоты имеют гетеропереходные Si-Ge микротранзисторы. При исследовании прохождения мощных световых импульсов через нелинейные среды обнаружены явления сокращения длительности их перепадов до пикосекунд и долей пикосекунды. Возникла необходимость в регистрации и имитации таких сигналов.

Между тем, только недавно серийные электронные стробоскопические осциллографы преодолели частотный барьер в 100 ГГц и фактически остановились у него [2-5]. Это уникальные и дорогие приборы, объем продаж которых у нас составляет единицы приборов в год. От них заметно отстали разработки генераторов импульсных сигналов. Так, генераторы импульсов субнаносекундной длительности выпускаются тоже как уникальные и дорогие приборы очень небольшим числом фирм, преимущественно зарубежных.

В период распада СССР отечественные разработки в области генерации сигналов, особенно импульсных, в былые времена проводимые с большим размахом [6-16], практически прекратились. Этим немедленно воспользовались наши западные кон-

куренты — на наш рынок хлынул поток зарубежных разработок таких устройств, которые не так давно мы разрабатывали вполне самостоятельно. Это особенно печально, если учесть, что во времена СССР развитие теории и проектирования импульсных устройств у нас не уступали зарубежному уровню, что отражено в многочисленной монографической и учебной литературе тех лет [8-24].

Главной причиной указанного отставания у нас стало отсутствие современной элементной базы и разрушение производственных связей между странами — бывшими республиками СССР. Достаточно отметить, что большая часть советских скоростных осциллографов и генераторов импульсов создавалась и выпускалась в Вильнюсском НИИ радиоизмерительных приборов и в Минском приборостроительном институте, множество микросхем выпускалось в Киевском НПО "Кристалл" и т. д.

Автор этой монографии, заведуя кафедрой промышленной электроники Смоленского филиала МЭИ, еще с конца 60-х годов занимался проблематикой импульсных устройств, начиная с исследования уникальных возможностей биполярных транзисторов в лавинном режиме их работы. В 1973 г. вышла его монография [21] — единственная в мире по данному направлению [20, 25]. В те годы были разработаны и всесторонне изучены первые советские германиевые специальные лавинные транзисторы серии ГТЗЗ8 [26-29].

Обширное исследование германиевых и кремниевых транзисторов в лавинном режиме работы [26-45, 73] показало, что особой необходимости в создании специальных кремниевых лавинных транзисторов нет, поскольку большинство обычных серийных кремниевых транзисторов надежно работает в лавинном режиме и не уступает параметрам специальных кремниевых транзисторов, созданных за рубежом (кстати, тоже на основе обычных серийных транзисторов).

В ходе этого исследования был обнаружен и описан в [21, 32-38] комплекс физических явлений, позволивший в деталях объяснить уникальные возможности биполярных транзисторов в лавинном режиме работы, в частности, сочетание предельно высокого быстродействия с предельными импульсными токами и напряжениями.

Ныне это нашло практическое применение как в создании новейших высоковольтных кремниевых лавинных транзисторов, так и в разработке целого ряда уникальных и серийных генераторов мощных импульсов. Недавно была издана новая книга по применению лавинных транзисторов [73], в которой отражены достижения в этой области за последние годы, увы, по большей части зарубежные.

В дальнейшем наши исследования охватили применение и других типов полупроводниковых приборов и интегральных микросхем. Так, впервые были показаны уникальные импульсные свойства новых в то время мощных ВЧ и СВЧ МДП-транзисторов (полевых транзисторов со структурой "металл-диэлектрик-полупроводник" и мощных СВЧ арсенид-галлиевых полевых транзисторов с барьером Шоттки [17, 18]. Совместное их применение с лавинными транзисторами [42-69, 73] открывает новые возможности в построении генераторов импульсов нано- и даже пикосекундного диапазона времен нарастания и спада. Многие из этих возможностей до сих пор не реализованы в серийных генераторах импульсов и ждут своей очереди.

цифровой связи, особенно многоканальным, таким, как системы мобильной связи. Острым стал вопрос об осуществимости регулировки всех параметров сигналов генераторов в широких пределах электронными методами.

В связи с этим появились новейшие разработки генераторов сигналов на основе прямого цифрового синтеза частот и форм сигналов [94-102]. В таких генераторах применение аналоговой элементной базы резко ограничено, и приборы строятся на основе как стандартных, так и специализированных сверхскоростных цифровых микросхем, аналого-цифровых (АЦП) и цифроаналоговых (ЦАП) преобразователей. Это обеспечивает легкую и естественную стыковку таких генераторов с цифровыми системами и современными персональными и промышленными компьютерами и открывает широкие возможности их применения в испытании и отладке различных электронных и радиотехнических систем и устройств [102-124].

Эта книга посвящена описанию техники генерации сигналов различной формы — от простых синусоидальных и импульсных сигналов до мощных наносекундных импульсов и сложнейших сигналов произвольной формы. Хотя книга не является каталогом по генераторам сигналов, она дает достаточно подробный обзор рынка современных генераторов сигналов и областей их применения. Автор надеется, что это практически поможет нашим специалистам в выборе современных генераторов сигналов различного типа.

Книга рассчитана на специалистов в различных областях науки и техники, применяющих генераторы сигналов, научных работников и инженеров, студентов и преподавателей технических университетов и вузов. Она полезна и подготовленным радиолюбителям.